1
|
Ren Y, Manefield M. Evolution of pollutant biodegradation. Appl Microbiol Biotechnol 2025; 109:36. [PMID: 39903283 PMCID: PMC11794338 DOI: 10.1007/s00253-025-13418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Pollutant-derived risks to human and environmental health are exacerbated by slow natural attenuation rates, often driven by pollutant toxicity to microorganisms that can degrade them or limitations to the ability of microorganisms to metabolise them. This review explores mechanisms employed by bacteria to protect themselves from pollutant toxicity in the context of the evolution of pollutant-degrading abilities. The role of promiscuous enzymes in pollutant transformation is subsequently reviewed, highlighting the emergence of novel metabolic pathways and their transcriptional regulation in response to pollutant exposure, followed by the gene transcription regulation to optimise the cellular component synthesis for adaptation on the novel substrate. Additionally, we discuss epistatic interactions among mutations vital for this process both at macromolecular and at cellular levels. Finally, evolutionary constraints towards enhanced fitness in the context of pollutant degradation are considered, the constraints imposed by the epistasis from mutations on both enzyme level and cellular level, concluding with challenges and emerging opportunities to develop sustainable contaminated site remediation technologies. KEY POINTS: •Pollutants can exert toxicity on cellular membrane, enzyme and gene transcription. •Bacteria can patch promiscuous enzymes into novel pathway to degrade pollutants. •The evolution trajectory is constrained by epistasis from mutations on enzyme and cellular level.
Collapse
Affiliation(s)
- Yi Ren
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mike Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Busch MR, Drexler L, Mahato DR, Hiefinger C, Osuna S, Sterner R. Retracing the Rapid Evolution of an Herbicide-Degrading Enzyme by Protein Engineering. ACS Catal 2023; 13:15558-15571. [PMID: 38567019 PMCID: PMC7615792 DOI: 10.1021/acscatal.3c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mechanisms underlying the rapid evolution of novel enzymatic activities from promiscuous side activities are poorly understood. Recently emerged enzymes catalyzing the catabolic degradation of xenobiotic substances that have been spread out into the environment during the last decades provide an exquisite opportunity to study these mechanisms. A prominent example is the herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), which is degraded through a number of enzymatic reactions constituting the Atz pathway. Here, we analyzed the evolution of the hydroxyatrazine ethylaminohydrolase AtzB, a Zn(II)-dependent metalloenzyme that adopts the amidohydrolase fold and catalyzes the second step of the Atz pathway. We searched for promiscuous side activities of AtzB, which might point to the identity of its progenitor. These investigations revealed that AtzB has low promiscuous guanine deaminase activity. Furthermore, we found that the two closest AtzB homologues, which have not been functionally annotated up to now, are guanine deaminases with modest promiscuous hydroxyatrazine hydrolase activity. Based on sequence comparisons with the closest AtzB homologues, the guanine deaminase activity of AtzB could be increased by three orders of magnitude through the introduction of only four active site mutations. Interestingly, introducing the inverse four mutations into the AtzB homologues significantly enhanced their hydroxyatrazine hydrolase activity, and in one case is even equivalent to that of wild-type AtzB. Molecular dynamics simulations elucidated the structural and molecular basis for the mutation-induced activity changes. The example of AtzB highlights how novel enzymes with high catalytic proficiency can evolve from low promiscuous side activities by only few mutational events within a short period of time.
