1
|
Hu H, Qimu G, Nie J, Wu N, Dan T. Selection of a galactose-positive mutant strain of Streptococcus thermophilus and its optimized production as a high-vitality starter culture. J Dairy Sci 2024; 107:6558-6575. [PMID: 38754828 DOI: 10.3168/jds.2023-24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Streptococcus thermophilus is a common starter in yogurt production and plays an important role in the dairy industry. In this study, a galactose-positive (Gal+) mutant strain, IMAU20246Y, was produced using the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine (NTG) from wild-type S. thermophilus IMAU20246, which is known to have good fermentation characteristics. The sugar content of milk fermented by either the mutant or the wild type was determined using HPLC; metabolism of lactose and galactose was significantly increased in the mutant strain. In addition, we used response surface methodology to optimize components of the basic M17 medium for survival ratio of the mutant strain. Under these optimal conditions, the viable counts of mutant S. thermophilus IMAU20246Y reached 4.15 × 108 cfu/mL and, following freeze-drying in the medium, retained cell viability of up to 67.42%. These results are conducive to production of a high-vitality starter culture and development of "low sugar, high sweetness" dairy products.
Collapse
Affiliation(s)
- Haimin Hu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gesudu Qimu
- Inner Mongolia Scitop Bio-tech Co. Ltd., Hohhot 011508, China
| | - Jiaying Nie
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Han D, Bao X, Wang Y, Liao X, Wang K, Chen J, Li X, Yang Z, Wang Y. The impact of lactic acid bacteria inoculation on the fermentation and metabolomic dynamics of indigenous Beijing douzhi microbial communities. Front Microbiol 2024; 15:1435834. [PMID: 39139380 PMCID: PMC11319256 DOI: 10.3389/fmicb.2024.1435834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Douzhi, a traditional Chinese fermented beverage, features microbial communities primarily composed of lactic acid bacteria (LAB). As fermented foods continue to gain recognition and popularity, douzhi is attracting growing interest. However, investigation of the critical aspects of douzhi's fermentation processes, including fermentation characteristics and microbial community dynamics, remains vital for enhancing food safety and quality for douzhi, as well as for similar fermented food products. Method In this study, we collected douzhi microbial communities from four chain stores, using them as fermentation starter cultures. The microbial dynamics of the fermentation were analyzed, focusing on the inoculation of LAB strains and the transition from a mung bean-based matrix to skimmed milk. The metabolomic profiles of the fermented mung bean matrices were also studied. Results Douzhi samples obtained from representative chain stores were found to be overwhelmingly dominated by LAB. When inoculated along with the douzhi community, both LAB strains exhibited notable and substantial reductions in the pH value of the designated mung bean matrices compared to those inoculated indigenous microbiota. Specifically, Lactiplantibacillus plantarum CGMCC 1.1856 retained its population, whereas Pediococcus pentosaceus CGMCC 1.2695 exhibited a decrease in relative abundance. Using skimmed milk as a fermentation substrate instead of the mung bean matrix resulted in significant shifts in microbial communities, particularly leading to an increase in Escherichia sp. The metagenomic analyses and functional predictions illustrated that various metabolic functions were enhanced during the fermentation process due to LAB inoculation. The liquid chromatography-mass spectrometry based metabolomic analysis revealed that the inoculation of Lactiplantibacillus plantarum and Pediococcus pentosaceus in mung bean matrix did not introduce new metabolites but significantly altered the concentration and profile of existing metabolites, especially increased low molecular carbohydrates, which may enhance the nutritional potential of the fermented product. Discussion This study examines the microbial dynamics of douzhi microbiota fermentation, emphasizing the role of lactic acid bacteria in enhancing fermentation activity and metabolite profiles. These insights contribute to improving manufacturing processes and ensuring the safety and quality of douzhi and similar fermented foods.
Collapse
Affiliation(s)
- Dong Han
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyu Bao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yanfang Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiaohong Liao
- China National Light Industry Council, Beijing, China
| | - Ke Wang
- China National Light Industry Council, Beijing, China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaolong Li
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yanbo Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Román L, Melis-Arcos F, Pröschle T, Saa PA, Garrido D. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis. mSystems 2024; 9:e0071523. [PMID: 38363147 PMCID: PMC10949479 DOI: 10.1128/msystems.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.
Collapse
Affiliation(s)
- Loreto Román
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melis-Arcos
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Pröschle
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Bendig T, Ulmer A, Luzia L, Müller S, Sahle S, Bergmann FT, Lösch M, Erdemann F, Zeidan AA, Mendoza SN, Teusink B, Takors R, Kummer U, Figueiredo AS. The pH-dependent lactose metabolism of Lactobacillus delbrueckii subsp. bulgaricus: An integrative view through a mechanistic computational model. J Biotechnol 2023; 374:90-100. [PMID: 37572793 DOI: 10.1016/j.jbiotec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.
Collapse
Affiliation(s)
- Tamara Bendig
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Laura Luzia
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Susanne Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sven Sahle
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Frank T Bergmann
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Maren Lösch
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ahmad A Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | | | - Bas Teusink
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ursula Kummer
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| | - Ana Sofia Figueiredo
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Yang X, Pan X, Li M, Zeng Z, Guo Y, Chen P, Liang X, Chen P, Liu G. Interaction between Cervical Microbiota and Host Gene Regulation in Caesarean Section Scar Diverticulum. Microbiol Spectr 2022; 10:e0167622. [PMID: 35900092 PMCID: PMC9430964 DOI: 10.1128/spectrum.01676-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cesarean section scar diverticulum (CSD) has become a formidable obstacle preventing women receiving CS from reproducing. However, the pathogenesis of CSD remains unexplored. In this study, we characterized the cervical microbiota, metabolome, and endometrial transcriptome of women with CSD. Based on the 16s rRNA results of cervical microbes, the microbial diversity in the CSD group was higher than that in the control group. Lactobacillus were significantly decreased in the CSD group and were mutually exclusive with potentially harmful species (Sphingomonas, Sediminbacterium, and Ralstonia) abnormally elevated in CSD. The microbiota in the CSD group exhibited low activity in carbohydrate metabolism and high activity in fatty acid metabolism, as confirmed by the metabolomic data. The metabolomic characterization identified 6,130 metabolites, of which 34 were significantly different between the two groups. In the CSD group, N-(3-hydroxy-eicosanoid)-homoserine lactone and Ternatin were significantly increased, in addition to the marked decrease in fatty acids due to high consumption. N-(3-hydroxy-eicosanoyl)-homoserine lactone is a regulator that promotes abnormal apoptosis in a variety of cells, including epithelial cells and vascular endothelial cells. This abnormal apoptosis of endometrial epithelial cells and neovascularization was also reflected in the transcriptome of the endometrium surrounding the CSD. In the endometrial transcriptome data, the upregulated genes in the CSD group were active in negatively regulating the proliferation of blood vessel endothelial cells, endothelial cells, and epithelial cells. This alteration in the host's endometrium is most likely influenced by the abnormal microbiota, which appears to be confirmed in the results by integrating host transcriptome and microbiome data. For the first time, this study described the abnormal activity characteristics of microbiota and the mechanism of host-microbiota interaction in CSD. IMPORTANCE Cesarean section scar diverticulum (CSD) has become a formidable obstacle preventing women receiving CS from reproducing. In this study, we revealed that potentially harmful microbes do have adverse effects on the host endometrium. The mechanism of these adverse effects includes the inhibition of the activity of beneficial bacteria such as lactobacilli, consumption of protective metabolites of the endometrium, and also the production of harmful metabolites. In the present study, we elucidated the mechanism from the perspectives of microbial, metabolic, and host responses, providing an important rationale to design preventive and therapeutic strategies for CSD.
