1
|
Rao TS, Feser R. Biofilm formation by sulphate-reducing bacteria on different metals and their prospective role in titanium corrosion. ENVIRONMENTAL TECHNOLOGY 2024; 45:2575-2588. [PMID: 36756936 DOI: 10.1080/09593330.2023.2178976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
This study describes the biofilm formation by sulphate-reducing bacteria (SRB) on different materials, which has implications for the biomedical, pharmaceutical, food and chemical process industries. SRB was chosen as a model organism being an anaerobic bacterium. Biofilm formation on different materials and corrosion of titanium by SRB were monitored with time using confocal laser scanning microscopy and fluorescent FISH probes were used to authenticate the SRB strain. The thickness of the mono-culture SRB biofilm has ranged from 4 to 24 µm during thed 12-84 hr; however, the maximum biofilm thickness (24 µm) was recorded after 60 hr of growth. Planktonic growth of the SRB strain showed a log phase up to 48 hr and the sulphide production ranged from 2 to 14 mg l-1. For a comparative account, the SRB biofilm formation on copper was chosen as a positive control. Finally, the putative role of extracellular electron transfer by SRB in the biocorrosion process and the plausible mechanism of pitting corrosion of titanium is described in detail.
Collapse
Affiliation(s)
| | - Ralf Feser
- Fachhochschule Südwestfalen, Labor für Korrosionsschutztechnik, University of Applied Sciences Europe, Iserlohn, Germany
| |
Collapse
|
2
|
Zhang Y, Young P, Traini D, Li M, Ong HX, Cheng S. Challenges and current advances in in vitro biofilm characterization. Biotechnol J 2023; 18:e2300074. [PMID: 37477959 DOI: 10.1002/biot.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Biofilms are structured communities of bacterial cells encased in a self-produced polymeric matrix, which develop over time and exhibit temporal responses to stimuli from internal biological processes or external environmental changes. They can be detrimental, threatening public health and causing economic loss, while they also play beneficial roles in ecosystem health, biotechnology processes, and industrial settings. Biofilms express extreme heterogeneity in their physical properties and structural composition, resulting in critical challenges in understanding them comprehensively. The lack of detailed knowledge of biofilms and their phenotypes has deterred significant progress in developing strategies to control their negative impacts and take advantage of their beneficial applications. A range of in vitro models and characterization tools have been developed and used to study biofilm growth and, specifically, to investigate the impact of environmental and growth factors on their development. This review article discusses the existing knowledge of biofilm properties and explains how external factors, such as flow condition, surface, interface, and host factor, may impact biofilm growth. The limitations of current tools, techniques, and in vitro models that are currently used for biofilms are also presented.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Herrera BS, Henz SL, Dua S, Martin L, Teles RP, Patel M, Teles FRF. Pursuing new periodontal pathogens with an improved RNA-oligonucleotide quantification technique (ROQT). Arch Oral Biol 2023; 152:105721. [PMID: 37196563 DOI: 10.1016/j.archoralbio.2023.105721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The aim of this study was to optimize the sensitivity, specificity and cost-effectiveness of the RNA-Oligonucleotide Quantification Technique (ROQT) in order to identify periodontal pathogens that remain unrecognized or uncultured in the oral microbiome. DESIGN Total nucleic acids (TNA) were extracted from subgingival biofilm samples using an automated process. RNA, DNA and Locked Nucleic Acid (LNA) digoxigenin-labeled oligonucleotide probes targeting 5 cultivated/named species and 16 uncultivated or unnamed bacterial taxa were synthesized. Probe specificity was determined by targeting 96 oral bacterial species; sensitivity was assessed using serial dilutions of reference bacterial strains. Different stringency temperatures were compared and new standards were tested. The tested conditions were evaluated analyzing samples from periodontally healthy individuals, and patients with moderate or severe periodontitis. RESULTS The automated extraction method at 63⁰C along with LNA-oligunucleotides probes, and use of reverse RNA sequences for standards yielded stronger signals without cross-reactions. In the pilot clinical study, the most commonly detected uncultivated/unrecognized species were Selenomonas sp. HMT 134, Prevotella sp. HMT 306, Desulfobulbus sp. HMT 041, Synergistetes sp. HMT 360 and Bacteroidetes HMT 274. In the cultivated segment of the microbiota, the most abundant taxa were T. forsythia HMT 613 and Fretibacterium fastidiosum (formerly Synergistetes) HMT 363. CONCLUSIONS In general, samples from severe patients had the greatest levels of organisms. Classic (T. forsythia, P. gingivalis) and newly proposed (F. alocis and Desulfobulbus sp. HMT 041) pathogens were present in greater amounts in samples from severe periodontitis sites, followed by moderate periodontitis sites.
