1
|
Song R, Yan B, Xie J, Zhou L, Xu R, Zhou JM, Ji XH, Yi ZL. Comparative proteome profiles of Polygonatum cyrtonema Hua rhizomes (Rhizoma Ploygonati) in response to different levels of cadmium stress. BMC PLANT BIOLOGY 2023; 23:149. [PMID: 36935490 PMCID: PMC10026435 DOI: 10.1186/s12870-023-04162-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The Polygonatum cyrtonema Hua rhizomes (also known as Rhizoma Polygonati, RP) are consumed for their health benefits. The main source of the RP is wild P. cyrtonema populations in the Hunan province of China. However, the soil Cadmium (Cd) content in Huanan is increasing, thus increasing the risks of Cd accumulation in RP which may end up in the human food chain. To understand the mechanism of Cd accumulation and resistance in P. cyrtonema, we subjected P. cyrtonema plants to four levels of Cd stress [(D2) 1, (D3) 2, (D4) 4, and (D5) 8 mg/kg)] compared to (D1) 0.5 mg/kg. RESULTS The increase in soil Cd content up to 4 mg/kg resulted in a significant increase in tissue (root hair, rhizome, stem, and leaf) Cd content. The increase in Cd concentration variably affected the antioxidant enzyme activities. We could identify 14,171 and 12,115 protein groups and peptides, respectively. There were 193, 227, 260, and 163 differentially expressed proteins (DEPs) in D2, D3, D4, and D5, respectively, compared to D1. The number of downregulated DEPs increased with an increase in Cd content up to 4 mg/kg. These downregulated proteins belonged to sugar biosynthesis, amino acid biosynthesis-related pathways, and secondary metabolism-related pathways. Our results indicate that Cd stress increases ROS generation, against which, different ROS scavenging proteins are upregulated in P. cyrtonema. Moreover, Cd stress affected the expression of lipid transport and assembly, glycolysis/gluconeogenesis, sugar biosynthesis, and ATP generation. CONCLUSION These results suggest that an increase in soil Cd content may end up in Huangjing. Cadmium stress initiates expression changes in multiple pathways related to energy metabolism, sugar biosynthesis, and secondary metabolite biosynthesis. The proteins involved in these pathways are potential candidates for manipulation and development of Cd stress-tolerant genotypes.
Collapse
Affiliation(s)
- Rong Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Bei Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jin Xie
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Li Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Rui Xu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Jia Min Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Xiong Hui Ji
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Zi Li Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
2
|
Yadav R, Chakraborty S, Ramakrishna W. Wheat grain proteomic and protein-metabolite interactions analyses provide insights into plant growth promoting bacteria-arbuscular mycorrhizal fungi-wheat interactions. PLANT CELL REPORTS 2022; 41:1417-1437. [PMID: 35396966 DOI: 10.1007/s00299-022-02866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Proteomic, protein-protein and protein-metabolite interaction analyses in wheat inoculated with PGPB and AMF identified key proteins and metabolites that may have a role in enhancing yield and biofortification. Plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) have an impact on grain yield and nutrition. This dynamic yet complex interaction implies a broad reprogramming of the plant's metabolic and proteomic activities. However, little information is available regarding the role of native PGPB and AMF and how they affect the plant proteome, especially under field conditions. Here, proteomic, protein-protein and protein-metabolite interaction studies in wheat triggered by PGPB, Bacillus subtilis CP4 either alone or together with AMF under field conditions was carried out. The dual inoculation with native PGPB (CP4) and AMF promoted the differential abundance of many proteins, such as histones, glutenin, avenin and ATP synthase compared to the control and single inoculation. Interaction study of these differentially expressed proteins using STRING revealed that they interact with other proteins involved in seed development and abiotic stress tolerance. Furthermore, these interacting proteins are involved in carbon fixation, sugar metabolism and biosynthesis of amino acids. Molecular docking predicted that wheat seed storage proteins, avenin and glutenin interact with secondary metabolites, such as trehalose, and sugars, such as xylitol. Mapping of differentially expressed proteins to KEGG pathways showed their involvement in sugar metabolism, biosynthesis of secondary metabolites and modulation of histones. These proteins and metabolites can serve as markers for improving wheat-PGPB-AMF interactions leading to higher yield and biofortification.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India.
