1
|
Uzamurera AG, Zhao ZY, Wang PY, Wei YX, Mo F, Zhou R, Wang WL, Ullah F, Khan A, Xiong XB, Li MY, Wesly K, Wang WY, Tao HY, Xiong YC. Thickness effects of polyethylene and biodegradable film residuals on soil properties and dryland maize productivity. CHEMOSPHERE 2023; 329:138602. [PMID: 37028722 DOI: 10.1016/j.chemosphere.2023.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Plastic film residuals are increasingly remaining in cultivated lands. However, it is a critical issue how residual plastic type and thickness affect soil properties and crop yield. To address this issue, in situ landfill was conducted using thick polyethylene (PEt1), thin polyethylene (PEt2), thick biodegradable (BIOt1), thin biodegradable (BIOt2) residues, and CK (control) with no residues landfill in a semiarid maize field. The findings demonstrated that the impact of various treatments on soil characteristics and maize yield varied considerably. Soil water content decreased by 24.82% in PEt1 and 25.43% in PEt2, compared to BIOt1 and BIOt2, respectively. BIOt2 treatment increased soil bulk density by 1.31 g cm-3 and lowered soil porosity by 51.11%, respectively; it also elevated the silt/clay proportion by 49.42% relative to CK. In contrast, microaggregate composition in PEt2 was higher (43.02%). Moreover, BIOt2 lowered soil nitrate (NO3-) and ammonium (NH4+) content. Compared with other treatments, BIOt2 resulted in significantly higher soil total nitrogen (STN) and lower SOC/STN. Finally, BIOt2 exhibited the lowest water use efficiency (WUE) (20.57 kg ha-1 mm-1) and yield (6896 kg ha-1) among all the treatments. Therefore, BIO film residues exhibited detrimental impacts on soil quality and maize productivity compared to PE film ones. Considering film thickness, thin residual films more evidently influenced soil quality and maize productivity than thick film ones.
Collapse
Affiliation(s)
- Aimee Grace Uzamurera
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ze-Ying Zhao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Peng-Yang Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yong-Xian Wei
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Rui Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Wen-Li Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Aziz Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Bin Xiong
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Meng-Ying Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Kiprotich Wesly
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Wen-Ying Wang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, PR China
| | - Hong-Yan Tao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China.
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Chen X, Xie Y, Wang J, Shi Z, Zhang J, Wei H, Ma Y. Presence of different microplastics promotes greenhouse gas emissions and alters the microbial community composition of farmland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162967. [PMID: 36948309 DOI: 10.1016/j.scitotenv.2023.162967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Microplastics (MPs) are regarded as potential persistent organic pollutants owing to their small size and low degradability. However, the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil is yet unclear. Therefore, a series of microcosm experiments were set up using polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyester (PET) at concentrations of 0.25 %, 2 %, and 7 % (w/w). Each treatment had three replicates. This experiment was carried out to verify the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil. The results showed that the addition of MPs significantly promoted the emissions of the three main GHGs, including nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). Especially, PE may cause most GHG emissions which would contribute to climate warming when its pollution concentration increased. In addition, different doses and types of MPs could affect microbial community structure. These findings of this present study may provide a scientific and practical reference for the prevention and control of MPs pollution and risk assessment of global climate change caused by MPs.
Collapse
Affiliation(s)
- Xuan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yijie Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yibing Ma
- Guangdong-Hongkong-Macao Joint Laboratory of Collaborative Innovation for Environmental Quality, Macao Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Zhang H, Gong W, Xue Y, Zeng W, Wang H, Wang J, Tang X, Li G, Liang H. Municipal wastewater contains antibiotic treatment using O 2 transfer membrane based biofilm reactor: Interaction between regular pollutants metabolism and sulfamethoxazole degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163060. [PMID: 36966821 DOI: 10.1016/j.scitotenv.2023.163060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The antibiotic sulfamethoxazole (SMX) is frequently detected in wastewater treatment plant effluents and has attracted significant attention owing to its significant potential environmental effects. We present a novel O2 transfer membrane based biofilm reactor (O2TM-BR) to treat municipal wastewater to eliminate containing SMX. Furthermore, conducting metagenomics analyses, the interactions in biodegradation process between SMX and regular pollutants (NH4+-N and COD) were studied. Results suggest that O2TM-BR yields evident advantages in SMX degradation. Increasing SMX concentrations did not affect the efficiency of the system, and the effluent concentration remained consistent at approximately 17.0 μg/L. The interaction experiment showed that heterotrophic bacteria tend to consume easily degradable COD for metabolism, resulting in a delay (>36 h) in complete SMX degradation, which is 3-times longer than without COD. It is worth noting that the taxonomic and functional structure and composition in nitrogen metabolism were significantly shifted upon the SMX. NH4+-N removal remained unaffected by SMX in O2TM-BR, and the expression of K10944 and K10535 has no significant difference under the stress of SMX (P > 0.02). However, the K00376 and K02567 required in the nitrate reductase is inhibited by SMX (P < 0.01), which hinders the reduction of NO3--N and hence the accumulation of TN. This study provides a new method for SMX treatment and reveals the interaction between SMX and conventional pollutants in O2TM-BR as well as the microbial community function and assembly mechanism.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Ying Xue
