1
|
Park SB, Zhang Y. Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens 2024; 13:57. [PMID: 38251364 PMCID: PMC10819497 DOI: 10.3390/pathogens13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used to identify V. parahaemolyticus and determine its pathogenicity using both PCR and qPCR assays. To enable testing in field conditions with limited resources, this study aimed to develop a simple and rapid method to detect the species-specific (tlh) and pathogenic (trh and tdh) genes of V. parahaemolyticus using multienzyme isothermal rapid amplification (MIRA) combined with a lateral-flow dipstick (LFD). The amplification of the tlh, trh, and tdh genes could be completed within 20 min at temperatures ranging from 30 to 45 °C (p < 0.05). The test yielded positive results for V. parahaemolyticus but produced negative results for nine Vibrio species and eighteen foodborne pathogenic bacterial species. MIRA-LFD could detect 10 fg of DNA and 2 colony-forming units (CFU) of V. parahaemolyticus per reaction, demonstrating a sensitivity level comparable to that of qPCR, which can detect 10 fg of DNA and 2 CFU per reaction. Both MIRA-LFD and qPCR detected seven tlh-positive results from thirty-six oyster samples, whereas one positive result was obtained using the PCR assay. No positive results for the trh and tdh genes were obtained from any oyster samples using MIRA-LFD, PCR, and qPCR. This study suggests that MIRA-LFD is a simple and rapid method to detect species-specific and pathogenic genes of V. parahaemolyticus with high sensitivity.
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| |
Collapse
|
2
|
Wang S, Zhang Z, Malakar PK, Pan Y, Zhao Y. The Fate of Bacteria in Human Digestive Fluids: A New Perspective Into the Pathogenesis of Vibrio parahaemolyticus. Front Microbiol 2019; 10:1614. [PMID: 31379774 PMCID: PMC6648005 DOI: 10.3389/fmicb.2019.01614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Vibrio parahaemolyticus causes the most seafood-attributed gastroenteritis outbreaks worldwide and studies on its pathogenesis during passage through the human digestive fluids are limited. An in vitro continuous model system mimicking passage through saliva, gastric and intestinal fluid was used to study the survival, morphology and virulence-related gene expression of a total of sixty pathogenic, and non-pathogenic V. parahaemolyticus strains. The changes to these three characteristics for the sixty V. parahaemolyticus strains were minimal on passage through the saliva fluid. No V. parahaemolyticus strains survived passage through gastric fluid with low pH values (2.0 and 3.0) and the cells, examined microscopically, were severely damaged. However, when the pH of gastric fluid increased to 4.0, the bacterial survival rate was 54.70 ± 1.11%, and the survival rate of pathogenic strains was higher when compared to non-pathogenic strains. Even though the bactericidal effect of intestinal fluid was lower than gastric fluid, virulence-related gene expression was enhanced in the intestinal fluid. Seafood matrices can significantly raise the pH level of gastric fluid and thus aid the survival of V. parahaemolyticus through passage from human gastric acid and progression of pathogenesis in the intestinal fluid. We confirmed these phenomena in the in vitro continuous digestion model.