| |
Collapse
|
3
|
Carbon Monoxide Induced Metabolic Shift in the Carboxydotrophic Parageobacillus thermoglucosidasius DSM 6285. Microorganisms 2021; 9:microorganisms9051090. [PMID: 34069472 PMCID: PMC8159138 DOI: 10.3390/microorganisms9051090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Parageobacillus thermoglucosidasius is known to catalyse the biological water gas shift (WGS) reaction, a pathway that serves as a source of alternative energy and carbon to a wide variety of bacteria. Despite increasing interest in this bacterium due to its ability to produce biological hydrogen through carbon monoxide (CO) oxidation, there are no data on the effect of toxic CO gas on its physiology. Due to its general requirement of O2, the organism is often grown aerobically to generate biomass. Here, we show that carbon monoxide (CO) induces metabolic changes linked to distortion of redox balance, evidenced by increased accumulation of organic acids such as acetate and lactate. This suggests that P. thermoglucosidasius survives by expressing several alternative pathways, including conversion of pyruvate to lactate, which balances reducing equivalents (oxidation of NADH to NAD+), and acetyl-CoA to acetate, which directly generates energy, while CO is binding terminal oxidases. The data also revealed clearly that P. thermoglucosidasius gained energy and grew during the WGS reaction. Combined, the data provide critical information essential for further development of the biotechnological potential of P. thermoglucosidasius.
Collapse
|
4
|
Zhai Q, Xiao Y, Narbad A, Chen W. Comparative metabolomic analysis reveals global cadmium stress response of Lactobacillus plantarum strains. Metallomics 2019; 10:1065-1077. [PMID: 29998247 DOI: 10.1039/c8mt00095f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous work demonstrated the protective effects of Lactobacillus plantarum (L. plantarum) strains against cadmium (Cd) toxicity in vivo, and also indicated that the Cd tolerance of the strains played an important role in this protection. The goal of this study was to investigate the Cd resistance mechanism of L. plantarum by liquid chromatography-mass spectrometry (LC-MS) based metabolomic analysis, with a focus on the global Cd stress response. L. plantarum CCFM8610 (strongly resistant to Cd) and L. plantarum CCFM191 (sensitive to Cd) were selected as target strains, and their metabolomic profiles with and without Cd exposure were compared. The underlying mechanisms of the intra-species distinction between CCFM8610 and CCFM191 in terms of Cd tolerance can be attributed to the following aspects: (a) CCFM8610 possesses a higher intracellular content of osmolytes; (b) CCFM8610 can induce more effective biosynthesis of extracellular polymeric substance (EPS) to sequestrate Cd;
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | | | | | | |
Collapse
|
5
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
6
|
Kanno N, Matsuura K, Haruta S. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris. Microbes Environ 2018. [PMID: 29540639 PMCID: PMC5877347 DOI: 10.1264/jsme2.me17143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD+/NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.
Collapse
Affiliation(s)
- Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
7
|
Gionco B, Tavares ER, de Oliveira AG, Yamada-Ogatta SF, do Carmo AO, Pereira UDP, Chideroli RT, Simionato AS, Navarro MOP, Chryssafidis AL, Andrade G. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis. Front Chem 2017; 5:66. [PMID: 28966922 PMCID: PMC5605626 DOI: 10.3389/fchem.2017.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.