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Weichen Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Zhang P, Yuan Y, Zhang J, Wen T, Wang H, Qu C, Tan W, Xi B, Hui K, Tang J. Specific response of soil properties to microplastics pollution: A review. ENVIRONMENTAL RESEARCH 2023; 232:116427. [PMID: 37327841 DOI: 10.1016/j.envres.2023.116427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The soil environment is a critical component of the global ecosystem and is essential for nutrient cycling and energy flow. Various physical, chemical, and biological processes occur in the soil and are affected by environmental factors. Soil is vulnerable to pollutants, especially emerging pollutants, such as microplastics (MPs). MPs pollution has become a significant environmental problem, and its harm to human health and the environment cannot be underestimated. However, most studies on MPs pollution have focused on marine ecosystems, estuaries, lakes, rivers, and other aquatic environments, whereas few considered the effects and hazards of MPs pollution of the soil, especially the responses of different environmental factors to MPs. In addition, when many MPs pollutants produced by agricultural activities (mulching film, organic fertilizer) and atmospheric sedimentation enter the soil environment, it will cause changes in soil pH, organic matter composition, microbial community, enzyme activity, animals and plants and other environmental factors. However, due to the complex and changeable soil environment, the heterogeneity is very strong. The changes of environmental factors may react on the migration, transformation and degradation of MPs, and there are synergistic or antagonistic interactions among different factors. Therefore, it is very important to analyze the specific effects of MPs pollution on soil properties to clarify the environmental behavior and effects of MPs. This review focuses on the source, formation, and influencing factors of MPs pollution in soil and summarizes its effect and influence degree on various soil environmental factors. The results provide research suggestions and theoretical support for preventing or controlling MPs soil pollution.
Collapse
Affiliation(s)
- Panting Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Taoyi Wen
- School of Civil Engineering, Chang'an University, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, Gin KYH. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. WATER RESEARCH 2022; 217:118418. [PMID: 35417822 DOI: 10.1016/j.watres.2022.118418] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
6
|
Zhao G, He H, Wang H, Liang Y, Guo C, Shao H, Jiang Y, Wang M. Variations in Marine Bacterial and Archaeal Communities during an Ulva prolifera Green Tide in Coastal Qingdao Areas. Microorganisms 2022; 10:microorganisms10061204. [PMID: 35744722 PMCID: PMC9228619 DOI: 10.3390/microorganisms10061204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Green tides caused by Ulva prolifera occur annually in the Yellow Sea, potentially influencing the marine microorganisms. Here, we focused on the variations in marine bacterial and archaeal communities during an U. prolifera green tide in coastal Qingdao areas with Illumina high-throughput sequencing analysis. Our results revealed that the diversity and structure of bacterial and archaeal communities, as well as the organization and structure of microbial co-occurrence networks, varied during the green tide. The decline phase may be favorable to the bacterial and archaeal diversity and richness. The bacterial community, as well as the archaeal community, showed clear variations between the outbreak and decline phases. A simpler and less connected microbial co-occurrence network was observed during the outbreak phase compared with the decline phase. Flavobacteriales and Rhodobacterales separately dominated the bacterial community during the outbreak and decline phase, and Marine Group II (MGII) dominated the archaeal community during the green tide. Combined with microbial co-occurrence network analysis, Flavobacteriales, Rhodobacterales and MGII may be important organisms during the green tide. Temperature, chlorophyll a content and salinity may have an important impact on the variations in bacterial and archaeal communities during the green tide.
Collapse
Affiliation(s)
- Guihua Zhao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- Correspondence: (H.H.); (M.W.)
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- OUC-UMT Joint Academic Centre for Marine Studies, Qingdao 266003, China
- Correspondence: (H.H.); (M.W.)
| |
Collapse
|
7
|
A multi-step nitrifying microbial enrichment to remove ammonia and nitrite in brackish aquaculture systems. Biodegradation 2022; 33:373-388. [PMID: 35610494 DOI: 10.1007/s10532-022-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
One of the most important advancements in harnessing the biological nitrification in the field is enrichment solution of nitrifying microbial consortia. In the current study, we developed an improved multi-step enrichment to amplify a targeted microbial consortium from a sediment sample collected in tropical mangrove, Vietnam. The results showed that it took 122 culturing days with five unique continuous enrichment steps, the microbial consortium consumed total 5665 mgN L-1. Relative substrate removal rate increased rapidly from 0.114 mgN L-1 h-1 at the end of the first-step enrichment up to 3.58 mgN L-1 h-1 at the end of the fifth-step enrichment. High-throughput sequencing revealed that Nitrospirae, Proteobacteria and Bacteroidetes were the dominant taxa at the phylum level while Nitrospira, Marinobacter, Denitromonas and Nitrosomonas were the dominant taxa at the genus level in the enriched consortia. A pilot-scale experiment for shrimp cultivation of L. vannamei in 84 day-period proved the efficiency of Total ammonium nitrogen and nitrite removal in the consortium-activated treatment was much higher than the control.