Collapse
Affiliation(s)
- Siqi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
3
|
Paria P, Chakraborty HJ, Behera BK, Das Mohapatra PK, Das BK. Computational characterization and molecular dynamics simulation of the thermostable direct hemolysin-related hemolysin (TRH) amplified from Vibrio parahaemolyticus. Microb Pathog 2018; 127:172-182. [PMID: 30503957 DOI: 10.1016/j.micpath.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
Abstract
Vibrio parahaemolyticus is a major seafood-borne pathogen that causes life-threatening gastroenteric diseases in humans through the consumption of contaminated seafoods. V. parahaemolyticus produces different kinds of toxins, including thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), and some effector proteins belonging to the Type 3 Secretion System, out of which TDH and TRH are considered to be the major factors for virulence. Although TRH is one of the major virulent proteins, there is a dearth of understanding about the structural and functional properties of this protein. This study therefore aimed to amplify the full length trh gene from V. parahaemolyticus and perform sequence-based analyses, followed by structural and functional analyses of the TRH protein using different bioinformatics tools. The TRH protein shares significant conservedness with the TDH protein. A multiple sequence alignment of TRH proteins from Vibrio and non-Vibrio species revealed that the TRH protein is highly conserved throughout evolution. The three dimensional (3D) structure of the TRH protein was constructed by comparative modelling and the quality of the predicted model was verified. Molecular dynamics simulations were performed to understand the dynamics, residual fluctuations, and the compactness of the protein. The structure of TRH was found to contain 19 pockets, of which one (pocket ID: 2) was predicted to be important from the view of drug design. Eleven residues (E138, Y140, C151, F158, C161, K162, S163, and Q164), which are reported to actively participate in the formation of the tetrameric structure, were present in this pocket. This study extends our understanding of the structural and functional dynamics of the TRH protein and as well as provides new insights for the treatment and prevention of V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure, 721102, West Bengal, India
| | - Hirak Jyoti Chakraborty
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
4
|
Cai Q, Zhang Y. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 2018; 123:242-245. [PMID: 30031890 DOI: 10.1016/j.micpath.2018.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-associated bacterial gastroenteritis. The pathogen produces the thermostable direct hemolysin (TDH), which is the sole cause of the Kanagawa phenomenon (KP), a special β-type haemolysis in the Wagatsuma agar. TDH also exerts several other biological activities, the major includes lethal toxicity, cytotoxicity, and enterotoxicity. The structure and roles of TDH and the transcriptional regulation of tdh genes, are summarized in this review, which will give a better understanding of the pathogenesis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qin Cai
- The Fourth People 's Hospital of Zhenjiang, Zhenjiang, 212001, Jiangsu, PR China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| |
Collapse
|
5
|
Karunasagar I, Maiti B, Kumar BK. Molecular Methods to Study Vibrio parahaemolyticus and Vibrio vulnificus From Atypical Environments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Klein SL, Lovell CR. The hot oyster: levels of virulent Vibrio parahaemolyticus strains in individual oysters. FEMS Microbiol Ecol 2016; 93:fiw232. [PMID: 27827805 DOI: 10.1093/femsec/fiw232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis and is most commonly transmitted by raw oysters. Consequently, detection of virulent strains of this organism in oysters is a primary concern for seafood safety. Vibrio parahaemolyticus levels were determined in 110 individual oysters harvested from two sampling sites in SC, USA. The majority of oysters (98%) contained low levels of presumptive V. parahaemolyticus However, two healthy oysters contained presumptive V. parahaemolyticus numbers that were unusually high. These two 'hot' oysters contained levels of presumptive V. parahaemolyticus within the gills that were ∼100-fold higher than the average for other oysters collected at the same date and location. Current V. parahaemolyticus detection practices require homogenizing a dozen oysters pooled together to determine V. parahaemolyticus numbers, a procedure that would dilute out V. parahaemolyticus in these 'hot' oysters. This study demonstrates the variability of V. parahaemolyticus densities taken from healthy, neighboring individual oysters in the environment. Additionally, environmental V parahaemolyticus isolates were screened for the virulence-related genes, tdh and trh, using improved polymerase chain reaction primers and protocols. We detected these genes, previously thought to be rare in environmental isolates, in approximately half of the oyster isolates.