Collapse
Affiliation(s)
- Xing Yang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyi Pan
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Manchao Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhi Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yanxian Guo
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Panyu Chen
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Peigen Chen
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Guihua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Xia T, Wang T, Sun J, Shi W, Liu Y, Huang F, Zhang J, Zhong J. Modulation of Fermentation Quality and Metabolome in Co-ensiling of Sesbania cannabina and Sweet Sorghum by Lactic Acid Bacterial Inoculants. Front Microbiol 2022; 13:851271. [PMID: 35401441 PMCID: PMC8988063 DOI: 10.3389/fmicb.2022.851271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sesbania cannabina (SC) is a protein-rich roughage that thrives under moderate-severe saline-alkali (MSSA) soils with the potential to relieve the shortage of high nutritive forage. Sweet sorghum (SS) also tolerates MSSA soils and contains rich fermentable carbohydrates which could improve the fermentation quality in mixed silage. The present study investigated the silage quality, bacterial community, and metabolome in the mixed silage of SC and SS (SC-SS) with or without lactic acid bacterial (LAB) inoculants. Four ratios (10:0, 7:3, 5:5, and 3:7) of SC and SS were treated with sterile water or LAB inoculants (homofermentative Companilactobacillus farciminis and Lactiplantibacillus plantarum, and heterofermentative Lentilactobacillus buchneri and Lentilactobacillus hilgardii), which were analyzed after 60 days of ensiling. Results revealed that LAB inoculation improved the fermentation quality by increasing the lactic acid content and decreasing the ammonia nitrogen and butyric acid contents compared with the untreated group. LAB inoculation also raised the relative feed value by reducing indigestible fibers [e.g., neutral detergent fiber (NDF), acid detergent fiber, and hemicellulose]. Microbial and metabolomic analysis indicated that LAB inoculants could modify the bacterial community and metabolome of SC-SS silage. In co-ensiling samples except for SC alone silage, L. buchneri and L. hilgardii were the dominant species. Metabolites with bioactivities like anti-inflammatory, antioxidant, antimicrobial, and anti-tumor were upregulated with LAB inoculation. Furthermore, correlation analysis demonstrated that active metabolites (e.g., glycitin, glabrene, alnustone, etc.) were positively correlated with L. buchneri, while tripeptides (e.g., SPK, LLK, LPH, etc.) were positively correlated with L. hilgardii. Adequately describing the SC-SS silage by multi-omics approach might deepen our understanding of complicated biological processes underlying feature silages fermentation. Moreover, it may also contribute to screening of targeted functional strains for MSSA-tolerating forage to improve silage quality and promote livestock production.
Collapse
Affiliation(s)
- Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiong Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Gu J, Mao B, Cui S, Tang X, Liu Z, Zhao J, Zhang H. Bifidobacteria exhibited stronger ability to utilize fructooligosaccharides, compared with other bacteria in the mouse intestine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2413-2423. [PMID: 34628644 DOI: 10.1002/jsfa.11580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/25/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fructooligosaccharides (FOS) have been identified as important prebiotics. Previous studies have found that they can significantly promote the proliferation of Bifidobacterium pseudolongum in the mouse intestine. However, it is still unclear which other bacteria in the mouse intestine can utilize FOS, and the differences in the ability to utilize FOS. In this study, the bacteria capable of utilizing FOS were isolated from mice feces and their ability to utilize FOS was compared. Draft genome sequencing was also applied to explain the differences in FOS utilization at the gene levels. RESULTS A total of 15 species were isolated from mouse feces and 13 species were able to utilize fructofuranosylnystose (GF2). Eleven species could utilize nistose (GF3), but not Enterococcus hirae and Lactobacillus reuteri. In contrast, 1-kestose (GF4) was hardly utilized. The enzyme activity determination and draft genome sequencing-based analyses revealed that all isolated species used the phosphotransferase system or permease system to transport FOS into the cells before hydrolysis by β-fructofuranosidase. Although β-fructofuranosidase exists in all strains, there are big differences in the corresponding coding genes between bifidobacteria and non-bifidobacteria. CONCLUSION Compared with the other isolates, Bifidobacterium species exhibited higher enzyme activity and shorter generation time, leading to a stronger ability to utilize FOS. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
8
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
9
|
Madsen SK, Thulesen ET, Mohammadifar MA, Bang-Berthelsen CH. Chufa Drink: Potential in Developing a New Plant-Based Fermented Dessert. Foods 2021; 10:foods10123010. [PMID: 34945561 PMCID: PMC8702038 DOI: 10.3390/foods10123010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Plant-based foods with desirable texture and nutritional value have attracted considerable interest from consumers. In order to meet the growing demand for more sustainable and health-focused products, new sources for plant-based products are needed. In this study, we aimed to develop an innovative plant-based dessert based on the underutilized crop chufa tubers (Cyperus esculentus). The chufa extract was fermented with plant-adapted lactic acid bacteria and formulated with the purpose of imitating the Danish summer dessert “cold butter-milk soup”. The effect of various bacterial fermentations and formulations on steady and oscillatory rheology, stability, dry matter, pH, and sugar profile of the product were studied and compared to a commercial cold buttermilk soup sample. A strain of Leuconostoc mesenteroides was found to create the most similar taste to a commercial sample. By adding lemon juice, sucrose, xanthan gum, and vanilla to the fermented chufa drink, the drink was found to mimic the pH, texture, acid profile, and stability of a commercial dairy-based sample, while containing a lower concentration of carbohydrates.