Collapse
|
8
|
Organic matter removal in a simultaneous nitrification-denitrification process using fixed-film system. Sci Rep 2022; 12:1882. [PMID: 35115557 PMCID: PMC8814013 DOI: 10.1038/s41598-022-05521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Swine wastewater treatment is a complex challenge, due to the high organic matter (OM) and nitrogen (N) concentrations which require an efficient process. This study focused on evaluating two different support media for OM and N removal from an Upflow Anaerobic Sludge Blanket (UASB) reactor fed with swine wastewater. Maximum specific nitrification (MSNA) and denitrification (MSDA) activity test for both biofilm and suspended biomass were carried out using as supports: polyurethane foam (R1) and polyethylene rings (R2). The results showed that R2 system was more efficiently than R1, reaching OM removal of 77 ± 8% and N of 98 ± 4%, attributed to higher specific denitrifying activity recorded (5.3 ± 0.34 g NO3-N/g TVS∙h). Furthermore, 40 ± 5% of the initial N in the wastewater could have been transformed into molecular nitrogen through SND, of which only 10 ± 1% was volatilized. In this sense, MSDA tests indicated that suspended biomass was responsible for at least 70% of N removal and only 20% can be attributed to biofilm. SND could be confirmed with the analysis of microbial diversity, due to the presence of the genus Pseudomonas dominated the prokaryotic community of the system in 54.4%.
Collapse
|
9
|
Gandu B, Palanivel S, Juntupally S, Arelli V, Begum S, Anupoju GR. Removal of NH 3 and H 2S from odor causing tannery emissions using biological filters: Impact of operational strategy on the performance of a pilot-scale bio-filter. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:625-634. [PMID: 33780312 DOI: 10.1080/10934529.2021.1903283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Deodorization of gases emitted from Tanneries using eco-friendly and cost-effective approaches is necessary for the safe disposal of industrial emissions. There is limited research available on the treatment of odorous gases emitted from tanneries using bio-filter. In this endeavor, pilot-scale studies were performed in a 2.7 m3 bio-filter with synthetic gas mixture containing hydrogen sulfide (H2S) and ammonia (NH3) as input gas to study the impact of bedding material for the removal of H2S and NH3 using bio-filter and identification of various design parameters for scale-up. The pilot-scale studies showed that the removal efficacy of both NH3 and H2S was about 90-99% at an empty bed residence time of 55 seconds at an inlet concentration (NH3 and H2S) of 200 to 210 ppmV and microbial count enhanced from 3.5 × 103 to 8.9 × 109 in 210 days. The microbial biodiversity analysis revealed the dominance of proteobacteriaas as well as Firmicutes and Acinetobacter. A full-scale bio-filter (13.75 m3) was designed, installed, and commissioned in a tannery and observed that the removal efficiency of >99% since last three years.
Collapse
Affiliation(s)
- Bharath Gandu
- Bio Engineering and Environmental Sciences group, Department of Energy and Environmental Engineering, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Department of Environmental studies, University of Delhi, New Delhi, India
| | - Saravanan Palanivel
- Leather Processing Division, CSIR-Central Leather Research Institute, Chennai, TamilNadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudharshan Juntupally
- Bio Engineering and Environmental Sciences group, Department of Energy and Environmental Engineering, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijayalakshmi Arelli
- Bio Engineering and Environmental Sciences group, Department of Energy and Environmental Engineering, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sameena Begum
- Bio Engineering and Environmental Sciences group, Department of Energy and Environmental Engineering, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Gangagni Rao Anupoju
- Bio Engineering and Environmental Sciences group, Department of Energy and Environmental Engineering, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Gao B, Yao H, Li Y, Zhu Y. Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:352-365. [PMID: 33105038 DOI: 10.1002/etc.4916] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Microplastic pollution has become an increasingly pervasive issue worldwide, but little is known about its effects on the soil environment. A soil microcosm experiment was conducted using low-density polyethylene microplastics to estimate the effect of microplastic pollution on soil nutrient cycling and the soil microbial community structure. The results showed that microplastic addition significantly promoted soil carbon dioxide emissions but not soil nitrous oxide emissions. Soil pH, dissolved organic carbon, ammonia nitrogen, the contents of total phospholipid fatty acid (PLFA), and the ratios of gram-positive bacteria to gram-negative bacteria and saturated to monounsaturated PLFAs significantly increased. In addition, nitrate nitrogen and the ratios of fungi to bacteria, total iso-branched fatty acids to total anteiso-branched fatty acids, and cyclopropyl to precursor significantly decreased with increasing microplastic addition. The addition of microplastics decreased the abundance of ammonia oxidizing bacteria and nitrite reductase (nirS) but had little effect on the functional genes of ammonia oxidizing archaea, nitrite reductase (nirK), and nitrous oxide reductase. A principal coordinate analysis of the bacterial 16S ribosomal RNA gene and fungal internal transcribed spacer in the microplastic addition treatments revealed that the bacterial and fungal communities formed an obvious cluster. The average abundance of some microbial species with tolerance and degradability to microplastics, such as Nocardioidaceae, Amycolatopsis, Aeromicrobium, Cytophagaceae, Betaproteobacteria, Rhodoplanes, and Mortierella, in the microplastic addition treatments was significantly higher than that of the control treatment. The results suggested that microplastics have obvious influences on microbial communities and may affect global carbon and nitrogen cycles. Environ Toxicol Chem 2021;40:352-365. © 2020 SETAC.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, People's Republic of China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, People's Republic of China
