1
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
2
|
Xue D, Liu W, Chen Y, Liu Y, Han J, Geng X, Li J, Jiang S, Zhou Z, Zhang W, Chen M, Lin M, Ongena M, Wang J. RNA-Seq-Based Comparative Transcriptome Analysis Highlights New Features of the Heat-Stress Response in the Extremophilic Bacterium Deinococcus radiodurans. Int J Mol Sci 2019; 20:ijms20225603. [PMID: 31717497 PMCID: PMC6888292 DOI: 10.3390/ijms20225603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Deinococcus radiodurans is best known for its extraordinary resistance to diverse environmental stress factors, such as ionizing radiation, ultraviolet (UV) irradiation, desiccation, oxidation, and high temperatures. The heat response of this bacterium is considered to be due to a classical, stress-induced regulatory system that is characterized by extensive transcriptional reprogramming. In this study, we investigated the key functional genes involved in heat stress that were expressed and accumulated in cells (R48) following heat treatment at 48 °C for 2 h. Considering that protein degradation is a time-consuming bioprocess, we predicted that to maintain cellular homeostasis, the expression of the key functional proteins would be significantly decreased in cells (RH) that had partly recovered from heat stress relative to their expression in cells (R30) grown under control conditions. Comparative transcriptomics identified 15 genes that were significantly downregulated in RH relative to R30, seven of which had previously been characterized to be heat shock proteins. Among these genes, three hypothetical genes (dr_0127, dr_1083, and dr_1325) are highly likely to be involved in response to heat stress. Survival analysis of mutant strains lacking DR_0127 (a DNA-binding protein), DR_1325 (an endopeptidase-like protein), and DR_1083 (a hypothetical protein) showed a reduction in heat tolerance compared to the wild-type strain. These results suggest that DR_0127, DR_1083, and DR_1325 might play roles in the heat stress response. Overall, the results of this study provide deeper insights into the transcriptional regulation of the heat response in D. radiodurans.
Collapse
Affiliation(s)
- Dong Xue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Yun Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Xiuxiu Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Jiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Correspondence: (M.O.); (J.W.)
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Correspondence: (M.O.); (J.W.)
| |
Collapse
|
3
|
Li M, He Z, Hu Y, Hu L, Zhong H. Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. BIORESOURCE TECHNOLOGY 2019; 273:130-135. [PMID: 30423496 DOI: 10.1016/j.biortech.2018.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Biotreatment is an effective way in remediation of chromium(VI) (Cr(VI)) contamination, but its mechanism and reaction sites are still not clear. Herein, Bacillus sp. M6 was used as a model bacterium in this study to investigate the removal mechanism of Cr(VI) in solution. The results showed that the removal of Cr(VI) was attributed to direct reduction by Bacillus sp. M6, and the reduction locations occurred both on the cell envelope and in the cytoplasm. Meanwhile, bioanalysis of Bacillus sp. M6 by SEM-EDS and TEM-EDS, indicated that Cr(III)-containing precipitates distributed both on the surface and in the cytoplasm of Bacillus sp. In addition, XPS analysis demonstrated that the chromium could be bound to cells by coordination with functional groups (C-based and O-based) on the bacterial surface. This work offers a new and deep insight into the mechanism of Cr(VI) reduction by Bacillus sp.
Collapse
Affiliation(s)
- Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yuting Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha 410012, China.
| |
Collapse
|
4
|
Tian X, Yu Q, Yao D, Shao L, Liang Z, Jia F, Li X, Hui T, Dai R. New Insights Into the Response of Metabolome of Escherichia coli O157:H7 to Ohmic Heating. Front Microbiol 2018; 9:2936. [PMID: 30574129 PMCID: PMC6291463 DOI: 10.3389/fmicb.2018.02936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to investigate the effects of ohmic heating and water bath heating (WB) on the metabolome of Escherichia coli O157:H7 cells at the same inactivation levels. Compared to low voltage long time ohmic heating (5 V/cm, 8.50 min, LVLT) and WB (5.50 min), the high voltage short time ohmic heating (10 V/cm, 1.75 min, HVST) had much shorter heating time. Compared to the samples of control (CT), there were a total of 213 differential metabolites identified, among them, 73, 78, and 62 were presented in HVST, LVLT, and WB samples, revealing a stronger metabolomic response of E. coli cells to HVST and LVLT than WB. KEGG enrichment analysis indicated that the significantly enriched pathways were biosynthesis and metabolism of amino acids (alanine, arginine, aspartate, and glutamate, etc.), followed by aminoacyl-tRNA biosynthesis among the three treatments. This is the first metabolomic study of E. coli cells in response to ohmic heating and presents an important step toward understanding the mechanism of ohmic heating on microbial inactivation, and can serve as a theoretical basis for better application of ohmic heating in food products.