Collapse
Affiliation(s)
- Bruno S Herrera
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra L Henz
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Shawn Dua
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lynn Martin
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Ricardo P Teles
- Department of Periodontics, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Michele Patel
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.
| | - Flavia R F Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Lau WLS, Teng ST, Lim HC, Hii KS, Leong SCY, Leaw CP, Lim PT. Molecular Detection of the Harmful Raphidophyte Chattonella subsalsa Biecheler by Whole-Cell Fluorescence in-situ Hybridisation Assay. Trop Life Sci Res 2023; 34:99-120. [PMID: 37065805 PMCID: PMC10093768 DOI: 10.21315/tlsr2023.34.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/11/2022] [Indexed: 04/18/2023] Open
Abstract
Species of the genus Chattonella (Raphidophyceae) are a group of marine protists that are commonly found in coastal waters. Some are known as harmful microalgae that form noxious blooms and cause massive fish mortality in finfish aquaculture. In Malaysia, blooms of Chattonella have been recorded since the 1980s in the Johor Strait. In this study, two strains of Chattonella were established from the strait, and morphological examination revealed characteristics resembling Chattonella subsalsa. The molecular characterization further confirmed the species' identity as C. subsalsa. To precisely detect the cells of C. subsalsa in the environment, a whole-cell fluorescence in-situ hybridisation (FISH) assay was developed. The species-specific oligonucleotide probes were designed in silico based on the nucleotide sequences of the large subunit (LSU) and internal transcribed spacer 2 (ITS2) of the ribosomal DNA (rDNA). The best candidate signature regions in the LSU-rRNA and ITS2-rDNA were selected based on hybridisation efficiency and probe parameters. The probes were synthesised as biotinylated probes and tested by tyramide signal amplification with FISH (FISH-TSA). The results showed the specificity of the probes toward the target cells. FISH-TSA has been proven to be a potential tool in the detection of harmful algae in the environment and could be applied to the harmful algal monitoring program.
Collapse
Affiliation(s)
- Winnie Lik Sing Lau
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Sandric Chee Yew Leong
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119227
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
- Corresponding author: ,
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
- Corresponding author: ,
| |
Collapse
|
5
|
Li H, Hsieh K, Wong PK, Mach KE, Liao JC, Wang TH. Single-cell pathogen diagnostics for combating antibiotic resistance. NATURE REVIEWS. METHODS PRIMERS 2023; 3:6. [PMID: 39917628 PMCID: PMC11800871 DOI: 10.1038/s43586-022-00190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/09/2025]
Abstract
Bacterial infections and antimicrobial resistance are a major cause for morbidity and mortality worldwide. Antimicrobial resistance often arises from antimicrobial misuse, where physicians empirically treat suspected bacterial infections with broad-spectrum antibiotics until standard culture-based diagnostic tests can be completed. There has been a tremendous effort to develop rapid diagnostics in support of the transition from empirical treatment of bacterial infections towards a more precise and personalized approach. Single-cell pathogen diagnostics hold particular promise, enabling unprecedented quantitative precision and rapid turnaround times. This Primer provides a guide for assessing, designing, implementing and applying single-cell pathogen diagnostics. First, single-cell pathogen diagnostic platforms are introduced based on three essential capabilities: cell isolation, detection assay and output measurement. Representative results, common analysis methods and key applications are highlighted, with an emphasis on initial screening of bacterial infection, bacterial species identification and antimicrobial susceptibility testing. Finally, the limitations of existing platforms are discussed, with perspectives offered and an outlook towards clinical deployment. This Primer hopes to inspire and propel new platforms that can realize the vision of precise and personalized bacterial infection treatments in the near future.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Present address: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kathleen E. Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Fernández-Fernández R, Olivenza DR, Sánchez-Romero MA. Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus 2022; 10:eESP00182021. [PMID: 35148202 PMCID: PMC10729938 DOI: 10.1128/ecosalplus.esp-0018-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
Collapse
Affiliation(s)
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
7
|
Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Res Rev 2022; 82:101744. [PMID: 36202312 DOI: 10.1016/j.arr.2022.101744] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
Collapse
|
8
|
Application of Nanodiamonds in Modelled Bioremediation of Phenol Pollution in River Sediments. Processes (Basel) 2022. [DOI: 10.3390/pr10030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pollution of aquatic ecosystems is a big problem that has its impact on river sediments. In recent decades, an effective solution to this problem has been the application of bioremediation technologies. Nanoremediation is an innovative part of these technologies. We still know little about the efficiency of nanoparticles, especially nanodiamonds, in modelled conditions. The aim of the present study is to investigate the effect of nanodiamonds on the key parameters of modelled bioremediation of river sediments that are polluted with phenol, as well their effect on the structures and functions of microbial communities. An important indicative mechanism that was used is the application of fluorescent in situ hybridization for sediment microbial communities. The results of this study revealed the positive role of nanodiamonds that is associated with their intoxication with high concentrations of phenol. Readaptation was also found, in which the xenobiotic biodegradation potential evolved by increasing the relative proportions of non-culturable bacteria, namely Acinetobacter (at the 144th hour) and Pseudomonas (at the 214th hour). The results can help to find an effective solution to the question of how information from such precise molecular methods and the application of nanodiamonds can be translated into the accessible language of management and bioremediation technologies.