| | - Yizu Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
11
|
Dai HT, Zhu RB, Sun BW, Che CS, Hou LJ. Effects of Sea Animal Activities on Tundra Soil Denitrification and nirS- and nirK-Encoding Denitrifier Community in Maritime Antarctica. Front Microbiol 2020; 11:573302. [PMID: 33162954 PMCID: PMC7581892 DOI: 10.3389/fmicb.2020.573302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
In maritime Antarctica, sea animals, such as penguins or seals, provide a large amount of external nitrogen input into tundra soils, which greatly impact nitrogen cycle in tundra ecosystems. Denitrification, which is closely related with the denitrifiers, is a key step in nitrogen cycle. However, effects of sea animal activities on tundra soil denitrification and denitrifier community structures still have received little attention. Here, the abundance, activity, and diversity of nirS- and nirK-encoding denitrifiers were investigated in penguin and seal colonies, and animal-lacking tundra in maritime Antarctica. Sea animal activities increased the abundances of nirS and nirK genes, and the abundances of nirS genes were significantly higher than those of nirK genes (p < 0.05) in all tundra soils. Soil denitrification rates were significantly higher (p < 0.05) in animal colonies than in animal-lacking tundra, and they were significantly positively correlated (p < 0.05) with nirS gene abundances instead of nirK gene abundances, indicating that nirS-encoding denitrifiers dominated the denitrification in tundra soils. The diversity of nirS-encoding denitrifiers was higher in animal colonies than in animal-lacking tundra, but the diversity of nirK-encoding denitrifiers was lower. Both the compositions of nirS- and nirK-encoding denitrifiers were similar in penguin or seal colony soils. Canonical correspondence analysis indicated that the community structures of nirS- and nirK-encoding denitrifiers were closely related to tundra soil biogeochemical processes associated with penguin or seal activities: the supply of nitrate and ammonium from penguin guano or seal excreta, and low C:N ratios. In addition, the animal activity-induced vegetation presence or absence had an important effect on tundra soil denitrifier activities and nirK-encoding denitrifier diversities. This study significantly enhanced our understanding of the compositions and dynamics of denitrifier community in tundra ecosystems of maritime Antarctica.
Collapse
Affiliation(s)
- Hai-Tao Dai
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Ren-Bin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Bo-Wen Sun
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Chen-Shuai Che
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
12
|
Zhao B, Chen DY, Zhang P, Ran XC, Guo JS. Evaluating performance of nitrogen and organic carbon removal in a single reactor by using A. faecalis strain NR aerobically. BIORESOURCE TECHNOLOGY 2020; 308:123278. [PMID: 32251858 DOI: 10.1016/j.biortech.2020.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The performance of nitrogen and organic carbon removal in a single reactor (R1) operating with A. faecalis strain NR aerobically was assessed. Under 150 mg/L influent NH4+-N, 91.3%, 71.4% and 90.9% of NH4+-N, TN and TOC were removed, presenting much higher efficiency than a control bioreactor inoculating activated sludge (R0). The amoA gene expression from strain NR in R1 was 7.8 times higher than that from activated sludge in R0, demonstrating the role of strain NR in removing NH4+. The analysis of microbial community composition revealed that strain NR was the dominant species and outcompeted ammonium oxidizing bacterium (AOB) under high organic carbon as well as ammonium. Simultaneous ammonium and organic carbon removal still maintained for a long-term operation with NH4+-N loadings of 300 and 450 mg/L in R1. Nitrogen balance showed that stripped NH3 only occupied a few percentages and aerobic denitrification played a significant role in nitrogen removal.
Collapse
Affiliation(s)
- Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Dan Yang Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Peng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xiao Chuan Ran
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jin Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
13
|
Comparison of PCR Primers for Analyzing Denitrifying Microorganisms in the Hyporheic Zone. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the specific amplifications of six denitrification-associated genes using PCR(Polymerase Chain Reaction) primer sets were compared. Thereafter, the PCR primer sets that were determined to be suitable for each denitrification-associated gene were used to test samples from sixteen aqueous environments (three from groundwater, three from stream water, and ten from hyporheic zone water). The specific amplification was determined using PCR primer sets for denitrification-associated genes and nucleic acids from eleven types of strains. NosZ was the most frequently amplified gene from the nucleic acid of type, with a specific band seen in all eleven strains. The specific band amplification and PCR time of the strains were analyzed to select one PCR primer set for each gene. The selected PCR primer sets were used to analyze sixteen samples from the aqueous environments in which denitrifying microorganisms were expected to be present. Specific bands of narG, nirS, and nosZ were most frequently observed in the hyporheic water samples. The results showed that microorganisms containing nirG (involved in the reduction of nitrate to nitrite), nirS (involved in the reduction of nitrite to nitric oxide), and nosZ (involved in the reduction of nitrous oxide to nitrogen gas) were the most abundant in the hyporheic zone samples used in this study.