Collapse
Affiliation(s)
- Xiaojing Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Qianqian Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Donghao Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Lele Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Fei Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Xingmin Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Teng Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| | - Ruitong Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Chowdhury-Paul S, Pando-Robles V, Jiménez-Jacinto V, Segura D, Espín G, Núñez C. Proteomic analysis revealed proteins induced upon Azotobacter vinelandii encystment. J Proteomics 2018; 181:47-59. [PMID: 29605291 DOI: 10.1016/j.jprot.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, C.P. 62100 Cuernavaca, Morelos, México
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnologia, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Col Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
Irazusta V, Bernal AR, Estévez MC, de Figueroa LIC. Proteomic and enzymatic response under Cr(VI) overload in yeast isolated from textile-dye industry effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:490-500. [PMID: 29121591 DOI: 10.1016/j.ecoenv.2017.10.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus.
Collapse
Affiliation(s)
- Verónica Irazusta
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina; INIQUI-CONICET, Av. Bolivia 5150, Salta 4400, Argentina.
| | | | - María Cristina Estévez
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Lucía I C de Figueroa
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
7
|
Feng Y, Zhao Y, Guo Y, Liu S. Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia. WATER RESEARCH 2018; 128:402-411. [PMID: 29145079 DOI: 10.1016/j.watres.2017.10.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The ability of anammox bacteria to utilize organic matter has drawn extensive attention. However, the metabolic discrepancies between autotrophic and mixotrophic anammox consortia need to be further explored. Here, microbial transcript and metabolomic analysis were conducted for the samples harvested in the reactors and batch assays to investigate the phenotype discrepancies and intrinsic causes in autotrophic and mixotrophic anammox consortia. Results showed that metabolically active community structures did not show significant difference between autotrophic and mixotrophic anammox consortia (C/N = 0.3). Changes in the metabolic state were the main cause for those discrepancies in virtue of the added acetate oxidized via the acetyl-CoA pathway by mixotrophic anammox bacteria. At C/N ratio of 0.3, anammox activity was obviously promoted compared to that in the autotrophic condition, due to higher levels of NADH and NAD+, as well as ATP consumption. Mixotrophic anammox consortia were found to yield more biomass, resulting from enhanced purine, pyrimidine, and putrescine synthetic pathways for regulating bacterial growth. Up-regulated amino sugar and nucleotide sugar metabolism pathways participating in regulating more extracellular polysaccharides secreted by mixotrophic anammox consortia. In adverse environment with higher COD concentration, more extracellular proteins were produced by anammox consortia to protect themselves and amino acids also accumulated in the cell. This study provides useful information to catch the optimal metabolism way of anammox consortia and accelerate anammox bacterial cultivation or reactor startup for wastewater treatment.
Collapse
Affiliation(s)
- Ying Feng
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yunpeng Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yongzhao Guo
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
8
|
Poddar A, Das SK. Microbiological studies of hot springs in India: a review. Arch Microbiol 2017; 200:1-18. [PMID: 28887679 DOI: 10.1007/s00203-017-1429-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The earliest microbiological studies on hot springs in India date from 2003, a much later date compared to global attention in this striking field of study. As of today, 28 out of 400 geothermal springs have been explored following both culturable and non-culturable approaches. The temperatures and pH of the springs are 37-99 °C and 6.8-10, respectively. Several studies have been performed on the description of novel genera and species, characterization of different bio-resources, metagenomics of hot spring microbiome and whole genome analysis of few isolates. 17 strains representing novel species and many thermostable enzymes, including lipase, protease, chitinase, amylase, etc. with potential biotechnological applications have been reported by several authors. Influence of physico-chemical conditions, especially that of temperature, on shaping the hot spring microbiome has been established by metagenomic investigations. Bacteria are the predominant life forms in all the springs with an abundance of phyla Firmicutes, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes, Deinococcus-Thermus and Chloroflexi. In this review, we have discussed the findings on all microbiological studies that have been carried out to date, on the 28 hot springs. Further, the possibilities of extrapolating these studies for practical applications and environmental impact assessment towards protection of natural ecosystem of hot springs have also been discussed.