Collapse
|
9
|
Cheng Q, Parvin B. Rapid identification of a subset of foodborne bacteria in live-cell assays. Appl Microbiol Biotechnol 2020; 104:10571-10584. [PMID: 33185701 DOI: 10.1007/s00253-020-10970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/06/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
The detection and identification of microbial pathogens in meat and fresh produce play an essential role in food safety for reducing foodborne illnesses every year. A new approach based on targeting a specific sequence of the 16S rRNA region for each bacterium is proposed and validated. The probe complex consists of a C60, a conjugated RNA detector which targets a specific 16S rRNA sequence, and a complementary fluorescent reporter. The RNA detectors were designed by integrating NIH nucleotide and Vienna RNA Webservice databases, and their specificities were validated by the RDP database. Probe complexes were synthesized for identifying E. coli K12, E. coli O157: H7, S. enterica, Y. enterocolitica, C. perfringens, and L. monocytogenes. First, under controlled conditions of known bacterial mixtures, the efficiency and crosstalk for identifying the foodborne bacteria were quantified to be above 94% and below 5%, respectively. Second, experiments were designed by inoculating meat products by known numbers of bacteria and measuring the limit of detection. In one experiment, 225 g of autoclaved ground chicken was inoculated with 9 E. coli O157:H7, where 6.8 ± 1.2 bacteria with 95% confidence interval were recovered. Third, by positionally printing probe complexes in microwells, specific microorganisms were identified with only one fluorophore. The proposed protocol is a cell-based system, can identify live bacteria in 15 min, requires no amplification, and has the potential to open new surveillance opportunities.Key points• The identification of foodborne bacteria is enabled in live-cell assays.• The limit of detection for 100 g of fresh chicken breast inoculated with 4 bacteria is 2.7 ± 1.4 with 95% confidence interval.• The identification of five bacteria in a coded microwell chip is enabled with only one fluorophore.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N. Virginia St., NV, 89557, Reno, USA.,Department of Cell and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Bahram Parvin
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N. Virginia St., NV, 89557, Reno, USA. .,Department of Cell and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
10
|
Abstract
The study of bacterial communities associated with extreme ecosystems is one of the most important tasks in modern microbial ecology. Despite a large number of studies being performed, the ecosystems that have not been sufficiently explored from the microbiological point of view still exist. Such research is needed for improving the understanding of the limits and mechanisms of bacterial survival under extreme conditions, and for revealing previously undescribed species and their role in global biospheric processes and their functional specifics. The results of the complex microbiological characteristics of permafrost and ice—collected on the Severniy Island in the northern part of the Novaya Zemlya archipelago—which have not previously been described from microbiological point of view, are presented in this article. The analysis included both culture-independent and culture-dependent methods, in particular, the spectra of metabolic activity range analysis in vitro under different temperature, pH and salinity conditions. High values for the total number of prokaryotes in situ (1.9 × 108–3.5 × 108 cells/g), a significant part of which was able to return to a metabolically active state after thawing, and moderate numbers of culturable bacteria (3.3 × 106–7.8 × 107 CFU/g) were revealed. Representatives of Proteobacteria, Actinobacteria, and Bacteroidetes were dominant in situ; Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes were the most abundant phyla in vitro. Physiological assays revealed the mesophilic and neutrophilic optima of temperature and pH of culturing conditions, respectively, and wide temperature and pH ranges of culturable communities’ reproduction activity. Isolated strains were characterized by moderate halotolerant properties and antibiotic resistance, including multiple antibiotic resistance. It was found that almost all cultured bacterial diversity revealed (not just a few resistant species) had extremotolerant properties regarding a number of stress factors. This indicates the high adaptive potential of the studied microbial communities and their high sustainability and capability to retain functional activity under changing environmental (including climatic) conditions in wide ranges.
