1
|
Hirota A, Kouduka M, Fukuda A, Miyakawa K, Sakuma K, Ozaki Y, Ishii E, Suzuki Y. Biofilm Formation on Excavation Damaged Zone Fractures in Deep Neogene Sedimentary Rock. MICROBIAL ECOLOGY 2024; 87:132. [PMID: 39436423 PMCID: PMC11496357 DOI: 10.1007/s00248-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Deep underground galleries are used to access the deep biosphere in addition to mining and other engineering applications, such as geological disposal of radioactive waste. Fracture networks developed in the excavation damaged zone (EDZ) are concerned with accelerating mass transport, where microbial colonization might be possible due to the availability of space and nutrients. In this study, microbial biofilms at EDZ fractures were investigated by drilling from a 350-m-deep gallery and subsequent borehole logging at the Horonobe Underground Research Laboratory (URL). By using microscopic and spectroscopic techniques, the dense colonization of microbial cells was demonstrated at the surfaces of the EDZ fractures with high hydraulic conductivity. 16S rRNA gene sequence analysis revealed the dominance of gammaproteobacterial lineages, the cultivated members of which are aerobic methanotrophs. The near-complete genomes from Horonobe groundwater, affiliated with the methanotrophic lineages, were fully equipped with genes involved in aerobic methanotrophy. Although the mediation of aerobic methanotrophy remains to be demonstrated, microbial O2 production was supported by the presence of genes in the near-complete genomes, such as catalase and superoxide dismutase that produce O2 from reactive oxygen species and a nitric oxide reductase gene with the substitutions of amino acids in motifs. It is concluded that the EDZ fractures provide energetically favorable subsurface habitats for microorganisms.
Collapse
Affiliation(s)
- Akinari Hirota
- Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R), 1-9-9, Roppongi, Minato-Ku, Tokyo, 106-8450, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Akari Fukuda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Kazuya Miyakawa
- Horonobe Underground Research Center, Japan Atomic Energy Agency, 432-2 Hokushin, Horonobe-Cho, Hokkaido, 098-3224, Japan
| | - Keisuke Sakuma
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-Mura, Naka-Gun, Ibaraki, 319-1195, Japan
| | - Yusuke Ozaki
- Horonobe Underground Research Center, Japan Atomic Energy Agency, 432-2 Hokushin, Horonobe-Cho, Hokkaido, 098-3224, Japan
| | - Eiichi Ishii
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-Mura, Naka-Gun, Ibaraki, 319-1195, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
2
|
Takamiya H, Kouduka M, Kato S, Suga H, Oura M, Yokoyama T, Suzuki M, Mori M, Kanai A, Suzuki Y. Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea. THE ISME JOURNAL 2024; 18:wrae207. [PMID: 39499858 PMCID: PMC11537232 DOI: 10.1093/ismejo/wrae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces. To understand the ecology of rock-hosted DPANN archaea, rocks rather than fluids should be directly characterized. Here, we investigated a deep-sea hydrothermal vent chimney without fluid venting where our previous study revealed the high proportion of Pacearchaeota, one of the widespread and enigmatic lineages of DPANN archaea. Using spectroscopic methods with submicron soft X-ray and infrared beams, the microbial habitat was specified to be silica-filled pores in the inner chimney wall comprising chalcopyrite. Metagenomic analysis of the inner wall revealed the lack of biosynthetic genes for nucleotides, amino acids, cofactors, and lipids in the Pacearchaeota genomes. Genome-resolved metaproteomic analysis clarified the co-occurrence of a novel thermophilic lineage actively fixing carbon and nitrogen and thermophilic archaea in the inner chimney wall. We infer that the shift in metabolically active microbial populations from the thermophiles to the mesophilic DPANN archaea occurs after the termination of fluid venting. The infilling of mineral pores by hydrothermal silica deposition might be a preferred environmental factor for the colonization of free-living Pacearchaeota with ultrasmall cells depending on metabolites synthesized by the co-occurring thermophiles during fluid venting.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
| | - Hiroki Suga
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Tadashi Yokoyama
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Takamiya H, Kouduka M, Furutani H, Mukai H, Nakagawa K, Yamamoto T, Kato S, Kodama Y, Tomioka N, Ito M, Suzuki Y. Copper-Nanocoated Ultra-Small Cells in Grain Boundaries Inside an Extinct Vent Chimney. Front Microbiol 2022; 13:864205. [PMID: 35747369 PMCID: PMC9209642 DOI: 10.3389/fmicb.2022.864205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chemosynthetic organisms flourish around deep-sea hydrothermal vents where energy-rich fluids are emitted from metal sulfide chimneys. However, microbial life hosted in mineral assemblages in extinct chimneys lacking fluid venting remains largely unknown. The interior of extinct chimneys remains anoxic where the percolation of oxygenated seawater is limited within tightly packed metal sulfide grains. Given the scarcity of photosynthetic organics in deep seawater, anaerobic microbes might inhabit the grain boundaries energetically depending on substrates derived from rock-water interactions. In this