Collapse
Affiliation(s)
- Markus R. Busch
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Lukas Drexler
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Dhani Ram Mahato
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
- ICREA, Barcelona 08010, Spain
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
4
|
Satapute P, De Britto S, Hadimani S, Abdelrahman M, Alarifi S, Govind SR, Jogaiah S. Bacterial chemotaxis of herbicide atrazine provides an insight into the degradation mechanism through intermediates hydroxyatrazine, N-N-isopropylammelide, and cyanuric acid compounds. ENVIRONMENTAL RESEARCH 2023; 237:117017. [PMID: 37652220 DOI: 10.1016/j.envres.2023.117017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 μg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 μg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 μg/L and 190 μg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka, 441, Papua New Guinea
| | - Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
5
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Modeling-Guided Amendments Lead to Enhanced Biodegradation in Soil. mSystems 2022; 7:e0016922. [PMID: 35913191 PMCID: PMC9426591 DOI: 10.1128/msystems.00169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extensive use of agrochemicals is emerging as a serious environmental issue coming at the cost of the pollution of soil and water resources. Bioremediation techniques such as biostimulation are promising strategies used to remove pollutants from agricultural soils by supporting the indigenous microbial degraders. Though considered cost-effective and eco-friendly, the success rate of these strategies typically varies, and consequently, they are rarely integrated into commercial agricultural practices. In the current study, we applied metabolic-based community-modeling approaches for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was ranked through simulation and validated in pot experiments. A two-dimensional simulation matrix predicting the effect of different biostimulants on additional potential indigenous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental observations. The overall ability of the models to predict the compounds that act as taxa-selective stimulants indicates that computational algorithms can guide the manipulation of the soil microbiome in situ and provides an additional step toward the educated design of biostimulation strategies. IMPORTANCE Providing the food requirements of a growing population comes at the cost of intensive use of agrochemicals, including pesticides. Native microbial soil communities are considered key players in the degradation of such exogenous substances. Manipulating microbial activity toward an optimized outcome in efficient biodegradation processes conveys a promise of maintaining intensive yet sustainable agriculture. Efficient strategies for harnessing the native microbiome require the development of approaches for processing big genomic data. Here, we pursued metabolic modeling for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Our genomic-based predictions point at strategies for optimizing biodegradation by the native community. Developing a systematic, data-guided understanding of metabolite-driven targeted enhancement of selected microorganisms lays the foundation for the design of ecologically sound methods for optimizing microbiome functioning.
Collapse
|
7
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Triassi M, Montuori P, Provvisiero DP, De Rosa E, Di Duca F, Sarnacchiaro P, Díez S. Occurrence and spatial-temporal distribution of atrazine and its metabolites in the aquatic environment of the Volturno River estuary, southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149972. [PMID: 34482142 DOI: 10.1016/j.scitotenv.2021.149972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The present study assesses the spatial distribution and temporal trends of the water dissolved phase (WDP), suspended particulate matter (SPM) and sediment partitioning of atrazine (ATR) and its metabolites in the Volturno River estuary. The load contribution of ATR and its metabolites in this river to the Central Mediterranean Sea was estimated. Samples were collected in 10 sampling sites during the four seasons. The total concentrations of ATR and DPs detected ranged from 18.1 to 105.5 ng L-1 in WDP, from 4.5 to 63.2 ng L-1 in SPM, and from 4.6 to 18.6 ng g-1 in sediment samples, indicating high levels of these pollutants. Structural equation model and the ratio study indicated that the relationship between sediment and WDP pollutants occurred through the SPM. The pollutants load at the Volturno River in its mouth was evaluated in about 30.4 kg year-1, showing that this river is an important source of these analytes through discharge into Central Mediterranean Sea. Principal component analysis indicated that ATR and its metabolites pollution moves from Volturno River mouth southward and increased in the rainy season. The desethylatrazine-to-atrazine ratio was higher than 0.5 for all samples analyzed, indicating an historical discharge and a long residence time of ATR in sediment about two decades after its ban, and classifying ATR as a nonpoint source contaminant. This study makes up the first record of ATR and its metabolites in superficial water of Southern Italy and provides helpful data as starting point for future studies.
Collapse
Affiliation(s)
- Maria Triassi
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy.
| | | | - Elvira De Rosa
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Fabiana Di Duca
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Law and Economics, University "Federico II", Complesso Universitario di Monte S. Angelo, via Cinthia n° 26, 80126 Naples, Italy
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona E-08034, Spain
| |
Collapse
|
9
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
10
|
Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation. Sci Rep 2020; 10:13019. [PMID: 32747737 PMCID: PMC7398907 DOI: 10.1038/s41598-020-69509-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to study the atrazine degradation process at organism level. Constraint based flux balance analysis and time dependent simulations were used to explore the organism’s phenotypic landscape. Simulations aimed at designing media optimized for supporting growth and enhancing degradation, by passing the need in strain design via genetic modifications. Growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the predicted classification of different compounds as efficient, moderate or poor stimulators of growth. Simulations successfully captured previous reports on the use of glucose and phosphate as bio-stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond supplementing the medium with a single compound and can predict the growth outcomes for higher complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemical expertise and knowledge and further support the importance of computational platforms for the educated design of complex media. The model presented here can potentially serve as a predictive tool towards achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation.