Collapse
|
11
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
12
|
Vuillemin A, Ariztegui D, Horn F, Kallmeyer J, Orsi WD. Microbial community composition along a 50 000-year lacustrine sediment sequence. FEMS Microbiol Ecol 2019; 94:4880442. [PMID: 29471361 PMCID: PMC5905624 DOI: 10.1093/femsec/fiy029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/19/2018] [Indexed: 02/01/2023] Open
Abstract
For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- Department of Earth & Environmental Science, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.,Section of Earth & Environmental Sciences, University of Geneva, rue des Maraichers 13, 1205 Geneva, Switzerland.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Daniel Ariztegui
- Section of Earth & Environmental Sciences, University of Geneva, rue des Maraichers 13, 1205 Geneva, Switzerland
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - William D Orsi
- Department of Earth & Environmental Science, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.,Geobio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | | |
Collapse
|
13
|
Sengar A, Aziz A, Farooqi IH, Basheer F. Development of denitrifying phosphate accumulating and anammox micro-organisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage. BIORESOURCE TECHNOLOGY 2018; 267:149-157. [PMID: 30014993 DOI: 10.1016/j.biortech.2018.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Low strength domestic sewage was treated in an Anaerobic Hybrid Reactor. The first phase was focused on the enhancement of denitrifying phosphate accumulating organisms (DPAOs) for the concurrent removal of nitrogen and phosphate. 16S rRNA gene confirmed the presence of Flavobacterium spp. and Pseudomonasalcaligenes spp. which are dominant DPAOs. The second phase was the anaerobic ammonium oxidation (anammox) enrichment phase, and it exhibited much higher chemical oxygen demand (87%) and nitrogen removal (90%) as compared to the first phase. However, it had failed to remove the phosphate from the system. In case of anammox, the dominant specie detected was Candidatus Brocadia, along with minor counts of Candidatus Jettenia and Anammoxoglobus Propionicus. Apart from that, ammonia oxidizing bacteria (Nitrosomonas europaea, Nitrosomonas nitrosa) and methanogens (Methanosaeta, Methanobacterium) were also detected in the system. This study showed the feasibility of anammox species over DPAOs in treating domestic sewage.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Aziz
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Izharul Haq Farooqi
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Farrukh Basheer
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
14
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 790] [Impact Index Per Article: 112.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
15
|
Li Q, Chai S, Li Y, Huang J, Luo Y, Xiao L, Liu Z. Biochemical Components Associated With Microbial Community Shift During the Pile-Fermentation of Primary Dark Tea. Front Microbiol 2018; 9:1509. [PMID: 30042750 PMCID: PMC6048958 DOI: 10.3389/fmicb.2018.01509] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022] Open
Abstract
Primary dark tea is used as raw material for compressed dark tea, such as Fu brick tea, Hei brick tea, Hua brick tea, and Qianliang tea. Pile-fermentation is the key process for the formation of the characteristic properties of primary dark tea, during which the microorganism plays an important role. In this study, the changes of major chemical compounds, enzyme activities, microbial diversity, and their correlations were explored during the pile-fermentation process. Our chemical and enzymatic analysis showed that the contents of the major compounds were decreased, while the activities of polyphenol oxidase, cellulase, and pectinase were increased during this process, except peroxidase activity that could not be generated from microbial communities in primary dark tea. The genera Cyberlindnera, Aspergillus, Uwebraunia, and Unclassified Pleosporales of fungus and Klebsiella, Lactobacillus of bacteria were predominant in the early stage of the process, but only Cyberlindnera and Klebsiella were still dominated in the late stage and maintained a relatively constant until the end of the process. The amino acid was identified as the important abiotic factor in shaping the microbial community structure of primary dark tea ecosystem. Network analysis revealed that the microbial taxa were grouped into five modules and seven keystone taxa were identified. Most of the dominant genera were mainly distributed into module III, which indicated that this module was important for the pile-fermentation process of primary dark tea. In addition, bidirectional orthogonal partial least squares (O2PLS) analysis revealed that the fungi made more contributions to the formation of the characteristic properties of primary dark tea than bacteria during the pile-fermentation process. Furthermore, 10 microbial genera including Cyberlindnera, Aspergillus, Eurotium, Uwebraunia, Debaryomyces, Lophiostoma, Peltaster, Klebsiella, Aurantimonas, and Methylobacterium were identified as core functional genera for the pile-fermentation of primary dark tea. This study provides useful information for improving our understanding on the formation mechanism of the characteristic properties of primary dark tea during the pile-fermentation process.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Shuo Chai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yongdi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Li Q, Huang J, Li Y, Zhang Y, Luo Y, Chen Y, Lin H, Wang K, Liu Z. Fungal community succession and major components change during manufacturing process of Fu brick tea. Sci Rep 2017; 7:6947. [PMID: 28761046 PMCID: PMC5537287 DOI: 10.1038/s41598-017-07098-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Fu brick tea is a unique post-fermented tea product which is fermented with microorganism during the manufacturing process. Metabolic analysis showed that most metabolites content were decreased during the manufacturing process of Fu brick tea, except GA (gallic acid). Illumina MiSeq sequencing of ITS gene amplicons was applied to analyze the fungal community succession. The genera Aspergillus, Cyberlindnera and Candida were predominant at the early stage of manufacturing process (from "primary dark tea" to "fermentation for 3 days"), but after the stage of "fermentation for 3 days" only Aspergillus was still dominated, and maintain a relatively constant until to the end of manufacturing process. The effects of metabolites on the structure of the fungal community were analyzed by redundancy analysis (RDA) and variation partitioning analysis (VPA). The results indicated that GCG (gallocatechin gallate), EGCG (epigallocatechin gallate) and GA as well as the interactions among them were the most probably ones to influence, or be influenced by the fungal communities during the fermentation process of Fu brick tea. This study revealed fungal succession, metabolite changes and their relationships, provided new insights into the mechanisms for manufacturing process of Fu brick tea.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Yongdi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Yiyang Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang, 3100058, P.R. China
| | - Yuan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Haiyan Lin
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China
| | - Zhonghua Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China. .,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China. .,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, P.R. China.