Collapse
Affiliation(s)
- Savannah L Klein
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Charles R Lovell
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Nilsson WB, Turner JW. The thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus: Sequence variation and implications for detection and function. J Microbiol Methods 2016; 126:1-7. [PMID: 27094247 DOI: 10.1016/j.mimet.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023]
Abstract
Vibrio parahaemolyticus is a leading cause of bacterial food-related illness associated with the consumption of undercooked seafood. Only a small subset of strains is pathogenic. Most clinical strains encode for the thermostable direct hemolysin (TDH) and/or the TDH-related hemolysin (TRH). In this work, we amplify and sequence the trh gene from over 80 trh+strains of this bacterium and identify thirteen genetically distinct alleles, most of which have not been deposited in GenBank previously. Sequence data was used to design new primers for more reliable detection of trh by endpoint PCR. We also designed a new quantitative PCR assay to target a more conserved gene that is genetically-linked to trh. This gene, ureR, encodes the transcriptional regulator for the urease gene cluster immediately upstream of trh. We propose that this ureR assay can be a useful screening tool as a surrogate for direct detection of trh that circumvents challenges associated with trh sequence variation.
Collapse
Affiliation(s)
- William B Nilsson
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - Jeffrey W Turner
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
8
|
Liu M, Chen S. A novel adhesive factor contributing to the virulence of Vibrio parahaemolyticus. Sci Rep 2015; 5:14449. [PMID: 26399174 PMCID: PMC4585867 DOI: 10.1038/srep14449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
Bacterial adhesins play a pivotal role in the tight bacteria-host cells attachment to initiate the downstream processes and bacterial infection of hosts. In this study, we identified a novel adhesin, VpadF in V. parahaemolyticus. Deletion of VpadF in V. parahaemolyticus markedly impaired its attachment and cytotoxicity to epithelial cells, as well as attenuated the virulence in murine model. Biochemical studies revealed that VpadF recognized both fibronectin and fibrinogen. The binding of VpadF to these two host receptors was mainly dependent on the its fifth bacterial immunoglobulin-like group domain and its C-terminal tail. Our finding suggested that VpadF is a major virulence factor of V. parahaemolyticus and a potential good candidate for V. parahaemolyticus infection control for both vaccine development and drug target.
Collapse
Affiliation(s)
- Ming Liu
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
9
|
Characterization of trh2 harbouring Vibrio parahaemolyticus strains isolated in Germany. PLoS One 2015; 10:e0118559. [PMID: 25799574 PMCID: PMC4370738 DOI: 10.1371/journal.pone.0118559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. RESULTS Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. CONCLUSION Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics.
Collapse
|
10
|
Genes similar to the Vibrio parahaemolyticus virulence-related genes tdh, tlh, and vscC2 occur in other vibrionaceae species isolated from a pristine estuary. Appl Environ Microbiol 2013; 80:595-602. [PMID: 24212573 DOI: 10.1128/aem.02895-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections.
Collapse
|
11
|
Zhang L, Orth K. Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 2013; 16:70-7. [PMID: 23433802 DOI: 10.1016/j.mib.2013.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/22/2013] [Accepted: 02/03/2013] [Indexed: 12/31/2022]
Abstract
Vibrio parahaemolyticus is a marine microorganism that causes acute gastroenteritis associated with the consumption of contaminated raw or under cooked seafood. During infection, the bacterium utilizes a wide variety of virulence factors, including adhesins, toxins and type III secretion systems, to cause both cytotoxicity in cultured cells and enterotoxicity in animal models. Herein, we describe recent discoveries on the regulation and characterization of the virulence factors from V. para. Determining how this bacterial pathogen uses virulence factors to mediate pathogenicity improves our understanding of V. para. infections and more generally, host-pathogen interactions.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Biology, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
12
|
High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol 2013; 79:2247-52. [PMID: 23354697 DOI: 10.1128/aem.03792-12] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence factor genes encoding the thermostable direct hemolysin (tdh) and the thermostable direct hemolysin-related hemolysin (trh) are strongly correlated with virulence of the emergent human pathogen Vibrio parahaemolyticus. The gene encoding the thermolabile hemolysin (tlh) is also considered a signature molecular marker for the species. These genes are typically reported in very low percentages (1 to 2%) of nonclinical strains. V. parahaemolyticus strains were isolated from various niches within a pristine estuary (North Inlet, SC) and were screened for these genes using both newly designed PCR primers and more commonly used primers. DNA sequences of tdh and trh were recovered from 48% and 8.3%, respectively, of these North Inlet strains. The recovery of pathogenic V. parahaemolyticus strains in such high proportions from an estuarine ecosystem that is virtually free of anthropogenic influences indicates the potential for additional, perhaps environmental roles of the tdh and trh genes.