Collapse
|
10
|
Pinto C, Melo-Miranda R, Gordo I, Sousa A. The Selective Advantage of the lac Operon for Escherichia coli Is Conditional on Diet and Microbiota Composition. Front Microbiol 2021; 12:709259. [PMID: 34367115 PMCID: PMC8333865 DOI: 10.3389/fmicb.2021.709259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The lac operon is one of the best known gene regulatory circuits and constitutes a landmark example of how bacteria tune their metabolism to nutritional conditions. It is nearly ubiquitous in Escherichia coli strains justifying the use of its phenotype, the ability to consume lactose, for species identification. Lactose is the primary sugar found in milk, which is abundant in mammals during the first weeks of life. However, lactose is virtually non-existent after the weaning period, with humans being an exception as many consume dairy products throughout their lives. The absence of lactose during adulthood in most mammals and the rarity of lactose in the environment, means that the selective pressure for maintaining the lac operon could be weak for long periods of time. Despite the ability to metabolize lactose being a hallmark of E. coli's success when colonizing its primary habitat, the mammalian intestine, the selective value of this trait remains unknown in this ecosystem during adulthood. Here we determine the competitive advantage conferred by the lac operon to a commensal strain of E. coli when colonizing the mouse gut. We find that its benefit, which can be as high as 11%, is contingent on the presence of lactose in the diet and on the presence of other microbiota members in the gut, but the operon is never deleterious. These results help explaining the pervasiveness of the lac operon in E. coli, but also its polymorphism, as lac-negative E. coli strains albeit rare can naturally occur in the gut.
Collapse
Affiliation(s)
- Catarina Pinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rita Melo-Miranda
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Bivolarski V, Iliev I, Ivanova I, Nikolova M, Salim A, Mihaylova G, Vasileva T. Characterization of structure/prebiotic potential correlation of glucans and oligosaccharides synthetized by glucansucrases from fructophilic lactic acid bacteria from honey bee Apis mellifera. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1911683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Iskra Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ayshe Salim
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Hu Z, Niu H, Tong Q, Chang J, Yu J, Li S, Zhang S, Ma D. The Microbiota Dynamics of Alfalfa Silage During Ensiling and After Air Exposure, and the Metabolomics After Air Exposure Are Affected by Lactobacillus casei and Cellulase Addition. Front Microbiol 2020; 11:519121. [PMID: 33329411 PMCID: PMC7732661 DOI: 10.3389/fmicb.2020.519121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Both inoculants treatment and enzyme treatment promote the reproduction of lactic acid bacteria (LAB) to produce enough lactic acid to lower pH in silage. The present study investigated the microbial community and metabolome in cellulase, Lactobacillus casei, and air treated alfalfa silage. Chopped and wilted alfalfa (first cutting, 29% dry matter) was ensiled without (CON) or with L. casei (1 × 106 cfu g–1 fresh matter) (LC) or cellulase (20,000IU, 0.5% of fresh matter) (CE) for 56 days, then exposed to air for 3 days (PO). Greater ensiling quality was observed in LC and CE, which had lower pH and higher lactic acid content than CON at 56 days of ensiling and 3 days post-oxygen exposure. Air exposure was associated with decreased lactic acid concentrations and increased yeast and mold counts in all silages. SEM showed that the structure of leaf epicuticular wax crystals were intact in fresh alfalfa, totally decomposed in CON silage, and partly preserved in CE and LC silage. Gas chromatography mass spectrometry revealed that 196 metabolites and 95 differential concentration were present in the 3 days air exposure samples. Most of these metabolites, mainly organic acids, polyols, ketones, aldehydes, are capable of antimicrobial activity. The bacterial communities were obviously different among groups and Lactobacillus developed to a dominant status in all silages. Lactobacillus became dominant in bacterial communities of LC and CE silages from days 7 to 56, and their relative abundances reached 94.17–83.93% at day 56, respectively. For CON silage, until day 56, Lactobacillus dominated the bacterial community with abundance of 75.10%. After 3 days of oxygen exposure, Lactobacillus and Enterococcus were predominant in CON, and Lactobacillus remained dominant in LC and CE silages. The results indicated that, compared to untreated silages, L. casei could be a priority inoculant for alfalfa silage to boost Lactobacillus abundance and improve fermentation quality. Our high-throughput sequencing and gas chromatography mass spectrometry results provide a deep insight into the bacterial community and metabolites in alfalfa silage.
Collapse
Affiliation(s)
- Zongfu Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Huaxin Niu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Qing Tong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jie Chang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Jianhua Yu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Shuguo Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Shi Zhang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Jeong Y, Park J, Kim EB. Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media. J Microbiol Biotechnol 2020; 30:1321-1334. [PMID: 32522966 PMCID: PMC9728240 DOI: 10.4014/jmb.2003.03021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.