Collapse
Affiliation(s)
- Abhijit Poddar
- Biosafety Support Unit, Regional Centre for Biotechnology, NPC Building, 5-6 Institutional Area, Lodhi Road, New Delhi, 110003, India.
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
9
|
Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, Chong CS. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure. J Basic Microbiol 2016; 57:151-161. [PMID: 27859397 DOI: 10.1002/jobm.201600494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/23/2016] [Indexed: 01/15/2023]
Abstract
Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L-1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
Collapse
Affiliation(s)
- Jia Chun Lim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Suganthi Thevarajoo
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chitra Selvaratnam
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Roy C, Alam M, Mandal S, Haldar PK, Bhattacharya S, Mukherjee T, Roy R, Rameez MJ, Misra AK, Chakraborty R, Nanda AK, Mukhopadhyay SK, Ghosh W. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria. Front Microbiol 2016; 7:412. [PMID: 27065976 PMCID: PMC4814524 DOI: 10.3389/fmicb.2016.00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding. However, preference for D-ala-D-ala-terminated MPPs does not singlehandedly guarantee vancomycin susceptibility of thermophilic bacteria as the large and relatively-hydrophilic vancomycin molecule has to cross the outer membrane before it can inhibit peptidoglycan biosynthesis. Literature shows that many mesophilic Gram-negative bacteria also have D-ala-D-ala-terminated MPPs, but they still remain resistant to vancomycin due to the relative impermeability of their membranes. But the global vancomycin-susceptibility phenotype of thermophilic bacteria itself testifies that the drug crosses the membrane in all these cases. As a corollary, it seems quite likely that the outer membranes of thermophilic bacteria have some yet-unknown characteristic feature(s) that invariably ensures the entry of vancomycin.
Collapse
Affiliation(s)
- Chayan Roy
- Department of Microbiology, Bose Institute Kolkata, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute Kolkata, India
| | | | | | | | | | - Rimi Roy
- Department of Microbiology, Bose Institute Kolkata, India
| | - Moidu J Rameez
- Department of Microbiology, Bose Institute Kolkata, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute Kolkata, India
| | | | - Ashish K Nanda
- Department of Chemistry, University of North Bengal Siliguri, India
| | | | | |
Collapse
|
11
|
Li J, Qin RY, Li H, Xu RF, Qiu CH, Sun YC, Ma H, Yang YC, Ni DH, Li L, Wei PC, Yang JB. Identification and analysis of the mechanism underlying heat-inducible expression of rice aconitase 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:22-31. [PMID: 25711810 DOI: 10.1016/j.plantsci.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Respiratory metabolism is an important though poorly understood facet of plant adaptation to stress. Posttranslational modification of aconitase, a component of the tricarboxylic acid cycle (TCA), may be involved in stress tolerance. However, such stress-related transcriptional regulation and its mechanism remain unknown. In this study, we found that expression of the rice Aconitase gene OsACO1 is induced in a time-dependent manner by heat but not other typical abiotic stresses. To analyze the transcriptional regulation mechanism underlying the response to heat, the OsACO1 promoter (POsACO1) was isolated and characterized in transgenic rice. Using qualitative and quantitative analyses, we found that the expression of the GUS reporter gene responded to heat in different tissues and at different stages of development when driven by POsACO1. A series of 5' distal deletions of POsACO1 was generated to delineate the region responsible for heat-induced gene expression. Transient expression analyses in tobacco leaves identified a 322-bp minimal region between -1386 and -1065 as being essential and sufficient for heat-induced expression by POsACO1. We screened for known heat response-related cis-elements in this 322-bp region; however, sequences correlating with heat-induced gene expression were not identified in POsACO1. Therefore, truncations and successive mutagenesis analyses were performed in this 322-bp region. By comparing the activities of promoter fragments and their derivatives, our results indicated that the heat response element resided in a 9-bp region between -1132 and -1124, a sequence that contains a W-box motif. Additional site-directed mutagenesis analyses eliminated the heat response activity of POsACO1 via the W-box element, and an electrophoretic mobility shift assay (EMSA) indicated the binding of POsACO1 by factors in the nuclear extracts of heat-stressed rice seedlings in a W-box-dependent manner. Our results illustrate the expression pattern of a key component of the TCA response to abiotic stress and establish a putative regulatory pathway in the transcriptional modulation of rice respiratory metabolism genes in response to heat.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chun-Hong Qiu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yi-Chen Sun
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Da-Hu Ni
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
12
|
Lim JC, Goh KM, Shamsir MS, Ibrahim Z, Chong CS. Characterization of aluminum resistantAnoxybacillussp. SK 3-4 isolated from a hot spring. J Basic Microbiol 2014; 55:514-9. [DOI: 10.1002/jobm.201400621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Chun Lim
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skudai Johor Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skudai Johor Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skudai Johor Malaysia
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skudai Johor Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skudai Johor Malaysia
| |
Collapse
|
13
|
Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33. Int J Genomics 2014; 2014:850607. [PMID: 25180173 PMCID: PMC4142287 DOI: 10.1155/2014/850607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022] Open
Abstract
Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well.