study, we reported ultra-small cells directly visualized in grain boundaries of CuFeS2 inside an extinct metal sulfide chimney from the southern Mariana Trough. Nanoscale solid analyses reveal that ultra-small cells are coated with Cu2O nanocrystals in grain boundaries enriched with C, N, and P. In situ spectroscopic and spectrometric characterizations demonstrate the distribution of organics with amide groups and a large molecular organic compound in the grain boundaries. We inferred that the ultra-small cells are anaerobes because of the fast dissolution of Cu2O nanocrystals in oxygenated solution. This Cu2O property also excludes the possibility of microbial contamination from ambient seawater during sampling. It is shown by 16S rRNA gene sequence analysis that the chimney interior is dominated by Pacearchaeota known to have anaerobic metabolisms and ultra-small cells. Our results support the potential existence of photosynthesis-independent microbial ecosystems in grain boundaries in submarine metal sulfides deposits on the early Earth.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hitoshi Furutani
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hiroki Mukai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Nakagawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Takushi Yamamoto
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| |
Collapse
|
4
|
Ogata M, Masuda R, Harino H, Sakata MK, Hatakeyama M, Yokoyama K, Yamashita Y, Minamoto T. Environmental DNA preserved in marine sediment for detecting jellyfish blooms after a tsunami. Sci Rep 2021; 11:16830. [PMID: 34417484 PMCID: PMC8379222 DOI: 10.1038/s41598-021-94286-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.
Collapse
Affiliation(s)
- Mizuki Ogata
- grid.258799.80000 0004 0372 2033Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086 Japan ,Benesse Corporation, 3-7-17 Minamigata, Kitaku, Okayama 700-8686 Japan
| | - Reiji Masuda
- grid.258799.80000 0004 0372 2033Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086 Japan
| | - Hiroya Harino
- grid.444507.60000 0001 0424 8271Department of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo 662-8508 Japan
| | - Masayuki K. Sakata
- grid.31432.370000 0001 1092 3077Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Makoto Hatakeyama
- Non-Profit Organization Mori-Umi, Nishi-Moune, Karakuwa, Kesennuma, Miyagi 988-0527 Japan
| | - Katsuhide Yokoyama
- grid.265074.20000 0001 1090 2030Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 092-0397 Japan
| | - Yoh Yamashita
- grid.258799.80000 0004 0372 2033Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086 Japan
| | - Toshifumi Minamoto
- grid.31432.370000 0001 1092 3077Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-8501 Japan
| |
Collapse
|
5
|
Chen XX, Chen W, Liu YL, Lin CX, Li M, Chen WJ, Xie SH, Lin DF, Cao SM. Development and validation of a flexible DNA extraction (PAN) method for liquid biopsy of multiple sample types. J Clin Lab Anal 2021; 35:e23962. [PMID: 34399000 PMCID: PMC8418477 DOI: 10.1002/jcla.23962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Liquid biopsy is gaining increasing popularity in cancer screening and diagnosis. However, there is no relatively mature DNA isolation method or commercial kit available that is compatible with different LB sample types. This study developed a PAN-sample DNA isolation method (PAN method) for liquid biopsy samples. METHODS The PAN method has two key steps, including biosample-specific pretreatments for various LB sample types and high concentration guanidine thiocyanate buffer for lysis and denaturation procedure. Subsequently, the performance of PAN method was validated by a series of molecular analyses. RESULTS The PAN method was used to isolate DNA from multiple sample types related to LB, including plasma, serum, saliva, nasopharyngeal swab, and stool. All purified DNA products showed good quality and high quantity. Comparison of KRAS mutation analysis using DNA purified using PAN method versus QIAamp methods showed similar efficiency. Epstein-Barr virus DNA was detected via Q-PCR using DNA purified from serum, plasma, nasopharyngeal swab, and saliva samples collected from nasopharyngeal carcinoma patients. Similarly, methylation sequencing of swab and saliva samples revealed good coverage of target region and high methylation of HLA-DPB1 gene. Finally, 16S rDNA gene sequencing of saliva, swab, and stool samples successfully defines the relative abundance of microbial communities. CONCLUSIONS This study developed and validated a PAN-sample DNA isolation method that can be used for different LB samples, which can be applied to molecular epidemiological research and other areas.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi-Long Liu
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Can-Xiang Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengmeng Li
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Chen
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Feng Lin
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Yasashimoto T, Sakata MK, Sakita T, Nakajima S, Ozaki M, Minamoto T. Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples. Sci Rep 2021; 11:10712. [PMID: 34040019 PMCID: PMC8154996 DOI: 10.1038/s41598-021-89993-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Alien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.