Collapse
Affiliation(s)
- Yujeong Jeong
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongbin Park
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea,Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea,Corresponding author Phone: +82-33-250-8642 Fax: +82-33-259-5574 E-mail:
| |
Collapse
|
14
|
Zeng L, Burne RA. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:70-83. [PMID: 32881130 DOI: 10.1111/mmi.14597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023]
Abstract
Lactose is an abundant dietary carbohydrate metabolized by the dental pathogen Streptococcus mutans. Lactose metabolism presents both classic diauxic behaviors and long-term memory, where the bacteria can pause for >11 h before initiating growth on lactose. Here, we explored mechanisms contributing to unusual aspects of regulation of the lac operon. The fructose-phosphate metabolites, F-1-P and F-6-P, could modulate the DNA-binding activities of the lactose repressor. Recombinant LacR proteins bound upstream of lacA and Gal-6-P induced the formation of different LacR-DNA complexes. Deletion of lacR resulted in strain-specific growth phenotypes on lactose, but also on a number of mono- and di-saccharides that involve the glucose-PTS or glucokinase in their catabolism. The phenotypes were consistent with the novel findings that loss of LacR altered glucose-PTS activity and expression of the gene for glucokinase. CcpA was also shown to affect lactose metabolism in vivo and to bind to the lacA promoter region in vitro. Collectively, our study reveals complex molecular circuits controlling lactose metabolism in S. mutans, where LacR and CcpA integrate cellular and environmental cues to regulate metabolism of a variety of carbohydrates that are critical to persistence and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Zokaityte E, Cernauskas D, Klupsaite D, Lele V, Starkute V, Zavistanaviciute P, Ruzauskas M, Gruzauskas R, Juodeikiene G, Rocha JM, Bliznikas S, Viskelis P, Ruibys R, Bartkiene E. Bioconversion of Milk Permeate with Selected Lactic Acid Bacteria Strains and Apple By-Products into Beverages with Antimicrobial Properties and Enriched with Galactooligosaccharides. Microorganisms 2020; 8:E1182. [PMID: 32756465 PMCID: PMC7463965 DOI: 10.3390/microorganisms8081182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
The present research study aims to prepare prototypes of beverages from milk permeate (MP) using fermentation with 10 different strains of lactic acid bacteria (LAB) showing antimicrobial properties (L. uvarum LUHS245, L. casei LUHS210, L. curvatus LUHS51, L. plantarum LUHS135, P. acidilactici LUHS29, L. plantarum LUHS122, L. coryniformins LUHS71, L. paracasei LUHS244, P. pentosaceus LUHS183, L. faraginis LUHS206) and MP with (AppMP) or without (MP) the addition of 8% (w/w) apple by-products (App). Two groups of prototypes of beverages were prepared: fermented MP and fermented MP with App (AppMP). Acidity parameters, LAB viable counts, lactose and galactooligosaccharides (GOSs) content, antimicrobial properties against 15 pathogenic and opportunistic bacterial strains, overall acceptability and emotions induced of the final fermented beverages for consumers were evaluated. Results showed that all LAB grew well in MP and LAB strain exhibited a significant (p ≤ 0.05) influence on galactobiose and galactotriose synthesis in the fermentable MP substrate. The highest total content of GOS (26.80 mg/100 mL) was found in MPLUHS29 fermented beverage. In addition, MPLUHS245, MPLUHS210 and AppMPLUHS71 fermented beverages showed high antimicrobial activity, inhibiting 13 out of 15 tested microbial pathogens. The overall acceptability of AppMP fermented beverages was 26.8% higher when compared with fermented beverages without App (MP), and the most intensive "happy" emotion was induced by MPLUHS71, MPLUHS24, MPLUHS183 and MPLUHS206 samples. Finally, very promising results were also attained by the bioconversion of MP with selected LAB and App addition into the prototypes of antimicrobial beverages enriched with GOS.
Collapse
Affiliation(s)
- Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| | - Darius Cernauskas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Food Institute, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
| | - Vita Lele
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania;
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania; (R.G.); (G.J.)
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania; (R.G.); (G.J.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n., P-4169-007 Porto, Portugal
| | - Saulius Bliznikas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Lithuania;
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania; (E.Z.); (D.C.); (D.K.); (V.L.); (V.S.); (P.Z.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
16
|
Application of lactobacilli and prebiotic oligosaccharides for the development of a synbiotic semi-hard cheese. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108361] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract. Appl Environ Microbiol 2019; 85:AEM.01788-19. [PMID: 31519661 DOI: 10.1128/aem.01788-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
Abstract
Strains of Lactobacillus reuteri are commonly used as probiotics due to their demonstrated therapeutic properties. Many strains of L. reuteri also utilize the prebiotic galactooligosaccharide (GOS), providing a basis for formulating synergistic synbiotics that could enhance growth or persistence of this organism in vivo In this study, in-frame deletion mutants were constructed to characterize the molecular basis of GOS utilization in L. reuteri ATCC PTA-6475. Results suggested that GOS transport relies on a permease encoded by lacS, while a second unidentified protein may function as a galactoside transporter. Two β-galactosidases, encoded by lacA and lacLM, sequentially degrade GOS oligosaccharides and GOS disaccharides, respectively. Inactivation of lacL and lacM resulted in impaired growth in the presence of GOS and lactose. In vitro competition experiments between the wild-type and ΔlacS ΔlacM strains revealed that the GOS-utilizing genes conferred a selective advantage in media with GOS but not glucose. GOS also provided an advantage to the wild-type strain in experiments in gnotobiotic mice but only on a purified, no sucrose diet. Differences in cell numbers between GOS-fed mice and mice that did not receive GOS were small, suggesting that carbohydrates other than GOS were sufficient to support growth. On a complex diet, the ΔlacS ΔlacM strain was outcompeted by the wild-type strain in gnotobiotic mice, suggesting that lacL and lacM are involved in the utilization of alternative dietary carbohydrates. Indeed, the growth of the mutants was impaired in raffinose and stachyose, which are common in plants, demonstrating that α-galactosides may constitute alternate substrates of the GOS pathway.IMPORTANCE This study shows that lac genes in Lactobacillus reuteri encode hydrolases and transporters that are necessary for the metabolism of GOS, as well as α-galactoside substrates. Coculture experiments with the wild-type strain and a gos mutant clearly demonstrated that GOS utilization confers a growth advantage in medium containing GOS as the sole carbohydrate source. However, the wild-type strain also outcompeted the mutant in germfree mice, suggesting that GOS genes in L. reuteri also provide a basis for utilization of other carbohydrates, including α-galactosides, ordinarily present in the diets of humans and other animals. Collectively, our work provides information on the metabolism of L. reuteri in its natural niche in the gut and may provide a basis for the development of synbiotic strategies.