Collapse
|
13
|
Ham H, Orth K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogenicity. J Microbiol 2012; 50:719-25. [PMID: 23124738 DOI: 10.1007/s12275-012-2550-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 11/25/2022]
Abstract
Vibrio parahaemolyticus, a Gram-negative marine bacterial pathogen, is emerging as a major cause of food-borne illnesses worldwide due to the consumption of raw seafood leading to diseases including gastroenteritis, wound infection, and septicemia. The bacteria utilize toxins and type III secretion system (T3SS) to trigger virulence. T3SS is a multi-subunit needle-like apparatus used to deliver bacterial proteins, termed effectors, into the host cytoplasm which then target various eukaryotic signaling pathways. V. parahaemolyticus carries two T3SSs in each of its two chromosomes, named T3SS1 and T3SS2, both of which play crucial yet distinct roles during infection: T3SS1 causes cytotoxicity whereas T3SS2 is mainly associated with enterotoxicity. Each T3SS secretes a unique set of effectors that contribute to virulence by acting on different host targets and serving different functions. Emerging studies on T3SS2 of V. parahaemolyticus, reveal its regulation, translocation, discovery, characterization of its effectors, and development of animal models to understand the enterotoxicity. This review on recent findings for T3SS2 of V. parahaemolyticus highlights a novel mechanism of invasion that appears to be conserved by other marine bacteria.
Collapse
Affiliation(s)
- Hyeilin Ham
- Department of Molecular Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
14
|
Ritchie JM, Rui H, Zhou X, Iida T, Kodoma T, Ito S, Davis BM, Bronson RT, Waldor MK. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog 2012; 8:e1002593. [PMID: 22438811 PMCID: PMC3305451 DOI: 10.1371/journal.ppat.1002593] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. The marine bacterium Vibrio parahaemolyticus is a leading cause worldwide of gastroenteritis linked to the consumption of contaminated seafood. Despite the prevalence of V. parahaemolyticus-induced gastroenteritis, there is limited understanding of how this pathogen causes disease in the intestine. In part, the paucity of knowledge results from the absence of an oral infection-based animal model of the human disease. We developed a simple oral infection-based infant rabbit model of V. parahaemolyticus-induced intestinal pathology and diarrhea. This experimental model enabled us to define several previously unknown but key features of the pathology elicited by this organism. We found that V. parahaemolyticus chiefly colonizes the distal small intestine and that the organism's second type III secretion system is essential for colonization. The epithelial surface of the distal small intestine is also the major site of V. parahaemolyticus-induced damage, which arises via a characteristic sequence of events culminating in the formation of V. parahaemolyticus-filled cavities in the epithelial surface. This experimental model will transform future studies aimed at deciphering the bacterial and host factors/processes that contribute to disease, as well as enable testing of new therapeutics to prevent and/or combat infection.
Collapse
Affiliation(s)
- Jennifer M. Ritchie
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| | - Haopeng Rui
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Xiaohui Zhou
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Tetsuya Iida
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodoma
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Susuma Ito
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Microbiology & Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| |
Collapse
|
15
|
Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 2011; 13:992-1001. [PMID: 21782964 PMCID: PMC3384537 DOI: 10.1016/j.micinf.2011.06.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus is a significant cause of gastroenteritis worldwide. Characterization of this pathogen has revealed a unique repertoire of virulence factors that allow for colonization of the human host and disease. The following describes the known pathogenicity determinants while establishing the need for continued research.
Collapse
Affiliation(s)
- Christopher A. Broberg
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Thomas J. Calder
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| |
Collapse
|