Collapse
|
14
|
Mori JF, Chen LX, Jessen GL, Rudderham SB, McBeth JM, Lindsay MBJ, Slater GF, Banfield JF, Warren LA. Putative Mixotrophic Nitrifying-Denitrifying Gammaproteobacteria Implicated in Nitrogen Cycling Within the Ammonia/Oxygen Transition Zone of an Oil Sands Pit Lake. Front Microbiol 2019; 10:2435. [PMID: 31708903 PMCID: PMC6824324 DOI: 10.3389/fmicb.2019.02435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 11/24/2022] Open
Abstract
Anthropogenically-impacted environments offer the opportunity to discover novel microbial species and metabolisms, which may be undetectable in natural systems. Here, a combined metagenomic and geochemical study in Base Mine Lake, Alberta, Canada, which is the only oil sands end pit lake to date, revealed that nitrification was performed by members from Nitrosomonadaceae, Chloroflexi and unclassified Gammaproteobacteria “MBAE14.” While Nitrosomonadaceae and Chloroflexi groups were relatively abundant in the upper oxygenated zones, MBAE14 dominated the hypoxic hypolimnetic zones (approximately 30% of total microbial communities); MBAE14 was not detected in the underlying anoxic tailings. Replication rate analyses indicate that MBAE14 grew in metalimnetic and hypolimnetic water cap regions, most actively at the metalimnetic, ammonia/oxygen transition zone consistent with it putatively conducting nitrification. Detailed genomic analyses of MBAE14 evidenced both ammonia oxidation and denitrification into dinitrogen capabilities. However, the absence of known CO2-fixation genes suggests a heterotrophic denitrifying metabolism. Functional marker genes of ammonia oxidation (amo and hao) in the MBAE14 genome are homologous with those conserved in autotrophic nitrifiers, but not with those of known heterotrophic nitrifiers. We propose that this novel MBAE14 inhabits the specific ammonia-rich, oxygen and labile organic matter-limited conditions occurring in Base Mine Lake which selectively favors mixotrophic coupled nitrifier denitrification metabolism. Our results highlight the opportunities to better constrain biogeochemical cycles from the application of metagenomics to engineered systems associated with extractive resource sectors.
Collapse
Affiliation(s)
- Jiro F Mori
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Gerdhard L Jessen
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Sarah B Rudderham
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joyce M McBeth
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregory F Slater
- School of Geography and Earth Science, McMaster University, Hamilton, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada.,School of Geography and Earth Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Exploring the Potential of Overexpressed OsCIPK2 Rice as a Nitrogen Utilization Efficient Crop and Analysis of Its Associated Rhizo-Compartmental Microbial Communities. Int J Mol Sci 2019; 20:ijms20153636. [PMID: 31349588 PMCID: PMC6695771 DOI: 10.3390/ijms20153636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
Nitrogen (N) is one of the indispensable factors in rice growth and development. China holds a premier position in the production of rice and at the same time also faces higher N fertilizer costs along with serious damage to the environment. A better solution is much needed to address these issues, without disrupting the production of rice as an important cereal, while minimizing all the deleterious effects on the environment. Two isogenic lines Kitaake (WT) and its genetically modified line CIPK2 (RC), overexpressing the gene for Calcineurin B-like interacting protein kinase 2 (OsCIPK2) with better nitrogen use efficiency (NUE), were compared for their growth and development under low versus normal levels of N. NUE is a complex trait mainly related to a plant’s efficiency in extraction, assimilation, and recycling of N from soil. The microbial population was analyzed using high-throughput Illumina Miseq 16S rRNA sequencing and found that RC with CIPK2, specifically expressed in rice root, not only performed better without nitrogen fertilizer (LN) but also increased the diversity of bacterial communities in rice rhizosphere compartments (rhizosphere, rhizoplane, and endosphere). The relative abundance of beneficial bacteria phyla increased, which are known to promote the circulation and transformation of N in rhizosphere soil. To further explore the potential of RC regarding better performance under LN, the ion fluxes in root apical were detected by non-invasive micro-test technique (NMT). We found that RC can absorb more Ca2+ and NO3− under LN as compared to WT. Finally, compared to WT, RC plants exhibited better growth of root and shoot, and increased yield and N uptake under LN, whereas there was no significant difference in the growth of two rice lines under normal nitrogen (NN) treatment. We are able to get preliminary results, dealing with the OsCIPK2 overexpressed rice line, by studying the rice molecular, physiological, and chemical parameters related to NUE. The results laid the foundation for further research on N absorption and utilization in rice from the soil and the interaction with microbial communities.