Collapse
|
18
|
Reanalysis of Lactobacillus paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position. Microorganisms 2019; 7:microorganisms7110487. [PMID: 31731444 PMCID: PMC6920896 DOI: 10.3390/microorganisms7110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus paracasei are diverse Gram-positive bacteria that are very closely related to Lactobacillus casei, belonging to the Lactobacillus casei group. Due to extreme genome similarities between L. casei and L. paracasei, many strains have been cross placed in the other group. We had earlier sequenced and analyzed the genome of Lactobacillus paracasei Lbs2, but mistakenly identified it as L. casei. We re-analyzed Lbs2 reads into a 2.5 MB genome that is 91.28% complete with 0.8% contamination, which is now suitably placed under L. paracasei based on Average Nucleotide Identity and Average Amino Acid Identity. We took 74 sequenced genomes of L. paracasei from GenBank with assembly sizes ranging from 2.3 to 3.3 MB and genome completeness between 88% and 100% for comparison. The pan-genome of 75 L. paracasei strains hold 15,945 gene families (21,5232 genes), while the core genome contained about 8.4% of the total genes (243 gene families with 18,225 genes) of pan-genome. Phylogenomic analysis based on core gene families revealed that the Lbs2 strain has a closer relationship with L. paracasei subsp. tolerans DSM20258. Finally, the in-silico analysis of the L. paracasei Lbs2 genome revealed an important pathway that could underpin the production of thiamin, which may contribute to the host energy metabolism.
Collapse
|
19
|
Shen J, Chen J, Jensen PR, Solem C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb Cell Fact 2019; 18:51. [PMID: 30857537 PMCID: PMC6410493 DOI: 10.1186/s12934-019-1091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delactosed whey permeate (DWP) is a side stream of whey processing, which often is discarded as waste, despite of its high residual content of lactose, typically 10-20%. Microbial fermentation is one of the most promising approaches for valorizing nutrient rich industrial waste streams, including those generated by the dairies. Here we present a novel microbial platform specifically designed to generate useful compounds from dairy waste. As a starting point we use Corynebacterium glutamicum, an important workhorse used for production of amino acids and other important compounds, which we have rewired and complemented with genes needed for lactose utilization. To demonstrate the potential of this novel platform we produce ethanol from lactose in DWP. RESULTS First, we introduced the lacSZ operon from Streptococcus thermophilus, encoding a lactose transporter and a β-galactosidase, and achieved slow growth on lactose. The strain could metabolize the glucose moiety of lactose, and galactose accumulated in the medium. After complementing with the Leloir pathway (galMKTE) from Lactococcus lactis, co-metabolization of galactose and glucose was accomplished. To further improve the growth and increase the sugar utilization rate, the strain underwent adaptive evolution in lactose minimal medium for 100 generations. The outcome was strain JS95 that grew fast in lactose mineral medium. Nevertheless, JS95 still grew poorly in DWP. The growth and final biomass accumulation were greatly stimulated after supplementation with NH4+, Mn2+, Fe2+ and trace minerals. In only 24 h of cultivation, a high cell density (OD600 of 56.8 ± 1.3) was attained. To demonstrate the usefulness of the platform, we introduced a plasmid expressing pyruvate decarboxylase and alcohol dehydrogenase, and managed to channel the metabolic flux towards ethanol. Under oxygen-deprived conditions, non-growing suspended cells could convert 100 g/L lactose into 46.1 ± 1.4 g/L ethanol in DWP, a yield of 88% of the theoretical. The resting cells could be re-used at least three times, and the ethanol productivities obtained were 0.96 g/L/h, 2.2 g/L/h, and 1.6 g/L/h, respectively. CONCLUSIONS An efficient process for producing ethanol from DWP, based on C. glutamicum, was demonstrated. The results obtained clearly show a great potential for this newly developed platform for producing value-added chemicals from dairy waste.
Collapse
Affiliation(s)
- Jing Shen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
20
|
Pan Y, An H, Fu T, Zhao S, Zhang C, Xiao G, Zhang J, Zhao X, Hu G. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation. BMC Microbiol 2018; 18:182. [PMID: 30419812 PMCID: PMC6233522 DOI: 10.1186/s12866-018-1327-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Background Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism. Results The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G + C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a Ф11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS). Conclusions We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.
Collapse
Affiliation(s)
- Yushan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China. .,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing, China
| | - Tong Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shiyu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chengwang Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Genhui Xiao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jingren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xinfang Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
21
|
Kim DH, Jeong D, Song KY, Seo KH. Comparison of traditional and backslopping methods for kefir fermentation based on physicochemical and microbiological characteristics. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Zúñiga M, Monedero V, Yebra MJ. Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Front Microbiol 2018; 9:1917. [PMID: 30177920 PMCID: PMC6109692 DOI: 10.3389/fmicb.2018.01917] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
Members of the genus Lactobacillus are commonly found at the gastrointestinal tract and other mucosal surfaces of humans. This genus includes various species with a great number of potentially probiotic bacteria. Other often-used probiotic species belong to Bifidobacterium, a genus almost exclusively associated with the gut. As probiotics must survive and be metabolically active at their target sites, namely host mucosal surfaces, consumption of host-produced glycans is a key factor for their survival and activity. The ability to metabolize glycans such as human milk oligosaccharides (HMOs), glycosaminoglycans and the glycan moieties of glycoproteins and glycolipids found at the mucosal surfaces grants a competitive advantage to lactobacilli and bifidobacteria. The analyses of the great number of sequenced genomes from these bacteria have revealed that many of them encode a wide assortment of genes involved in the metabolism and transport of carbohydrates, including several glycoside hydrolases required for metabolizing the carbohydrate moieties of mucins and HMOs. Here, the current knowledge on the genetic mechanisms, known catabolic pathways and biochemical properties of enzymes involved in the utilization of host-produced glycans by lactobacilli and bifidobacteria will be summarized.
Collapse
Affiliation(s)
- Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - María J Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
23
|
Solopova A, Bachmann H, Teusink B, Kok J, Kuipers OP. Further Elucidation of Galactose Utilization in Lactococcus lactis MG1363. Front Microbiol 2018; 9:1803. [PMID: 30123211 PMCID: PMC6085457 DOI: 10.3389/fmicb.2018.01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Since the 1970s, galactose metabolism in Lactococcus lactis has been in debate. Different studies led to diverse outcomes making it difficult to conclude whether galactose uptake was PEP- or ATP- dependent and decide what the exact connection was between galactose and lactose uptake and metabolism. It was shown that some Lactococcus strains possess two galactose-specific systems – a permease and a PTS, even if they lack the lactose utilization plasmid, proving that a lactose-independent PTSGal exists. However, the PTSGal transporter was never identified. Here, with the help of transcriptome analyses and genetic knock-out mutants, we reveal the identities of two low-affinity galactose PTSs. A novel plant-niche-related PTS component Llmg_0963 forming a hybrid transporter Llmg_0963PtcBA and a glucose/mannose-specific PTS are shown to be involved in galactose transport in L. lactis MG1363.