Collapse
|
11
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
12
|
Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution. Appl Environ Microbiol 2020; 86:AEM.01964-19. [PMID: 31676480 DOI: 10.1128/aem.01964-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cyanuric acid is an industrial chemical produced during the biodegradation of s-triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, Pseudomonas sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the s-triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in Pseudomonas sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway in vitro with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a Herbaspirillum strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene trtB encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original Pseudomonas sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States.IMPORTANCE Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, Pseudomonas sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for Pseudomonas sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.
Collapse
|
13
|
Labour sharing promotes coexistence in atrazine degrading bacterial communities. Sci Rep 2019; 9:18363. [PMID: 31798012 PMCID: PMC6892810 DOI: 10.1038/s41598-019-54978-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial communities are pivotal in the biodegradation of xenobiotics including pesticides. In the case of atrazine, multiple studies have shown that its degradation involved a consortia rather than a single species, but little is known about how interdependency between the species composing the consortium is set up. The Black Queen Hypothesis (BQH) formalized theoretically the conditions leading to the evolution of dependency between species: members of the community called ‘helpers’ provide publicly common goods obtained from the costly degradation of a compound, while others called ‘beneficiaries’ take advantage of the public goods, but lose access to the primary resource through adaptive degrading gene loss. Here, we test whether liquid media supplemented with the herbicide atrazine could support coexistence of bacterial species through BQH mechanisms. We observed the establishment of dependencies between species through atrazine degrading gene loss. Labour sharing between members of the consortium led to coexistence of multiple species on a single resource and improved atrazine degradation potential. Until now, pesticide degradation has not been approached from an evolutionary perspective under the BQH framework. We provide here an evolutionary explanation that might invite researchers to consider microbial consortia, rather than single isolated species, as an optimal strategy for isolation of xenobiotics degraders.
Collapse
|
14
|
Lazarini-Martínez A, Pérez-Valdespino A, Martínez FH, Ordaz NR, Galíndez-Mayer J, Juárez-Ramírez C, Curiel-Quesada E. Assembly of an atrazine catabolic operon and its introduction to Gram-negative hosts for robust and stable degradation of triazine herbicides. FEMS Microbiol Lett 2019; 366:5634263. [DOI: 10.1093/femsle/fnz233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
ABSTRACTIn 1995, Pseudomonas sp. ADP, capable of metabolizing atrazine, was isolated from contaminated soil. Genes responsible for atrazine mineralization were found scattered in the 108.8 kb pADP-1 plasmid carried by this strain, some of them flanked by insertion sequences rendering them unstable. The goal of this work was to construct a transcriptional unit containing the atz operon in an easy to transfer manner, to be introduced and inherited stably by Gram-negative bacteria. atz genes were PCR amplified, joined into an operon and inserted onto the mobilizable plasmid pBAMD1–2. Primers were designed to add efficient transcription and translation signals. Plasmid bearing the atz operon was transferred to different Gram-negative strains by conjugation, which resulted in Tn5 transposase-mediated chromosomal insertion of the atz operon. To test the operon activity, atrazine degradation by transposants was assessed both colorimetrically and by high-performance liquid chromatography (HPLC). Transposants mineralized atrazine more efficiently than wild-type Pseudomonas sp. ADP and did not accumulate cyanuric acid. Atrazine degradation was not repressed by simple nitrogen sources. Genes conferring atrazine-mineralizing capacities were stable and had little or null effect on the fitness of different transposants. Introduction of catabolic operons in a stable fashion could be used to develop bacteria with better degrading capabilities useful in bioremediation.
Collapse
Affiliation(s)
- Alfredo Lazarini-Martínez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Fernando Hernández Martínez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| | - Nora Ruiz Ordaz
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Juvencio Galíndez-Mayer
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Cleotilde Juárez-Ramírez
- Department of Biochemical Engineering, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Av. Wilfrido Massieu 399, Unidad Adolfo López Mateos, CP07738 Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico
| |
Collapse
|
15
|
Henry VA, Jessop JLP, Peeples TL. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy. Anal Bioanal Chem 2016; 409:1441-1449. [PMID: 27942801 DOI: 10.1007/s00216-016-0077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.