Collapse
|
16
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
17
|
Oyarzun P, Alarcón L, Calabriano G, Bejarano J, Nuñez D, Ruiz-Tagle N, Urrutia H. Trickling filter technology for biotreatment of nitrogenous compounds emitted in exhaust gases from fishmeal plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:165-170. [PMID: 30472559 DOI: 10.1016/j.jenvman.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/10/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Odour emissions are a major environmental issue associated with fishmeal production. Laboratory-scale biotrickling filters (BTFs) were inoculated with microbial consortia derived from sewage sludge, with the goal to study the biotreatment of low-loads of methylamines and ammonia that are main components of odorous exhaust gases produced by fishmeal processing plants. A BTF packed with ceramic rings was subjected to a real fishmeal plant emission containing trimethylamine (TMA), dimethylamine (DMA) and monomethylamine (MMA). The highest elimination capacities (ECs) obtained were 372 mg TMA m-3 h-1, 5.518 mg DMA m-3 h-1 and 1.038 mg MMA m-3 h-1, with maximal removal efficiencies of 92% (TMA), 83% (DMA) and 95% (MMA) after 30 days operation. In a different experiment, a polyurethane foam packing was employed to treat ammonia (NH3) at low inlet loads, reaching an EC of 47.19 mg N m-3 h-1 with 99.8% efficiency (inlet load of 47.27 mg N m-3 h-1). Likewise, the microbial community of the polyurethane-associated biofilm was diverse and stable during operation. These results suggested that elimination of volatile amino-compounds using BTFs inoculated with a methylotrophic microbial consortium holds potential for odour removal. In addition, sequencing analysis of 16S rDNA gene fragments allowed the identification of heterotrophic ammonia-oxidizing bacteria that are promising candidates to effectively maintain ammonia elimination in a biotreatment operation of nitrogenous compounds present in exhaust gases from fishmeal facilities.
Collapse
Affiliation(s)
- Patricio Oyarzun
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| | - Lissete Alarcón
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Guillermo Calabriano
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Jorge Bejarano
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Dariela Nuñez
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| | - Homero Urrutia
- Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| |
Collapse
|
18
|
Dong H, Jiang X, Sun S, Fang L, Wang W, Cui K, Yao T, Wang H, Zhang Z, Zhang Y, Zhang Z, Fu P. A cascade of a denitrification bioreactor and an aerobic biofilm reactor for heavy oil refinery wastewater treatment. RSC Adv 2019; 9:7495-7504. [PMID: 35519961 PMCID: PMC9061216 DOI: 10.1039/c8ra10510c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/26/2019] [Indexed: 11/21/2022] Open
Abstract
The performance of an efficient denitrification bioreactor–aerobic biofilm reactor cascade for heavy oil refinery wastewater treatment was investigated.
Collapse
|
19
|
Miyamoto T, Yokota A, Ota Y, Tsuruga M, Aoi R, Tsuneda S, Noda N. Nitrosomonas europaea MazF Specifically Recognises the UGG Motif and Promotes Selective RNA Degradation. Front Microbiol 2018; 9:2386. [PMID: 30349517 PMCID: PMC6186784 DOI: 10.3389/fmicb.2018.02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in prokaryotic stress adaptation. Previously, bioinformatics analysis predicted that such systems are abundant in some slowly growing chemolithotrophs; e.g., Nitrosomonas europaea. Nevertheless, the molecular functions of these stress-response modules remain largely unclear, limiting insight regarding their physiological roles. Herein, we show that one of the putative MazF family members, encoded at the ALW85_RS04820 locus, constitutes a functional toxin that engenders a TA pair with its cognate MazE antitoxin. The coordinate application of a specialised RNA-Seq and a fluorescence quenching technique clarified that a unique triplet, UGG, serves as the determinant for MazF cleavage. Notably, statistical analysis predicted that two transcripts, which are unique in the autotroph, comprise the prime targets of the MazF endoribonuclease: hydroxylamine dehydrogenase (hao), which is essential for ammonia oxidation, and a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL), which plays an important role in carbon assimilation. Given that N. europaea obtains energy and reductants via ammonia oxidation and the carbon for its growth from carbon dioxide, the chemolithotroph might use the MazF endoribonuclease to modulate its translation profile and subsequent biochemical reactions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
20
|
Molina V, Dorador C, Fernández C, Bristow L, Eissler Y, Hengst M, Hernandez K, Olsen LM, Harrod C, Marchant F, Anguita C, Cornejo M. The activity of nitrifying microorganisms in a high-altitude Andean wetland. FEMS Microbiol Ecol 2018; 94:4969675. [DOI: 10.1093/femsec/fiy062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta. Avenida Universidad de Antofagasta s/n, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beaucheff 851 (Piso 7)
| | - Camila Fernández
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
- Interdisciplinary Center for Aquaculture Research (INCAR), COPAS SUR-AUSTRAL Program, Barrio Universitario s/n, Universidad de Concepción, Concepción, Chile
| | - Laura Bristow
- Nordic Center for Earth Evolution (NordCEE), Department of Biology, University of Southern Denmark, Campusvej 55-5230, Odense, Denmark
| | - Yoanna Eissler
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beaucheff 851 (Piso 7)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte. Av Angamos 0610 Antofagasta, Chile
| | - Klaudia Hernandez
- Centro de Investigacion Marina Quintay, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Avenida República 440, Santiago, Chile10
| | | | - Chris Harrod
- Fish and Stable Isotope Ecology Laboratory, Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Francisca Marchant
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta. Avenida Universidad de Antofagasta s/n, Antofagasta, Chile
| | - Cristobal Anguita
- Departamento de Ecologia y Biodiversidad, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Marcela Cornejo
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía , Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, Altamirano 1480, Valparaíso
| |
Collapse
|
21
|
Pereg L, Mataix-Solera J, McMillan M, García-Orenes F. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1079-1087. [PMID: 29734586 DOI: 10.1016/j.scitotenv.2017.11.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023]
Abstract
Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change.