Collapse
Affiliation(s)
- Tetsu Yasashimoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Masayuki K Sakata
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoya Sakita
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Satoko Nakajima
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Mamiko Ozaki
- Graduate School of Science, Kobe University, Kobe, Japan
- Graduate School of Engineering, Kobe University, Kobe, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
- Research Institute of Sustainable Humanosphere, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
7
|
Li P, Li M, Zhang F, Wu M, Jiang X, Ye B, Zhao Z, Yue D, Fan Q, Chen H. High-efficient nucleic acid separation from animal tissue samples via surface modified magnetic nanoparticles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes. Sci Rep 2020; 10:1876. [PMID: 32024862 PMCID: PMC7002378 DOI: 10.1038/s41598-020-58723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
Over the past 15 years, massive gas hydrate deposits have been studied extensively in Joetsu Basin, Japan Sea, where they are associated primarily with active gas chimney structures. Our research documents the discovery of spheroidal microdolomite aggregates found in association with other impurities inside of these massive gas hydrates. The microdolomites are often conjoined and show dark internal cores occasionally hosting saline fluid inclusions. Bacteroidetes sp. are concentrated on the inner rims of microdolomite grains, where they degrade complex petroleum-macromolecules present as an impurity within yellow methane hydrate. These oils show increasing biodegradation with depth which is consistent with the microbial activity of Bacteroidetes. Further investigation of these microdolomites and their contents can potentially yield insight into the dynamics and microbial ecology of other hydrate localities. If microdolomites are indeed found to be ubiquitous in both present and fossil hydrate settings, the materials preserved within may provide valuable insights into an unusual microhabitat which could have once fostered ancient life.
Collapse
|
9
|
Kato S, Nakano S, Kouduka M, Hirai M, Suzuki K, Itoh T, Ohkuma M, Suzuki Y. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits. Microbes Environ 2019; 34:293-303. [PMID: 31378759 PMCID: PMC6759336 DOI: 10.1264/jsme2.me19021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Candidatus Hydrothermarchaeota, formally called Marine Benthic Group E, has often been detected in iron- and sulfur-rich marine environments, such as hydrothermal vents and cold seeps. However, their ecology and physiology remain unclear. Cultivated representatives of this group are still lacking and only several metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) are available from two deep-sea hydrothermal areas, the Juan de Fuca Ridge (JdFR) and Guaymas Basin (GB), in the north-east Pacific. We herein report four MAGs of Ca. Hydrothermarchaeota recovered from hydrothermally-inactive metal sulfide deposits at the Southern Mariana Trough (SMT) in the north-west Pacific. A phylogenetic analysis indicated that the MAGs of the SMT were distinct from those of the JdFR and GB at the genus or potentially family level. Ca. Hydrothermarchaeota MAGs from the SMT commonly possessed putative genes for carboxydotrophic and hydrogenotrophic respiration using oxidized chemical species of sulfur as electron acceptors and also for carbon fixation, as reported previously in MAGs/SAGs from the JdFR and GB. This result strongly supports Ca. Hydrothermarchaeota containing anaerobic chemolithoautotrophs using carbon monoxide and/or hydrogen as electron donors. A comparative genome analysis highlighted differences in the capability of nitrogen fixation between MAGs from the SMT and the other fields, which are consistent with environmental differences in the availability of nitrogen sources for assimilation between the fields. Based on the wide distribution in various areas, abundance, and metabolic potential of Ca. Hydrothermarchaeota, they may play a role in the biogeochemical cycling of carbon, nitrogen, sulfur, and iron in marine environments, particularly in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Shinsaku Nakano
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTECYokosuka, Kanagawa, 237–0061Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| |
Collapse
|
10
|
Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. ISME JOURNAL 2017; 12:31-47. [PMID: 28885627 DOI: 10.1038/ismej.2017.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with 13C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.