| |
Collapse
|
17
|
Santos RS, Lima CC, Carvalho D, Meireles F, Guimarães N, Azevedo NF. Response surface methodology to optimize peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) in Saccharomyces cerevisiae. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Jeuck A, Nitsche F, Wylezich C, Wirth O, Bergfeld T, Brutscher F, Hennemann M, Monir S, Scherwaß A, Troll N, Arndt H. A Comparison of Methods to Analyze Aquatic Heterotrophic Flagellates of Different Taxonomic Groups. Protist 2017; 168:375-391. [PMID: 28654859 DOI: 10.1016/j.protis.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 11/19/2022]
Abstract
Heterotrophic flagellates contribute significantly to the matter flux in aquatic and terrestrial ecosystems. Still today their quantification and taxonomic classification bear several problems in field studies, though these methodological problems seem to be increasingly ignored in current ecological studies. Here we describe and test different methods, the live-counting technique, different fixation techniques, cultivation methods like the liquid aliquot method (LAM), and a molecular single cell survey called aliquot PCR (aPCR). All these methods have been tested either using aquatic field samples or cultures of freshwater and marine taxa. Each of the described methods has its advantages and disadvantages, which have to be considered in every single case. With the live-counting technique a detection of living cells up to morphospecies level is possible. Fixation of cells and staining methods are advantageous due to the possible long-term storage and observation of samples. Cultivation methods (LAM) offer the possibility of subsequent molecular analyses, and aPCR tools might complete the deficiency of LAM in terms of the missing detection of non-cultivable flagellates. In summary, we propose a combination of several investigation techniques reducing the gap between the different methodological problems.
Collapse
Affiliation(s)
- Alexandra Jeuck
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Frank Nitsche
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Claudia Wylezich
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Olaf Wirth
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Tanja Bergfeld
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Fabienne Brutscher
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Melanie Hennemann
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Shahla Monir
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Anja Scherwaß
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Nicole Troll
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Hartmut Arndt
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
19
|
Selection and characterization of dimethylindole red DNA aptamers for the development of light-up fluorescent probes. Talanta 2017; 168:217-221. [PMID: 28391845 DOI: 10.1016/j.talanta.2017.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
To develop novel label-free light-up probes with improved performance characteristics and low background, we selected DNA aptamers for dimethylindole red (DIR) by a modified affinity chromatography based SELEX method. DIR is an anionic propylsulfonate substituted red-emitting dye derivative of thiazole orange and exhibited weak fluorescence in fluid solution and in the presence of dsDNA. After 14 rounds of selection, a shortened 42-mer DNA aptamer with sub-micromolar dissociation constant (Kd=0.65±0.17μM) was selected. The fluorescent intensity of DIR was dramatically enhanced in the presence of the specific aptamer. The aptamer gave a 140-fold fluorescence enhancement in a saturated concentration. The DIR-aptamer pair could be potentially used as novel light-up fluorescent probe to construct sensors for various applications.
Collapse
|
20
|
Abstract
There are a range of methodologies available to study the human microbiota, ranging from traditional approaches such as culturing through to state-of-the-art developments in next generation DNA sequencing technologies. The advent of molecular techniques in particular has opened up tremendous new avenues for research, and has galvanised interest in the study of our microbial inhabitants. Given the dazzling array of available options, however, it is important to understand the inherent advantages and limitations of each technique so that the best approach can be employed to address the particular research objective. In this chapter we cover some of the most widely used current techniques in human microbiota research and highlight the particular strengths and caveats associated with each approach.
Collapse
Affiliation(s)
- Alan W Walker
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
21
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
22
|
Manucharova NA, Trosheva EV, Kol’tsova EM, Demkina EV, Karaevskaya EV, Rivkina EM, Mardanov AV, El’-Registan GI. Characterization of the structure of the prokaryotic complex of Antarctic permafrost by molecular genetic techniques. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Awad M, Ouda O, El-Refy A, El-Feky FA, Mosa KA, Helmy M. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing. Adv Bioinformatics 2015; 2015:303605. [PMID: 26880910 PMCID: PMC4735980 DOI: 10.1155/2015/303605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Abstract
Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups) in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.
Collapse
Affiliation(s)
- Mohamed Awad
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Ouda
- Department of Information Technology, Faculty of Computer and Information Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Ali El-Refy
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Fawzy A. El-Feky
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Kareem A. Mosa
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Mohamed Helmy
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
24
|
Sarshar M, Shahrokhi N, Ranjbar R, Mammina C. Simultaneous Detection of Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus by Oligonucleotide Microarray. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.17795/ijep30187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Liu SP, Mao J, Liu YY, Meng XY, Ji ZW, Zhou ZL, Ai-lati A. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J Microbiol Biotechnol 2015; 31:1907-21. [DOI: 10.1007/s11274-015-1931-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/23/2015] [Indexed: 01/14/2023]
|
26
|
|
27
|
Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification. Appl Environ Microbiol 2014; 80:5124-33. [PMID: 24928876 DOI: 10.1128/aem.01685-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu).