Collapse
Affiliation(s)
- Lily Pereg
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Jorge Mataix-Solera
- GEA - Environmental Soil Science Group, Department of Agrochemistry and Environment, University Miguel Hernández, Avda, de la Universidad s/n., 03202 Elche, Alicante, Spain
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Fuensanta García-Orenes
- GEA - Environmental Soil Science Group, Department of Agrochemistry and Environment, University Miguel Hernández, Avda, de la Universidad s/n., 03202 Elche, Alicante, Spain
| |
Collapse
|
22
|
|
23
|
Yang JX, Zhao B, An Q, Huang YS, Guo JS. Bioaugmentation with A. faecalis strain NR for achieving simultaneous nitrogen and organic carbon removal in a biofilm reactor. BIORESOURCE TECHNOLOGY 2018; 247:871-880. [PMID: 30060425 DOI: 10.1016/j.biortech.2017.09.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
The dynamics model of Alcaligenes faecalis NR was combined with the activated sludge model No. 1 to guide how to make the bioaugmentation of strain NR successful. Model studies show that conventional heterotrophic bacteria in activated sludge always outcompete strain NR. The competition between strain NR and Nitrosomonas, a typical ammonium-oxidizing bacterium (AOB), mainly depends on COD concentration and maximum growth rate of Nitrosomonas. 2000mg/L of COD ensures that strain NR is always able to outcompete AOB. A biofilm reactor was developed to avoid a quick decrease in influent substrates. Approximately 94.2% of TN and 93.6% of COD were removed in the bioaugmented biofilm reactor, showing much better performance than an identical biofilm reactor without strain NR inoculation. A long-term experiment showed that strain NR successfully proliferated in the bioaugmented reactor. The abundance variation of strain NR mainly depended on influent COD concentrations, which was consistent with the model results.
Collapse
Affiliation(s)
- Ji Xiang Yang
- Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, PR China
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China.
| | - Qiang An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China
| | - Yuan Sheng Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jin Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
24
|
Wang H, Li X, Li X, Li X, Wang J, Zhang H. Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils. PLoS One 2017; 12:e0189506. [PMID: 29284018 PMCID: PMC5746221 DOI: 10.1371/journal.pone.0189506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 01/27/2023] Open
Abstract
Microbial communities play critical roles in soil nitrogen (N) cycle; however, we have limited understanding of the distribution of N-cycling microbial groups in deeper soil horizons. In this study, we used quantitative PCR to characterize the changes of microbial populations (16S rRNA and 18S rRNA) and five key N-cycling gene abundances involved in N fixation (nifH), ammonia oxidation (amoA) by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and nitrite reduction (nirS and nirK) along profiles (0–100 cm depth) of different paddy soils from three regions (Hailun, Changshu, Yingtan) across China from north to south. We found that most microbial and N-cycling functional genes significantly decreased with soil depth; however, AOA were enriched in deeper soil layers (20–40 cm). The abundances of microbial and N-cycling functional genes generally decreased by one to two orders of magnitude in the deeper horizons relative to topsoils. The AOA gene abundance was higher than that of AOB in the paddy soil profile, and the nirS and nirK abundances were dominant in topsoil and deeper soil, respectively. All N functional genes except AOA were more abundant in Changshu than Hailun and Yingtan. High abundances and low vertical changes of N-cycling genes in Changshu suggest more dynamic N-transformations in this region. Correlation analysis showed that soil properties and climate parameters had a significant relationship with N-cycling gene abundances. Moreover, the abundance of different N-cycling genes was affected by different environmental parameters, which should be studied further to explore their roles in N cycling for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- * E-mail:
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
25
|
Mundepi A, Norton J, Cabrera M, Franklin D, Habteselassie MY. Ammonia Oxidizers in a Grazing Land with a History of Poultry Litter Application. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:994-1002. [PMID: 28991982 DOI: 10.2134/jeq2017.04.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poultry litter (PL) is widely applied on grazing lands in Georgia. However, it is not clear how its long-term use affects soil microorganisms and their function. We examined changes in activity and community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a grazing land with a history of PL application and compared it to treatment with urea ammonium nitrate (UAN). Soil samples (0-15 cm) were collected in 2009 (after 15 yr of PL application) and in 2013 (after 2 yr of no application). The abundance and community composition of ammonia oxidizers (AO) were determined with molecular techniques that targeted Nitrification potential (NP) was used for measuring their activity. Abundance of AO was significantly higher in PL (7.41 and 7.10 log copies g soil for AOB and AOA, respectively) than in UAN plots (6.82 and 6.50 log copies g soil for AOB and AOA, respectively) in 2009. This is consistent with NP, which was higher in PL (0.78 mg NO -N kg h) than in UAN (0.50 mg NO-N kg h) plots in 2009. The abundance of AO and NP decreased in 2013. There was no treatment effect on the composition of AO. Correlation analysis suggested that AOB were functionally more important than AOA, indicating the need to target AOB for efficient management of N in PL-receiving soils. Overall, the difference in nitrification between PL and UAN was mainly caused by the change in AO abundance rather than composition, and AO were not negatively affected by an increase in PL-derived trace metal concentrations.