Collapse
Affiliation(s)
- Kohei Ino
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alex W Hernsdorf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Uta Konno
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsunori Yanagawa
- Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Yokosuka City, Kanagawa, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinari Hirota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yoko S Togo
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazumasa Ito
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Akari Fukuda
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | | | | | - Daisuke D Komatsu
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Toyoho Ishimura
- National Institute of Technology, Ibaraki College, Hitachinaka-shi, Ibaraki, Japan
| | - Yuki Amano
- Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Brian C Thomas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yohey Suzuki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Kouduka M, Tanabe AS, Yamamoto S, Yanagawa K, Nakamura Y, Akiba F, Tomaru H, Toju H, Suzuki Y. Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea. GEOBIOLOGY 2017; 15:715-727. [PMID: 28434198 DOI: 10.1111/gbi.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/25/2017] [Indexed: 06/07/2023]
Abstract
Marine sediments contain eukaryotic DNA deposited from overlying water columns. However, a large proportion of deposited eukaryotic DNA is aerobically biodegraded in shallow marine sediments. Cold seep sediments are often anaerobic near the sediment-water interface, so eukaryotic DNA in such sediments is expected to be preserved. We investigated deeply buried marine sediments in the Japan Sea, where a methane hydrate deposit is associated with cold seeps. Quantitative PCR analysis revealed the reproducible recovery of eukaryotic DNA in marine sediments at depths up to 31.0 m in the vicinity of the methane hydrate deposit. In contrast, the reproducible recovery of eukaryotic DNA was limited to a shallow depth (8.3 m) in marine sediments not adjacent to the methane hydrate deposit in the same area. Pyrosequencing of an 18S rRNA gene variable region generated 1,276-3,307 reads per sample, which was sufficient to cover the biodiversity based on rarefaction curves. Phylogenetic analysis revealed that most of the eukaryotic DNA originated from radiolarian genera of the class Chaunacanthida, which have SrSO4 skeletons, the sea grass genus Zostera, and the seaweed genus Sargassum. Eukaryotic DNA originating from other planktonic fauna and land plants was also detected. Diatom sequences closely related to Thalassiosira spp., indicative of cold climates, were obtained from sediments deposited during the last glacial period (MIS-2). Plant sequences of the genera Alnus, Micromonas, and Ulmus were found in sediments deposited during the warm interstadial period (MIS-3). These results suggest the long-term persistence of eukaryotic DNA from terrestrial and aquatic sources in marine sediments associated with cold seeps, and that the genetic information from eukaryotic DNA from deeply buried marine sediments associated with cold seeps can be used to reconstruct environments and ecosystems from the past.
Collapse
Affiliation(s)
- M Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - A S Tanabe
- Graduate School of Science, Kobe University, Kobe, Japan
| | - S Yamamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - K Yanagawa
- Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Y Nakamura
- Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - F Akiba
- Diatom Minilab Akiba Ltd., Saitama, Japan
| | - H Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - H Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Y Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Sforna MC, Daye M, Philippot P, Somogyi A, van Zuilen MA, Medjoubi K, Gérard E, Jamme F, Dupraz C, Braissant O, Glunk C, Visscher PT. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. GEOBIOLOGY 2017; 15:259-279. [PMID: 27935656 DOI: 10.1111/gbi.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
Collapse
Affiliation(s)
- M C Sforna
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy
| | - M Daye
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - P Philippot
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - A Somogyi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - M A van Zuilen
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - K Medjoubi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - E Gérard
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - F Jamme
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - C Dupraz
- Department of Geological Sciences, Stockholms Universitet, Stockholm, Sweden
| | - O Braissant
- Center for Biomechanics and Biocalorimetry, University of Basel, Basel, Switzerland
| | - C Glunk
- Societe Suisse des Explosifs SA, Brig, Switzerland
| | - P T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
13
|
Natarajan VP, Zhang X, Morono Y, Inagaki F, Wang F. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments. Front Microbiol 2016; 7:986. [PMID: 27446026 PMCID: PMC4917542 DOI: 10.3389/fmicb.2016.00986] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/08/2016] [Indexed: 02/01/2023] Open
Abstract
Recovering high quality genomic DNA from environmental samples is a crucial primary step to understand the genetic, metabolic, and evolutionary characteristics of microbial communities through molecular ecological approaches. However, it is often challenging because of the difficulty of effective cell lysis without fragmenting the genomic DNA. This work aims to improve the previous SDS-based DNA extraction methods for high-biomass seafloor samples, such as pelagic sediments and metal sulfide chimney, to obtain high quality and high molecular weight of the genomic DNA applicable for the subsequent molecular ecological analyses. In this regard, we standardized a modified SDS-based DNA extraction method (M-SDS), and its performance was then compared to those extracted by a recently developed hot-alkaline DNA extraction method (HA) and a commercial DNA extraction kit. Consequently, the M-SDS method resulted in higher DNA yield and cell lysis efficiency, lower DNA shearing, and higher diversity scores than other two methods, providing a comprehensive DNA assemblage of the microbial community on the seafloor depositional environment.