Collapse
|
14
|
Jain P, Reza HM, Pal S. Molecular phylogenetic analysis of bacterial community and characterization of Cr(VI) reducers from the sediments of Tantloi hot spring, India. AQUATIC BIOSYSTEMS 2014; 10:7. [PMID: 25243065 PMCID: PMC4168125 DOI: 10.1186/2046-9063-10-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/12/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND A geothermal ecosystem located at Tantloi, India has been found to be an interesting habitat for microbes of diverse nature. However, the microbial diversity of this habitat is poorly explored. In this study, a detailed phylogenetic study has been carried out to understand the bacterial diversity of this habitat and to identify prospective metal reducers using culture independent approach. The bacterial diversity of the sediments, which contain undetectable levels of Cr(VI), was analysed with respect to chromium reduction and the strains highly resistant to and efficiently reducing chromium under aerobic conditions were isolated and characterized. RESULTS 16S rRNA gene sequence analysis of Tantloi hot spring microbial community revealed a significant bacterial diversity represented by at least ten taxonomic divisions of Bacteria with clear predominance of Thermus. Similar sequence analysis of rRNA gene library clones derived from bacterial consortia enriched from sediments in presence of Cr(VI) revealed the abundance of the family Bacillaceae. Under aerobic conditions at 65°C, the consortia reduced 1 mM of Cr(VI) completely within 24 h and 5 mM in 6 days. A complete reduction of 1 mM Cr(VI) has been shown by five of our isolates within 36 h. 16S rRNA gene sequences of all the isolates showed high degree of similarity (97-99%) to Bacillaceae with ten of them being affiliated to Anoxybacillus. Crude extract as well as the soluble fraction from isolates TSB-1 and TSB-9 readily reduced Cr(VI); TSB-1 showed higher chromium reductase activity. CONCLUSION Most of the Tantloi Spring Bacterial (TSB) sequences analyzed in different taxonomic divisions could be related to representatives with known metabolic traits which indicated presence of organisms involved in redox processes of a variety of elements including iron, sulphur and chromium. Approximately 80% of the sequences obtained in this study represented novel phylotypes indicating the possibility of discovery of bacteria with biotechnologically important new biomolecules. Again, highly chromium-resistant and remarkably active Cr(VI)-reducing Anoxybacillus strains isolated in this study could serve as potential candidates for designing chromium bioremediation strategies at high temperatures and also at high chromium concentrations.
Collapse
Affiliation(s)
- Preeti Jain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Subrata Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
15
|
Zhao S, Cao F, Zhang H, Zhang L, Zhang F, Liang X. Structural Characterization and Biosorption of Exopolysaccharides from Anoxybacillus sp. R4-33 Isolated from Radioactive Radon Hot Spring. Appl Biochem Biotechnol 2014; 172:2732-46. [DOI: 10.1007/s12010-013-0680-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
16
|
Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML. Impact of Lactose Starvation on the Physiology of Lactobacillus casei GCRL163 in the Presence or Absence of Tween 80. J Proteome Res 2013; 12:5313-22. [DOI: 10.1021/pr400661g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ali Al-Naseri
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - John P. Bowman
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central
Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Rolf E. Nilsson
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Margaret L. Britz
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| |
Collapse
|
17
|
Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias R, Chan KG. Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 2013; 97:1475-88. [PMID: 23324802 DOI: 10.1007/s00253-012-4663-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
Abstract
The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|