Collapse
Affiliation(s)
- Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Herwig Bachmann
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bas Teusink
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Sci Rep 2018; 8:7152. [PMID: 29740087 PMCID: PMC5940811 DOI: 10.1038/s41598-018-25660-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 11/30/2022] Open
Abstract
The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-β-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h−1) and in LacNAc (0.0307 ± 0.0009 h−1) significantly lower than the wild-type (0.1010 ± 0.0006 h−1 and 0.0522 ± 0.0005 h−1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320–fold in LacNAc and from 100 to 200–fold in lactose, compared to cells growing in glucose.
Collapse
|
25
|
Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics 2018; 19:205. [PMID: 29554864 PMCID: PMC5859408 DOI: 10.1186/s12864-018-4586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strains of Lactobacillus paracasei are present in many diverse environments, including dairy and plant materials and the intestinal tracts of humans and animals. Their adaptation to various niches is correlated to intra-species diversity at the genomic and metabolic level. In this study, we compared the genome sequences of three L. paracasei strains isolated from mature Cheddar cheeses, two of which (DPC4206 and DPC4536) shared the same genomic fingerprint by PFGE, but demonstrated varying metabolic capabilities. Results Genome sizes varied from 2.9 Mbp for DPC2071, to 3.09 Mbp for DPC4206 and 3.08 Mpb for DPC4536. The presence of plasmids was a distinguishing feature between the strains with strain DPC2071 possessing an unusually high number of plasmids (up to 11), while DPC4206 had one plasmid and DPC4536 harboured no plasmids. Each of the strains possessed specific genes not present in the other two analysed strains. The three strains differed in their abundance of sugar-converting genes, and in the types of sugars that could be used as energy sources. Genes involved in the metabolism of sugars not usually connected with the dairy niche, such as myo-inositol and pullulan were also detected, but strains did not utilise these sugars. The genetic content of the three strains differed in regard to specific genes for arginine and sulfur-containing amino acid metabolism and genes contributing to resistance to heavy metal ions. In addition, variability in the presence of phage remnants and phage protection systems was evident. Conclusions The findings presented in this study confirm a considerable level of heterogeneity of Lactobacillus paracasei strains, even between strains isolated from the same niche.
Collapse
|
26
|
Ho VTT, Lo R, Bansal N, Turner MS. Characterisation of Lactococcus lactis isolates from herbs, fruits and vegetables for use as biopreservatives against Listeria monocytogenes in cheese. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Mudgil D, Barak S, Patel A, Shah N. Partially hydrolyzed guar gum as a potential prebiotic source. Int J Biol Macromol 2018; 112:207-210. [PMID: 29414731 DOI: 10.1016/j.ijbiomac.2018.01.164] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora.
Collapse
Affiliation(s)
- Deepak Mudgil
- Department of Dairy & Food Technology, Mansinhbhai Institute of Dairy & Food Technology, Mehsana 384002, India.
| | - Sheweta Barak
- Department of Dairy & Food Technology, Mansinhbhai Institute of Dairy & Food Technology, Mehsana 384002, India
| | - Ami Patel
- Department of Dairy & Food Microbiology, Mansinhbhai Institute of Dairy & Food Technology, Mehsana 384002, India
| | - Nihir Shah
- Department of Dairy & Food Microbiology, Mansinhbhai Institute of Dairy & Food Technology, Mehsana 384002, India
| |
Collapse
|
28
|
Zhao Y, Kumar M, Caspers MPM, Nierop Groot MN, van der Vossen JMBM, Abee T. Short communication: Growth of dairy isolates of Geobacillus thermoglucosidans in skim milk depends on lactose degradation products supplied by Anoxybacillus flavithermus as secondary species. J Dairy Sci 2017; 101:1013-1019. [PMID: 29153522 DOI: 10.3168/jds.2017-13372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023]
Abstract
Thermophilic bacilli such as Anoxybacillus and Geobacillus are important contaminants in dairy powder products. Remarkably, one of the common contaminants, Geobacillus thermoglucosidans, showed poor growth in skim milk, whereas significant growth of G. thermoglucosidans was observed in the presence of an Anoxybacillus flavithermus dairy isolate. In the present study, we investigated the underlying reason for this growth dependence of G. thermoglucosidans. Whole-genome sequences of 4 A. flavithermus strains and 4 G. thermoglucosidans strains were acquired, with special attention given to carbohydrate utilization clusters and proteolytic enzymes. Focusing on traits relevant for dairy environments, comparative genomic analysis revealed that all G. thermoglucosidans strains lacked the genes necessary for lactose transport and metabolism, showed poor growth in skim milk, and produced white colonies on X-gal plates, indicating the lack of β-galactosidase activity. The A. flavithermus isolates scored positive in these tests, consistent with the presence of a putative lactose utilization gene cluster. All tested isolates from both species showed proteolytic activity on milk plate count agar plates. Adding glucose or galactose to liquid skim milk supported growth of G. thermoglucosidans isolates, in line with the presence of the respective monosaccharide utilization gene clusters in the genomes. Analysis by HPLC of A. flavithermus TNO-09.006 culture filtrate indicated that the previously described growth dependence of G. thermoglucosidans in skim milk was based on the supply of glucose and galactose by A. flavithermus TNO-09.006.
Collapse
Affiliation(s)
- Y Zhao
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands; Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands
| | - M Kumar
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M P M Caspers
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M N Nierop Groot
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Wageningen Food and Biobased Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | | | - T Abee
- Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands.
| |
Collapse
|
29
|
Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir. Journal of Food Science and Technology 2017; 55:331-340. [PMID: 29358826 DOI: 10.1007/s13197-017-2943-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/30/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Kefiran is a functional exopolysaccharide produced by Lactobacillus kefiranofaciens originated from kefir, traditional fermented milk in the Caucasian Mountains, Russia. Kefiran is attractive as thickeners, stabilizers, emulsifiers, gelling agents and also has antimicrobial and antitumor activity. However, the production costs of kefiran are still high mainly due to high cost of carbon and nitrogen sources. This study aimed to produce kefiran and its co-product, lactic acid, from low-cost industrial byproducts. Among the sources tested, whey lactose (at 2% sugar concentration) and spent yeast cells hydrolysate (at 6 g-nitrogen/L) gave the highest kefiran of 480 ± 21 mg/L along with lactic acid of 20.1 ± 0.2 g/L. The combination of these two sources and initial pH were optimized through Response Surface Methodology. With the optimized medium, L. kefiranofaciens produced more kefiran and lactic acid up to 635 ± 7 mg/L and 32.9 ± 0.7 g/L, respectively. When the pH was controlled to alleviate the inhibition from acidic pH, L. kefiranofaciens could consume all sugars and produced kefiran and lactic acid up to 1693 ± 29 mg/L and 87.49 ± 0.23 g/L, respectively. Moreover, the fed-batch fermentation with intermittent adding of whey lactose improved kefiran and lactic acid productions up to 2514 ± 93 mg/L and 135 ± 1.75 g/L, respectively. These results indicate the promising approach to economically produce kefiran and lactic acid from low-cost nutrient sources.