Collapse
|
28
|
Sevellec M, Pavey SA, Boutin S, Filteau M, Derome N, Bernatchez L. Microbiome investigation in the ecological speciation context of lake whitefish (Coregonus clupeaformis
) using next-generation sequencing. J Evol Biol 2014; 27:1029-46. [DOI: 10.1111/jeb.12374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Affiliation(s)
- M. Sevellec
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. Boutin
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - M. Filteau
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - N. Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - L. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
29
|
Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BIOMED RESEARCH INTERNATIONAL 2014; 2014:306895. [PMID: 24839603 PMCID: PMC4009274 DOI: 10.1155/2014/306895] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/18/2022]
Abstract
A Streptomyces lusitanus DMZ-3 strain with potential to synthesize both insoluble and soluble melanins was detected. Melanins are quite distinguished based on their solubility for varied biotechnological applications. The present investigation reveals the enhanced production of insoluble and soluble melanins in tyrosine medium by a single culture. Streptomyces lusitanus DMZ-3 was characterized by 16S rRNA gene analysis. An enhanced production of 5.29 g/L insoluble melanin was achieved in a submerged bioprocess following response surface methodology. Combined interactive effect of temperature (50°C), pH (8.5), tyrosine (2.0 g/L), and beef extract (0.5 g/L) were found to be critical variables for enhanced production in central composite design analysis. An optimized indigenous slant culture system was an innovative approach for the successful production (264 mg/L) of pure soluble melanin from the droplets formed on the surface of the culture. Both insoluble and soluble melanins were confirmed and characterized by Chemical, reactions, UV, FTIR, and TLC analysis. First time, cytotoxic study of melanin using brine shrimps was reported. Maximum cytotoxic activity of soluble melanin was Lc50-0.40 µg/mL and insoluble melanin was Lc50-0.80 µg/mL.
Collapse
|
30
|
Panosyan H, Birkeland NK. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods. J Basic Microbiol 2014; 54:1240-50. [PMID: 24740751 DOI: 10.1002/jobm.201300999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/15/2014] [Indexed: 11/06/2022]
Abstract
The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively.
Collapse
Affiliation(s)
- Hovik Panosyan
- Department of Microbiology, Plant and Microbe Biotechnology, Yerevan State University, Yerevan, Armenia; Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
31
|
Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000 2014; 62:95-162. [PMID: 23574465 PMCID: PMC3912758 DOI: 10.1111/prd.12010] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Periodontal diseases are initiated by bacterial species living in polymicrobial biofilms at or below the gingival margin and progress largely as a result of the inflammation elicited by specific subgingival species. In the past few decades, efforts to understand the periodontal microbiota have led to an exponential increase in information about biofilms associated with periodontal health and disease. In fact, the oral microbiota is one of the best-characterized microbiomes that colonize the human body. Despite this increased knowledge, one has to ask if our fundamental concepts of the etiology and pathogenesis of periodontal diseases have really changed. In this article we will review how our comprehension of the structure and function of the subgingival microbiota has evolved over the years in search of lessons learned and unlearned in periodontal microbiology. More specifically, this review focuses on: (i) how the data obtained through molecular techniques have impacted our knowledge of the etiology of periodontal infections; (ii) the potential role of viruses in the etiopathogenesis of periodontal diseases; (iii) how concepts of microbial ecology have expanded our understanding of host-microbe interactions that might lead to periodontal diseases; (iv) the role of inflammation in the pathogenesis of periodontal diseases; and (v) the impact of these evolving concepts on therapeutic and preventive strategies to periodontal infections. We will conclude by reviewing how novel systems-biology approaches promise to unravel new details of the pathogenesis of periodontal diseases and hopefully lead to a better understanding of their mechanisms.
Collapse
|
32
|
França L, Lopéz-Lopéz A, Rosselló-Móra R, da Costa MS. Microbial diversity and dynamics of a groundwater and a still bottled natural mineral water. Environ Microbiol 2014; 17:577-93. [DOI: 10.1111/1462-2920.12430] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Luís França
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Arantxa Lopéz-Lopéz
- Marine Microbiology Group; IMEDEA (CSIC-UIB); Esporles Balearic Islands Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group; IMEDEA (CSIC-UIB); Esporles Balearic Islands Spain
| | - Milton S. da Costa
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
33
|
Koehler AV, Jex AR, Haydon SR, Stevens MA, Gasser RB. Giardia/giardiasis — A perspective on diagnostic and analytical tools. Biotechnol Adv 2014; 32:280-9. [DOI: 10.1016/j.biotechadv.2013.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022]
|
34
|
Chernov TI, Zhelezova AD, Manucharova NA, Zvyagintsev DG. Monitoring of the chitinolytic microbial complex of the phylloplane. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013060034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: leading the way in microbial ecology. J Anim Sci 2013; 91:331-41. [PMID: 23404990 DOI: 10.2527/jas.2012-5567] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.