Collapse
Affiliation(s)
- Victoria A Henry
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA
| | - Julie L P Jessop
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA
| | - Tonya L Peeples
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Mechanism of Antiactivation at the Pseudomonas sp. Strain ADP σN-Dependent PatzT Promoter. Appl Environ Microbiol 2016; 82:4350-4362. [PMID: 27208099 DOI: 10.1128/aem.00906-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED PatzT is an internal promoter of the atzRSTUVW operon that directs the synthesis of AtzT, AtzU, AtzV, and AtzW, components of an ABC-type cyanuric acid transport system. PatzT is σ(N) dependent, activated by the general nitrogen control regulator NtrC with the assistance of protein integration host factor (IHF), and repressed by the LysR-type transcriptional regulator (LTTR) AtzR. We have used a variety of in vivo and in vitro gene expression and protein-DNA interaction assays to assess the mechanisms underlying AtzR-dependent repression of PatzT Here, we show that repression only occurs when AtzR and NtrC interact simultaneously with the PatzT promoter region, indicating that AtzR acts as an antiactivator to antagonize activation by NtrC. Furthermore, repression requires precise rotational orientation of the AtzR and NtrC binding sites, strongly suggesting protein-protein interaction between the two proteins on the promoter region. Further exploration of the antiactivation mechanism showed that although AtzR-dependent repression occurs prior to open complex formation, AtzR does not alter the oligomerization state of NtrC or inhibit NtrC ATPase activity when bound to the PatzT promoter region. Taken together, these results strongly suggest that PatzT-bound AtzR interacts with NtrC to prevent the coupling of NtrC-mediated ATP hydrolysis with the remodeling of the interactions between E-σ(N) and PatzT that lead to open complex formation. IMPORTANCE Here, we describe a unique mechanism by which the regulatory protein AtzR prevents the activation of the σ(N)-dependent promoter PatzT Promoters of this family are always positively regulated, but there are a few examples of overlapping negative regulation. The mechanism described here is highly unconventional and involves an interaction between the repressor and activator proteins to prevent the action of the repressor protein on the RNA polymerase-promoter complex.
Collapse
|
17
|
Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Sci Rep 2016; 6:24538. [PMID: 27087658 PMCID: PMC4834489 DOI: 10.1038/srep24538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.
Collapse
|
18
|
Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines. Appl Environ Microbiol 2016; 82:1638-1645. [PMID: 26729715 DOI: 10.1128/aem.03594-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the nitrogen atoms as ammonia to support growth. The initial reaction that opens the s-triazine ring is catalyzed by the unusual enzyme cyanuric acid hydrolase. This enzyme is in a rare protein family that consists of only cyanuric acid hydrolase (CAH) and barbiturase, with barbiturase participating in pyrimidine catabolism by some actinobacterial species. The X-ray structures of two cyanuric acid hydrolase proteins show that this family has a unique protein fold. Phylogenetic, bioinformatic, enzymological, and genetic studies are consistent with the idea that CAH has an ancient protein fold that was rare in microbial populations but is currently becoming more widespread in microbial populations in the wake of anthropogenic synthesis of cyanuric acid and other s-triazine compounds that are metabolized via a cyanuric acid intermediate. The need for the removal of cyanuric acid from swimming pools and spas, where it is used as a disinfectant stabilizer, can potentially be met using an enzyme filtration system. A stable thermophilic cyanuric acid hydrolase from Moorella thermoacetica is being tested for this purpose.
Collapse
|
19
|
T'Syen J, Tassoni R, Hansen L, Sorensen SJ, Leroy B, Sekhar A, Wattiez R, De Mot R, Springael D. Identification of the Amidase BbdA That Initiates Biodegradation of the Groundwater Micropollutant 2,6-dichlorobenzamide (BAM) in Aminobacter sp. MSH1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11703-13. [PMID: 26308673 DOI: 10.1021/acs.est.5b02309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
2,6-dichlorobenzamide (BAM) is a recalcitrant groundwater micropollutant that poses a major problem for drinking water production in European countries. Aminobacter sp. MSH1 and related strains have the unique ability to mineralize BAM at micropollutant concentrations but no information exists on the genetics of BAM biodegradation. An amidase-BbdA-converting BAM to 2,6-dichlorobenzoic acid (DCBA) was purified from Aminobacter sp. MSH1. Heterologous expression of the corresponding bbdA gene and its absence in MSH1 mutants defective in BAM degradation, confirmed its BAM degrading function. BbdA shows low amino acid sequence identity with reported amidases and is encoded by an IncP1-β plasmid (pBAM1, 40.6 kb) that lacks several genes for conjugation. BbdA has a remarkably low KM for BAM (0.71 μM) and also shows activity against benzamide and ortho-chlorobenzamide (OBAM). Differential proteomics and transcriptional reporter analysis suggest the constitutive expression of bbdA in MSH1. Also in other BAM mineralizing Aminobacter sp. strains, bbdA and pBAM1 appear to be involved in BAM degradation. BbdA's high affinity for BAM and its constitutive expression are of interest for using strain MSH1 in treatment of groundwater containing micropollutant concentrations of BAM for drinking water production.