Collapse
Affiliation(s)
- Vengadesh Perumal Natarajan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Marine Biology Institute, Shantou University Shantou, China
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology Kochi, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology Kochi, Japan
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
14
|
Ino K, Konno U, Kouduka M, Hirota A, Togo YS, Fukuda A, Komatsu D, Tsunogai U, Tanabe AS, Yamamoto S, Iwatsuki T, Mizuno T, Ito K, Suzuki Y. Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:285-294. [PMID: 26743638 DOI: 10.1111/1758-2229.12379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Deep granitic aquifer is one of the largest, but least understood, microbial habitats. To avoid contamination from the surface biosphere, underground drilling was conducted for 300 m deep granitic rocks at the Mizunami underground research laboratory (URL), Japan. Slightly alkaline groundwater was characterized by low concentrations of dissolved organic matter and sulfate and the presence of > 100 nM H2 . The initial biomass was the highest (∼10(5) cells ml(-1) ) with the dominance of Hydrogenophaga spp., whereas the phylum Nitrospirae became predominant after 3 years with decreasing biomass (∼10(4) cells ml(-1) ). One week incubation of groundwater microbes after 3 years with (13) C-labelled bicarbonate and 1% H2 and subsequent single-cell imaging with nanometer-scale secondary ion mass spectrometry demonstrated that microbial cells were metabolically active. Pyrosequencing of microbial communities in groundwater retrieved at 3-4 years after drilling at the Mizunami URL and at 14 and 25 years after the drilling at the Grimsel Test Site, Switzerland, revealed the occurrence of common Nitrospirae lineages at the geographically distinct sites. As the close relatives of the Nitrospirae lineages were exclusively detected from deep groundwaters and terrestrial hot springs, it suggests that these bacteria are indigenous and potentially adapted to the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Kohei Ino
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Uta Konno
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akinari Hirota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Yoko S Togo
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Akari Fukuda
- Japan Atomic Energy Agency, 1-64 Yamanouchi, Akiyo-cho, Mizunami, Gifu, 509-6132, Japan
| | - Daisuke Komatsu
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Akihumi S Tanabe
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Satoshi Yamamoto
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Teruki Iwatsuki
- Japan Atomic Energy Agency, 1-64 Yamanouchi, Akiyo-cho, Mizunami, Gifu, 509-6132, Japan
| | - Takashi Mizuno
- Japan Atomic Energy Agency, 1-64 Yamanouchi, Akiyo-cho, Mizunami, Gifu, 509-6132, Japan
| | - Kazumasa Ito
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Zepeda Mendoza ML, Lundberg J, Ivarsson M, Campos P, Nylander JAA, Sallstedt T, Dalen L. Metagenomic Analysis from the Interior of a Speleothem in Tjuv-Ante's Cave, Northern Sweden. PLoS One 2016; 11:e0151577. [PMID: 26985997 PMCID: PMC4795671 DOI: 10.1371/journal.pone.0151577] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/01/2016] [Indexed: 02/01/2023] Open
Abstract
Speleothems are secondary mineral deposits normally formed by water supersaturated with calcium carbonate percolating into underground caves, and are often associated with low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante's cave is a shallow-depth cave formed by the action of waves, with granite and dolerite as major components, and opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from Tjuv-Ante's cave representing areas of old and relatively recent speleothem formation. We used these datasets to perform i) an evaluation of the use of these speleothems as past biodiversity archives, ii) functional and taxonomic profiling of the speleothem's different formation periods, and iii) taxonomic comparison of the metagenomic results to previous microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm the abundance of Actinobacteria and fungi as previously reported by microscopic analyses on this cave, however we also discovered a larger biodiversity. Interestingly, we identified photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to biomineralization. However, we could not confidently establish the use of this type of speleothems as biological paleoarchives due to the potential leaching from the outside of the cave and the DNA damage that we propose has been caused by the fungal chemical etching.
Collapse
Affiliation(s)
| | - Johannes Lundberg
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
| | - Paula Campos
- Centre for GeoGenetics, University of Copenhagen, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Johan A. A. Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Therese Sallstedt
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
| | - Love Dalen
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
16
|
Tourova TP, Grechnikova MA, Kuznetsov BB, Sorokin DY. Phylogenetic diversity of bacteria in soda lake stratified sediments. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714060186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|