Collapse
Affiliation(s)
- D O Krause
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | |
Collapse
|
36
|
Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional Chinese liquor. J Microbiol 2013; 51:430-8. [DOI: 10.1007/s12275-013-2640-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
|
37
|
Characterization of the cultivable microbial community in a spinach-processing plant using MALDI-TOF MS. Food Microbiol 2013; 34:406-11. [DOI: 10.1016/j.fm.2012.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
|
38
|
Bedrina B, Macián S, Solís I, Fernández-Lafuente R, Baldrich E, Rodríguez G. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials. BMC Microbiol 2013; 13:88. [PMID: 23601924 PMCID: PMC3637370 DOI: 10.1186/1471-2180-13-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/16/2013] [Indexed: 12/05/2022] Open
Abstract
Background Legionellosis is an uncommon form of pneumonia. After a clinical encounter, the necessary antibiotic treatment is available if the diagnosis is made early in the illness. Before the clinical encounter, early detection of the main pathogen involved, Legionella pneumophila, in hazardous environments is important in preventing infectious levels of this bacterium. In this study a qualitative test based on combined magnetic immunocapture and enzyme-immunoassay for the fast detection of Legionella pneumophila in water samples was compared with the standard method, in both comparative and collaborative trials. The test was based on the use of anti-Legionella pneumophila antibodies immobilized on magnetic microspheres. The final protocol included concentration by filtration, resuspension and immunomagnetic capture. The whole assay took less than 1 hour to complete. Results A comparative trial was performed against the standard culture method (ISO 11731) on both artificially and naturally contaminated water samples, for two matrices: chlorinated tap water and cooling tower water. Performance characteristics of the test used as screening with culture confirmation resulted in sensitivity, specificity, false positive, false negative, and efficiency of 96.6%, 100%, 0%, 3.4%, and 97.8%, respectively. The detection limit at the level under which the false negative rate increases to 50% (LOD50) was 93 colony forming units (CFU) in the volume examined for both tested matrices. The collaborative trial included twelve laboratories. Water samples spiked with certified reference materials were tested. In this study the coincidence level between the two methods was 95.8%. Conclusion Results demonstrate the applicability of this immunosensing technique to the rapid, simple, and efficient detection of Legionella pneumophila in water samples. This test is not based on microbial growth, so it could be used as a rapid screening technique for the detection of L. pneumophila in waters, maintaining the performance of conventional culture for isolation of the pathogen and related studies.
Collapse
Affiliation(s)
- Begoña Bedrina
- Biótica, Bioquímica Analítica, S.L, Science and Technology Park of Jaume I University, Campus Riu Sec - Espaitec 2, planta baja, E12071, Castellón de la Plana, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Zhao M, Xiao W, Ma Y, Sun T, Yuan W, Tang N, Zhang D, Wang Y, Li Y, Zhou H, Cui X. Structure and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library. World J Microbiol Biotechnol 2013; 29:1877-84. [DOI: 10.1007/s11274-013-1351-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/07/2013] [Indexed: 11/24/2022]
|
40
|
Kryazhevskikh NA, Demkina EV, Loiko NG, Baslerov RV, Kolganova TV, Soina VS, Manucharova NA, Gal’chenko VF, El’-Registan GI. Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Lukacheva EG, Chernov TI, Bykova EM, Vlasenko AN, Manucharova NA. Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils. BIOL BULL+ 2013. [DOI: 10.1134/s1062359012060076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Pitkänen T, Ryu H, Elk M, Hokajärvi AM, Siponen S, Vepsäläinen A, Räsänen P, Santo Domingo JW. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13611-20. [PMID: 24187936 DOI: 10.1021/es403489b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments.
Collapse
Affiliation(s)
- Tarja Pitkänen
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Cincinnati, Ohio 45268, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Satoh H, Oshima K, Suda W, Ranasinghe P, Li N, Gunawardana EGW, Hattori M, Mino T. Bacterial population dynamics in a laboratory activated sludge reactor monitored by pyrosequencing of 16S rRNA. Microbes Environ 2012; 28:65-70. [PMID: 23100021 PMCID: PMC4070689 DOI: 10.1264/jsme2.me12115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The microbial population in a laboratory activated sludge reactor was monitored for 245 d at 75 time points by pyrosequencing of 16S rRNA. Synthetic wastewater was used as the influent, and the reactor was operated under the same conditions throughout the experiment. The behaviors of different bacterial operational taxonomic units (OTUs) were observed. Multiple OTUs showed periodic propagation and recession. One of the OTUs showed sharp recession, which suggests that cells in the OTU were selectively killed. The behaviors of different phylogenetic lineages of Candidatus ‘Accumulibacter phosphatis’ were also visualized. It was clearly demonstrated that pyrosequencing with barcoded primers is a very effective tool to clarify the dynamics of the bacterial population in activated sludge.
Collapse
Affiliation(s)
- Hiroyasu Satoh
- Department of Socio-cultural and Environmental Studies, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Boutin S, Sevellec M, Pavey SA, Bernatchez L, Derome N. A fast, highly sensitive double-nested PCR-based method to screen fish immunobiomes. Mol Ecol Resour 2012; 12:1027-39. [PMID: 22805147 DOI: 10.1111/j.1755-0998.2012.03166.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient methods for constructing 16S tag amplicon libraries for pyrosequencing are needed for the rapid and thorough screening of infectious bacterial diversity from host tissue samples. Here we have developed a double-nested PCR methodology that generates 16S tag amplicon libraries from very small amounts of bacteria/host samples. This methodology was tested for 133 kidney samples from the lake whitefish Coregonus clupeaformis (Salmonidae) sampled in five different lake populations. The double-nested PCR efficiency was compared with two other PCR strategies: single primer pair amplification and simple nested PCR. The double-nested PCR was the only amplification strategy to provide highly specific amplification of bacterial DNA. The resulting 16S amplicon libraries were synthesized and pyrosequenced using 454 FLX technology to analyse the variation of pathogenic bacteria abundance. The proportion of the community sequenced was very high (Good's coverage estimator; mean = 95.4%). Furthermore, there were no significant differences of sequence coverage among samples. Finally, the occurrence of chimeric amplicons was very low. Therefore, the double-nested PCR approach provides a rapid, informative and cost-effective method for screening fish immunobiomes and most likely applicable to other low-density microbiomes as well.