Collapse
Affiliation(s)
- Jeroen T'Syen
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Raffaella Tassoni
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lars Hansen
- Department of Biology, University of Copenhagen , Universitetsparken 15, 2100 København, Denmark
| | - Søren J Sorensen
- Department of Biology, University of Copenhagen , Universitetsparken 15, 2100 København, Denmark
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - Aswini Sekhar
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Hua A, Gueuné H, Cregut M, Thouand G, Durand MJ. Development of a bacterial bioassay for atrazine and cyanuric acid detection. Front Microbiol 2015; 6:211. [PMID: 25852669 PMCID: PMC4362333 DOI: 10.3389/fmicb.2015.00211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E. coli SM003 for cyanuric acid detection and E. coli SM004 for both atrazine and cyanuric acid detection. The concentration of cyanuric acid detection for E. coli SM003 ranges from 7.83 μM to 2.89 mM, and for E. coli SM004 ranges from 0.22 to 15 μM. Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 μM. According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water. Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.
Collapse
Affiliation(s)
- Anna Hua
- Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBACLa Roche-sur-Yon, France
| | - Hervé Gueuné
- Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBACLa Roche-sur-Yon, France
- CORRODYS, Centre de Corrosion Marine et BiologiqueCherbourg, Octeville, France
| | - Mickaël Cregut
- Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBACLa Roche-sur-Yon, France
| | - Gérald Thouand
- Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBACLa Roche-sur-Yon, France
| | - Marie-José Durand
- Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBACLa Roche-sur-Yon, France
| |
Collapse
|
21
|
Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 2014; 80:6601-10. [PMID: 25128343 DOI: 10.1128/aem.01818-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
Collapse
|
22
|
Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 2014; 98:6125-35. [DOI: 10.1007/s00253-014-5665-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
23
|
Platero AI, Santero E, Govantes F. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP. FEMS Microbiol Lett 2014; 352:150-6. [PMID: 24484197 DOI: 10.1111/1574-6968.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/28/2022] Open
Abstract
The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.
Collapse
Affiliation(s)
- Ana I Platero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | |
Collapse
|
24
|
Quantitative assessment of the proliferation of the protozoan parasite Perkinsus marinus using a bioluminescence assay for ATP content. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:85-92. [PMID: 24533297 DOI: 10.1016/j.ijpddr.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/22/2022]
Abstract
Perkinsus marinus is a protozoan parasite that causes "Dermo" disease in the eastern oyster Crasssostrea virginica in coastal areas of the USA. Until now, intervention strategies against the parasite have found limited success, and Dermo still remains one of the main hurdles for the restoration of oyster populations. We adapted a commercial adenosine tri-phosphate (ATP) content-based assay to assess the in vitro proliferation of P. marinus in a 96-well plate format, and validated the method by measuring the effects of potential anti-proliferative compounds. The sensitivity (1.5-3.1 × 10(4) cells/well), linearity (R (2) = 0.983), and signal stability (60 min) support the reliability of the assay for assessing cell proliferation. Validation of the assay by culturing P. marinus in the presence of increasing concentrations of triclosan showed a dose-response profile. The IC50 value obtained was higher than that reported earlier, possibly due to the use of different viability assay methods and a different P. marinus strain. The antibiotics G418 and tetracycline and the herbicide fluridone were active against P. marinus proliferation; the IC50 of chloramphenicol, ciprofloxacin, and atrazine was relatively high suggesting either off-target effects or inability to reach the targets. The validation of the ATP-based assay, together with significant advantages of the Perkinsus culture methodology (homogeneity, reproducibility, and high cell densities), underscores the value of this assay for developing high-throughput screens for the identification of novel leader compounds against Perkinsus species, and most importantly, for the closely-related apicomplexan parasites.