Collapse
Affiliation(s)
- Bárbara Gionco
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Eliandro R Tavares
- Molecular Biology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Admilton G de Oliveira
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Sueli F Yamada-Ogatta
- Molecular Biology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Anderson O do Carmo
- Department of General Biology, Institute of Biologic Sciences, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, Universidade Estadual de LondrinaLondrina, Brazil
| | - Roberta T Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, Universidade Estadual de LondrinaLondrina, Brazil
| | - Ane S Simionato
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Miguel O P Navarro
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| | - Andreas L Chryssafidis
- Laboratory of Veterinary Toxicology, Department of Preventive Veterinary Medicine, Universidade Estadual de LondrinaLondrina, Brazil
| | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de LondrinaLondrina, Brazil
| |
Collapse
|
8
|
Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biol Toxicol 2015; 31:39-81. [DOI: 10.1007/s10565-015-9294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/23/2015] [Indexed: 11/27/2022]
|
9
|
Li K, Wang X, Pidatala VR, Chang CP, Cao X. Novel Quantitative Metabolomic Approach for the Study of Stress Responses of Plant Root Metabolism. J Proteome Res 2014; 13:5879-87. [DOI: 10.1021/pr5007813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kefeng Li
- School
of Medicine, University of California, San Diego, 92103, California United States
- Department
of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xu Wang
- Key
Laboratory for Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, 300457 Tianjin, People’s Republic of China
- Analytical
Department, Tianjin Ting Yu Consulting Co., Ltd., 300457 Tianjin, People’s Republic of China
| | - Venkataramana R. Pidatala
- Department
of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Chi-Peng Chang
- Analytical
Department, Tianjin Ting Yu Consulting Co., Ltd., 300457 Tianjin, People’s Republic of China
| | - Xiaohong Cao
- Key
Laboratory for Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, 300457 Tianjin, People’s Republic of China
| |
Collapse
|
10
|
Heo A, Jang HJ, Sung JS, Park W. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics. PLoS One 2014; 9:e110215. [PMID: 25330344 PMCID: PMC4201530 DOI: 10.1371/journal.pone.0110215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Collapse
Affiliation(s)
- Aram Heo
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1184-93. [PMID: 24383886 DOI: 10.1021/es4047395] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Marginal soils arise due to various industrial and agricultural practices reducing crop productivity. Pseudomonas sp. TLC 6-6.5-4 is a free-living multiple-metal-resistant plant-growth-promoting bacteria (PGPB) isolated from Torch Lake sediment that promotes maize growth and nutrient uptake. In this study, we examined both PGPB-soil and PGPB-plant interactions. PGPB inoculation resulted in significant increase in maize biomass. Soil inoculation before sowing seeds and coating seeds with the PGPB resulted in higher copper uptake by maize compared to other methods. The PGPB-soil interaction improved phosphorus uptake by maize and led to significant decrease in organic bound copper in marginal soil and a notable increase in exchangeable copper. PGPB improved soil health based on soil enzyme activities. Metabolomic analysis of maize revealed that PGPB inoculation upregulated photosynthesis, hormone biosynthesis, and tricarboxylic acid cycle metabolites. Proteomic analysis identified upregulation of proteins related to plant development and stress response. Further, the activity of antioxidant enzymes and total phenolics decreased in plants grown in marginal soil suggesting alleviation of metal stress in presence of PGPB. The ability of PGPB to modulate interconnected biochemical pathways could be exploited to increase crop productivity in marginal soils, phytoremediation of metal contaminated soils, and organic agriculture.
Collapse
Affiliation(s)
- Kefeng Li
- Department of Biological Sciences, Michigan Technological University , Houghton, Michigan 49931, United States
| | | | | | | | | |
Collapse
|
12
|
Comparative genomic and transcriptomic analyses reveal habitat differentiation and different transcriptional responses during pectin metabolism in Alishewanella species. Appl Environ Microbiol 2013; 79:6351-61. [PMID: 23934491 DOI: 10.1128/aem.02350-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alishewanella species are expected to have high adaptability to diverse environments because they are isolated from different natural habitats. To investigate how the evolutionary history of Alishewanella species is reflected in their genomes, we performed comparative genomic and transcriptomic analyses of A. jeotgali, A. aestuarii, and A. agri, which were isolated from fermented seafood, tidal flat sediment, and soil, respectively. Genomic islands with variable GC contents indicated that invasion of prophage and transposition events occurred in A. jeotgali and A. agri but not in A. aestuarii. Habitat differentiation of A. agri from a marine environment to a terrestrial environment was proposed because the species-specific genes of A. agri were similar to those of soil bacteria, whereas those of A. jeotgali and A. aestuarii were more closely related to marine bacteria. Comparative transcriptomic analysis with pectin as a sole carbon source revealed different transcriptional responses in Alishewanella species, especially in oxidative stress-, methylglyoxal detoxification-, membrane maintenance-, and protease/chaperone activity-related genes. Transcriptomic and experimental data demonstrated that A. agri had a higher pectin degradation rate and more resistance to oxidative stress under pectin-amended conditions than the other 2 Alishewanella species. However, expression patterns of genes in the pectin metabolic pathway and of glyoxylate bypass genes were similar among all 3 Alishewanella species. Our comparative genomic and transcriptomic data revealed that Alishewanella species have evolved through horizontal gene transfer and habitat differentiation and that pectin degradation pathways in Alishewanella species are highly conserved, although stress responses of each Alishewanella species differed under pectin culture conditions.
Collapse
|