Collapse
Affiliation(s)
- Sébastien Boutin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
45
|
Manucharova NA, Vlasenko AN, Men’ko EV, Zvyagintsev DG. Specificity of the chitinolytic microbial complex of soils incubated at different temperatures. Microbiology (Reading) 2011. [DOI: 10.1134/s002626171102010x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS. The bacterial biogeography of British soils. Environ Microbiol 2011; 13:1642-54. [PMID: 21507180 DOI: 10.1111/j.1462-2920.2011.02480.x] [Citation(s) in RCA: 417] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite recognition of the importance of soil bacteria to terrestrial ecosystem functioning there is little consensus on the factors regulating belowground biodiversity. Here we present a multi-scale spatial assessment of soil bacterial community profiles across Great Britain (> 1000 soil cores), and show the first landscape scale map of bacterial distributions across a nation. Bacterial diversity and community dissimilarities, assessed using terminal restriction fragment length polymorphism, were most strongly related to soil pH providing a large-scale confirmation of the role of pH in structuring bacterial taxa. However, while α diversity was positively related to pH, the converse was true for β diversity (between sample variance in α diversity). β diversity was found to be greatest in acidic soils, corresponding with greater environmental heterogeneity. Analyses of clone libraries revealed the pH effects were predominantly manifest at the level of broad bacterial taxonomic groups, with acidic soils being dominated by few taxa (notably the group 1 Acidobacteria and Alphaproteobacteria). We also noted significant correlations between bacterial communities and most other measured environmental variables (soil chemistry, aboveground features and climatic variables), together with significant spatial correlations at close distances. In particular, bacterial and plant communities were closely related signifying no strong evidence that soil bacteria are driven by different ecological processes to those governing higher organisms. We conclude that broad scale surveys are useful in identifying distinct soil biomes comprising reproducible communities of dominant taxa. Together these results provide a baseline ecological framework with which to pursue future research on both soil microbial function, and more explicit biome based assessments of the local ecological drivers of bacterial biodiversity.
Collapse
Affiliation(s)
- Robert I Griffiths
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Wang J, Shi M, Lu H, Wu D, Shao MF, Zhang T, Ekama GA, van Loosdrecht MCM, Chen GH. Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment. Appl Microbiol Biotechnol 2011; 90:2015-25. [PMID: 21494868 DOI: 10.1007/s00253-011-3217-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 11/25/2022]
Abstract
This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) process for saline sewage treatment. The investigation involved a lab-scale SANI® system treating synthetic saline sewage and a pilot-scale SANI® plant treating 10 m(3)/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for more than 80% of the chemical oxygen demand removal, and no methane-producing archaea were detected in both SRUSBs. Thermotogales-like bacteria were the dominant SRB in the pilot-scale SRUSB while Desulforhopalus-like bacteria were the major species in the lab-scale SRUSB.
Collapse
Affiliation(s)
- Jin Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li XR, Ma EB, Yan LZ, Meng H, Du XW, Zhang SW, Quan ZX. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int J Food Microbiol 2011; 146:31-7. [DOI: 10.1016/j.ijfoodmicro.2011.01.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/06/2010] [Accepted: 01/24/2011] [Indexed: 11/24/2022]
|
50
|
Petrovski S, Dyson ZA, Quill ES, McIlroy SJ, Tillett D, Seviour RJ. An examination of the mechanisms for stable foam formation in activated sludge systems. WATER RESEARCH 2011; 45:2146-2154. [PMID: 21239035 DOI: 10.1016/j.watres.2010.12.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Screening pure cultures of 65 mycolic acid producing bacteria (Mycolata) isolated mainly from activated sludge with a laboratory based foaming test revealed that not all foamed under the conditions used. However, for most, the data were generally consistent with the flotation theory as an explanation for foaming. Thus a stable foam required three components, air bubbles, surfactants and hydrophobic cells. With non-hydrophobic cells, an unstable foam was generated, and in the absence of surfactants, cells formed a greasy surface scum. Addition of surfactant converted a scumming population into one forming a stable foam. The ability to generate a foam depended on a threshold cell number, which varied between individual isolates and reduced markedly in the presence of surfactant. Consequently, the concept of a universal threshold applicable to all foaming Mycolata is not supported by these data. The role of surfactants in foaming is poorly understood, but evidence is presented for the first time that surfactin synthesised by Bacillus subtilis may be important.
Collapse
Affiliation(s)
- Steve Petrovski
- Biotechnology Research Centre, La Trobe University, PO Box 199, Bendigo, Victoria 3552, Australia.
| | | | | | | | | | | |
Collapse
|