Collapse
|
25
|
Transcriptional organization and regulatory elements of a Pseudomonas sp. strain ADP operon encoding a LysR-type regulator and a putative solute transport system. J Bacteriol 2012; 194:6560-73. [PMID: 23042989 DOI: 10.1128/jb.01348-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atzS-atzT-atzU-atzV-atzW gene cluster of the Pseudomonas sp. strain ADP atrazine-degradative plasmid pADP-1, which carries genes for an outer membrane protein and the components of a putative ABC-type solute transporter, is located downstream from atzR, which encodes the LysR-type transcriptional regulator of the cyanuric acid-degradative operon atzDEF. Here we describe the transcriptional organization of these genes. Our results show that all six genes are cotranscribed from the PatzR promoter to form the atzRSTUVW operon. A second, stronger promoter, PatzT, is found within atzS and directs transcription of the four distal genes. PatzT is σ(N) dependent, activated by NtrC in response to nitrogen limitation with the aid of IHF, and repressed by AtzR. A combination of in vivo mutational analysis and primer extension allowed us to locate the PatzT promoter and map the transcriptional start site. Similarly, we used deletion and point mutation analyses, along with in vivo expression studies and in vitro binding assays, to locate the NtrC, IHF, and AtzR binding sites and address their functionality. Our results suggest a regulatory model in which NtrC activates PatzT transcription via DNA looping, while AtzR acts as an antiactivator that diminishes expression by interfering with the activation process.
Collapse
|
26
|
Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste CM, Chaabane H, Cooper JF. Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. PEST MANAGEMENT SCIENCE 2012; 68:340-7. [PMID: 21919184 DOI: 10.1002/ps.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/24/2011] [Accepted: 06/24/2011] [Indexed: 05/26/2023]
Abstract
BACKGROUND The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway. RESULTS Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles. CONCLUSION Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.
Collapse
Affiliation(s)
- Christophe Calvayrac
- Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Paliwal V, Puranik S, Purohit HJ. Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 2011; 166:903-24. [PMID: 22198863 DOI: 10.1007/s12010-011-9479-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Identification of factors which can influence the natural attenuation process with available microbial genetic capacities can support the bioremediation which has been viewed as the safest procedure to combat with anthropogenic compounds in ecosystems. With the advent of molecular techniques, assimilatory capacity of an ecosystem can be defined with changing community dynamics, and if required, the essential genetic potential can be met through bioaugmentation. At the same time, intensification of microbial processes with nutrient balancing, expressing and enhancing the degradative capacities, could reduce the time frame of restoration of the ecosystem. The new concept of ecosystems biology has added greatly to conceptualize the networking of the evolving microbiota of the niche that helps in effective application of bioremediation tools to manage pollutants as additional carbon source.
Collapse
Affiliation(s)
- Vasundhara Paliwal
- Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur 440020, India
| | | | | |
Collapse
|
28
|
Simonsen A, Badawi N, Anskjær GG, Albers CN, Sørensen SR, Sørensen J, Aamand J. Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by Aminobacter spp. Appl Microbiol Biotechnol 2011; 94:237-45. [DOI: 10.1007/s00253-011-3591-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/22/2011] [Accepted: 09/17/2011] [Indexed: 11/25/2022]
|
29
|
Hernández M, Jia Z, Conrad R, Seeger M. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiol Ecol 2011; 78:511-9. [DOI: 10.1111/j.1574-6941.2011.01180.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Zhongjun Jia
- Max-Planck Institute for Terrestrial Microbiology; Marburg; Germany
| | - Ralf Conrad
- Max-Planck Institute for Terrestrial Microbiology; Marburg; Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental; Departamento de Química and Center of Nanotechnology and Systems Biology; Universidad Técnica Federico Santa María; Valparaíso; Chile
| |
Collapse
|
30
|
A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse. Toxicol Appl Pharmacol 2010; 251:16-31. [PMID: 21094656 DOI: 10.1016/j.taap.2010.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/05/2010] [Accepted: 11/11/2010] [Indexed: 12/13/2022]
Abstract
Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.
Collapse
|