Collapse
|
30
|
Gouveia AR, Freitas EB, Galinha CF, Carvalho G, Duque AF, Reis MA. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population. N Biotechnol 2017; 37:108-116. [DOI: 10.1016/j.nbt.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/01/2016] [Accepted: 07/11/2016] [Indexed: 01/16/2023]
|
31
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
32
|
He J, Kim D, Zhou X, Ahn SJ, Burne RA, Richards VP, Koo H. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Front Microbiol 2017. [PMID: 28642749 PMCID: PMC5462986 DOI: 10.3389/fmicb.2017.01036] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, ClemsonSC, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| |
Collapse
|
33
|
Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum. Food Microbiol 2016; 58:79-86. [PMID: 27217362 DOI: 10.1016/j.fm.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity.
Collapse
|
34
|
Li D, Li J, Zhao F, Wang G, Qin Q, Hao Y. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chem 2016; 197:367-72. [DOI: 10.1016/j.foodchem.2015.10.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/29/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
|
35
|
Afzal M, Shafeeq S, Manzoor I, Kuipers OP. GalR Acts as a Transcriptional Activator of galKT in the Presence of Galactose in Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2015; 25:363-71. [PMID: 26544195 DOI: 10.1159/000439429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We explored the regulatory mechanism of Leloir pathway genes in Streptococcus pneumoniae D39. Here, we demonstrate that the expression of galKT is galactose dependent. By microarray analysis and quantitative RT-PCR, we further show the role of the transcriptional regulator GalR, present upstream of galKT, as a transcriptional activator of galKT in the presence of galactose. Moreover, we predict a 19-bp regulatory site (5'-GATAGTTTAGTAAAATTTT-3') for the transcriptional regulator GalR in the promoter region of galK, which is also highly conserved in other streptococci. Growth comparison of D39 ΔgalK with the D39 wild type grown in the presence of galactose shows that galK is required for the proper growth of S. pneumoniae on galactose.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Herrero OM, Alvarez HM. Whey as a renewable source for lipid production byRhodococcusstrains: Physiology and genomics of lactose and galactose utilization. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- O. Marisa Herrero
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia; San Juan Bosco, Comodoro Rivadavia Chubut Argentina
- Oil m&s; Comodoro Rivadavia Chubut Argentina
| | - Héctor M. Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia; San Juan Bosco, Comodoro Rivadavia Chubut Argentina
| |
Collapse
|
37
|
Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 2015; 203:109-21. [PMID: 25817019 DOI: 10.1016/j.ijfoodmicro.2015.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/22/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.
Collapse
|
38
|
del Rio B, Ladero V, Redruello B, Linares DM, Fernández M, Martín MC, Alvarez MA. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiol 2014; 48:163-70. [PMID: 25791004 DOI: 10.1016/j.fm.2014.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/21/2014] [Accepted: 11/08/2014] [Indexed: 11/16/2022]
Abstract
Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.
Collapse
Affiliation(s)
- Beatriz del Rio
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Begoña Redruello
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Daniel M Linares
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Maria Fernández
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Maria Cruz Martín
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| | - Miguel A Alvarez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.
| |
Collapse
|
39
|
Liu K, Zeng X, Qiao L, Li X, Yang Y, Dai C, Hou A, Xu D. The sensitivity and significance analysis of parameters in the model of pH regulation on lactic acid production by Lactobacillus bulgaricus. BMC Bioinformatics 2014; 15 Suppl 13:S5. [PMID: 25434877 PMCID: PMC4248659 DOI: 10.1186/1471-2105-15-s13-s5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. Results A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. Conclusions The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed.
Collapse
|
40
|
LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae. Appl Environ Microbiol 2014; 80:5349-58. [PMID: 24951784 DOI: 10.1128/aem.01370-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of the transcriptome of Streptococcus pneumoniae strain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including the lac gene cluster, which is organized into two operons, i.e., lac operon I (lacABCD) and lac operon II (lacTFEG). Deletion of the DeoR family transcriptional regulator lacR that is present downstream of the lac gene cluster revealed elevated expression of lac operon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor of lac operon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion of lacR did not affect the expression of lac operon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZ and PlacT-lacZ in the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation of lac operon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator of lac operon II in the presence of lactose and CcpA-independent regulation of the lac gene cluster in S. pneumoniae.
Collapse
|
41
|
El Kafsi H, Binesse J, Loux V, Buratti J, Boudebbouze S, Dervyn R, Kennedy S, Galleron N, Quinquis B, Batto JM, Moumen B, Maguin E, van de Guchte M. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics 2014; 15:407. [PMID: 24884896 PMCID: PMC4082628 DOI: 10.1186/1471-2164-15-407] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. Results Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. Conclusions The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-407) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Richards VP, Choi SC, Pavinski Bitar PD, Gurjar AA, Stanhope MJ. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment. BMC Genomics 2013; 14:920. [PMID: 24369756 PMCID: PMC3890567 DOI: 10.1186/1471-2164-14-920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine, glycerol and glucose, and possibly aminoglycoside antibiotic resistance. Conclusion We detected several genetic factors likely important in S. agalactiae’s adaptation to the bovine environment, in particular lactose metabolism. Of concern is the up regulation of a putative antibiotic resistance gene (GCN5-related N-acetyltransferase) that might reflect an adaptation to the use of aminoglycoside antibiotics within this environment.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
A β-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: Cloning and expression in E. coli. World J Microbiol Biotechnol 2013; 26:1281-9. [PMID: 21243086 DOI: 10.1007/s11274-009-0299-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Apart from Oenococcus oeni, which is regarded as the most promising species for MLF, glycosidic activities have also been observed in wine related members of the genera Lactobacillus and Pediococcus. Nevertheless, information on the involved enzymes including their potential use in winemaking is limited. In this study we report that β-glucosidases with similar protein sequences can be identified in the genomes of Lactobacillus brevis, O. oeni and Leuconostoc mesenteroides. TTG serves as start codon for the glucosidase gene of O. oeni. The β-glucosidase of O. oeni ATCC BAA-1163 was expressed in E. coli and partially characterized. The enzyme displayed characteristics similar to β-glucosidases isolated from L. brevis and L. mesenteroides. A pH optimum between 5.0 and 5.5, and a K(m) of 0.17 mmol L(-1 )pNP-β-D-glucopyranoside were determined. A glycosyltransferase activity was observed in the presence of ethanol. The enzyme from O. oeni was capable to hydrolyze glycosides extracted from Muskat wine. This study also contains a report on glycosidase activities of several LAB species including Oenococcus kitaharae.
Collapse
|
44
|
Jung WS, Singh RK, Lee JK, Pan CH. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates. PLoS One 2013; 8:e72902. [PMID: 24015281 PMCID: PMC3755991 DOI: 10.1371/journal.pone.0072902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022] Open
Abstract
D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Functional Food Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Korea
| | - Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Cheol-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Korea
| |
Collapse
|
45
|
Zeng L, Xue P, Stanhope MJ, Burne RA. A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans. Mol Oral Microbiol 2013; 28:292-301. [PMID: 23421335 DOI: 10.1111/omi.12025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 12/01/2022]
Abstract
Three genes predicted to encode the A, B and C domains of a sugar : phosphotransferase system (PTS) permease specific for galactose\(EII(Gal) ) were identified in the genomes of 35 of 57 recently sequenced isolates of Streptococcus mutans, the primary etiological agent of human dental caries. Mutants defective in the EII(Gal) complex were constructed in six of the isolates and showed markedly reduced growth rates on galactose-based medium relative to the parental strains. An EII(Gal) -deficient strain constructed using the invasive serotype f strain OMZ175 (OMZ/IIGal) expressed significantly lower PTS activity when galactose was present as the substrate. Galactose was shown to be an effective inducer of catabolite repression in OMZ175, but not in the EII(Gal) -deficient strain. In a mixed-species competition assay with galactose as the sole carbohydrate source, OMZ/IIGal was less effective than the parental strain at competing with the oral commensal bacterium Streptococcus gordonii, which has a high-affinity galactose transporter. Hence, a significant proportion of S. mutans strains encode a galactose PTS permease that could enhance the ability of these isolates to compete more effectively with commensal streptococci for galactose in salivary constituents and the diet.
Collapse
Affiliation(s)
- L Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
46
|
Martinussen J, Solem C, Holm AK, Jensen PR. Engineering strategies aimed at control of acidification rate of lactic acid bacteria. Curr Opin Biotechnol 2012; 24:124-9. [PMID: 23266099 DOI: 10.1016/j.copbio.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid, alternative end products--ethanol, acetic acid and formic acid--are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main glycolytic flux remains unanswered.
Collapse
Affiliation(s)
- Jan Martinussen
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, 2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
47
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
48
|
Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii. Appl Environ Microbiol 2012; 78:5597-605. [PMID: 22660715 DOI: 10.1128/aem.01393-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EII(Lac) transports lactose and galactose, whereas EII(Gal) transports galactose. The expression of the gene for EII(Gal) was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EII(Lac), but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms.
Collapse
|
49
|
A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol 2012; 78:5612-21. [PMID: 22660716 DOI: 10.1128/aem.00455-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Lactococcus lactis laboratory strain MG1363 has been described to be unable to utilize lactose. However, in a rich medium supplemented with lactose as the sole carbon source, it starts to grow after prolonged incubation periods. Transcriptome analyses showed that L. lactis MG1363 Lac(+) cells expressed celB, encoding a putative cellobiose-specific phosphotransferase system (PTS) IIC component, which is normally silent in MG1363 Lac(-) cells. Nucleotide sequence analysis of the cel cluster of a Lac(+) isolate revealed a change from one of the guanines to adenine in the promoter region. We showed here that one particular mutation, taking place at increased frequency, accounts for the lactose-utilizing phenotype occurring in MG1363 cultures. The G-to-A transition creates a -10 element at an optimal distance from the -35 element. Thus, a fully active promoter is created, allowing transcription of the otherwise cryptic cluster. Nuclear magnetic resonance (NMR) spectroscopy results show that MG1363 Lac(+) uses a novel pathway of lactose utilization.
Collapse
|
50
|
CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans. J Bacteriol 2012; 194:3824-32. [PMID: 22609925 DOI: 10.1128/jb.00156-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus oligofermentans is an oral commensal that inhibits the growth of the caries pathogen Streptococcus mutans by producing copious amounts of H(2)O(2) and that grows faster than S. mutans on galactose. In this study, we identified a novel eight-gene galactose (gal) operon in S. oligofermentans that was comprised of lacABCD, lacX, and three genes encoding a galactose-specific transporter. Disruption of lacA caused more growth reduction on galactose than mutation of galK, a gene in the Leloir pathway, indicating that the principal role of this operon is in galactose metabolism. Diauxic growth was observed in cultures containing glucose and galactose, and a luciferase reporter fusion to the putative gal promoter demonstrated 12-fold repression of the operon expression by glucose but was induced by galactose, suggesting a carbon catabolite repression (CCR) control in galactose utilization. Interestingly, none of the single-gene mutations in the well-known CCR regulators ccpA and manL affected diauxic growth, although the operon expression was upregulated in these mutants in glucose. A double mutation of ccpA and manL eliminated glucose repression of galactose utilization, suggesting that these genes have parallel functions in regulating gal operon expression and mediating CCR. Electrophoretic mobility shift assays demonstrated binding of CcpA to the putative catabolite response element motif in the promoter regions of the gal operon and manL, suggesting that CcpA regulates CCR through direct regulation of the transcription of the gal operon and manL. This provides the first example of oral streptococci using two parallel CcpA-dependent CCR pathways in controlling carbohydrate metabolism.
Collapse
|