Collapse
|
26
|
Wang HL, Zhang J, Sun QL, Lian C, Sun L. A comparative study revealed first insights into the diversity and metabolisms of the microbial communities in the sediments of Pacmanus and Desmos hydrothermal fields. PLoS One 2017; 12:e0181048. [PMID: 28704556 PMCID: PMC5507547 DOI: 10.1371/journal.pone.0181048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 06/26/2017] [Indexed: 12/02/2022] Open
Abstract
Currently, little is known about the microbial diversity in the sediments of Pacmanus and Desmos hydrothermal fields in Manus Basin. In this study, Illumina-based sequencing of 16S rRNA gene amplicons and metagenomic analysis were conducted to investigate the microbial populations and metabolic profiles in the sediments from four different regions in Pacmanus and Desmos hydrothermal fields. It was found that Gammaproteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal populations, respectively. The autotrophic prokaryotes in the four communities probably fixed CO2 via four major pathways, i.e. Calvin-Benson-Bassham cycle, reductive acetyl-CoA cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle. Ammonia-oxidizing Thaumarchaeota, nitrifiers, denitrifiers, and sulfur oxidizers belonging to the subgroups of Proteobacteria (e.g., alpha, beta, gamma, and epsilon), Nitrospira, and Nitrospina, and sulfate-reducing Desulfobacterales likely played critical roles in nitrogen and sulfur cycling, in which ammonia, sulfur compounds, and hydrogen could be utilized as potential energy sources. These findings revealed new insights into the operational mechanism of the microbial communities associated with Pacmanus and Desmos hydrothermal fields.
Collapse
Affiliation(s)
- Hai-liang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
27
|
Wang J, Kan J, Zhang X, Xia Z, Zhang X, Qian G, Miao Y, Leng X, Sun J. Archaea Dominate the Ammonia-Oxidizing Community in Deep-Sea Sediments of the Eastern Indian Ocean-from the Equator to the Bay of Bengal. Front Microbiol 2017; 8:415. [PMID: 28360898 PMCID: PMC5352681 DOI: 10.3389/fmicb.2017.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Ammonia-oxidizing Archaea (AOA) and ammonia-oxidizing Bacteria (AOB) oxidize ammonia to nitrite, and therefore play essential roles in nitrification and global nitrogen cycling. To better understand the population structure and the distribution of AOA and AOB in the deep Eastern Indian Ocean (EIO), nine surface sediment samples (>3,300 m depth) were collected during the inter-monsoon Spring 2013. One sediment sample from the South China Sea (SCS; 2,510 m) was also included for comparison. The community composition, species richness, and diversity were characterized by clone libraries (total 1,238 clones), and higher diversity of archaeal amoA genes than bacterial amoA genes was observed in all analyzed samples. Real time qPCR analysis also demonstrated higher abundances (gene copy numbers) of archaeal amoA genes than bacterial amoA genes, and the ratios of AOA/AOB ranged from 1.42 to 8.49 among sites. In addition, unique and distinct clades were found in both reconstructed AOA and AOB phylogeny, suggesting the presence of niche-specific ammonia-oxidizing microorganisms in the EIO. The distribution pattern of both archaeal and bacterial amoA genes revealed by NMDS (non-metric multidimensional scaling) showed a distinct geographic separation of the sample from the SCS and most of the samples from the EIO following nitrogen gradients. Higher abundance and diversity of archaeal amoA genes indicated that AOA may play a more important role than AOB in the deep Indian Ocean. Environmental parameters shaping the distribution pattern of AOA were different from that of AOB, indicating distinct metabolic characteristics and/or adaptation mechanisms between AOA and AOB in the EIO, especially in deep-sea environments.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jinjun Kan
- Stroud Water Research Center Avondale, PA, USA
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Zhiqiang Xia
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xuecheng Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Gang Qian
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Yanyi Miao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xiaoyun Leng
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| |
Collapse
|
28
|
Li S, Song L, Jin Y, Liu S, Shen Q, Zou J. Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community. AMB Express 2016; 6:37. [PMID: 27207069 PMCID: PMC4875572 DOI: 10.1186/s13568-016-0208-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Manure composting has been recognized as an important anthropogenic source of nitrous oxide (N2O) contributing to global warming. However, biochar effect on N2O emissions from manure composting is rarely evaluated, especially by linking it to abundance of denitrifying bacteria community. Results of this study indicated that biochar amendment significantly reduced N2O emissions from manure composting, primarily due to suppression of the nirK gene abundance of denitrifying bacteria. Pearson’s correlation analysis showed a significant positive correlation between nirK abundance and N2O fluxes, while a negative correlation between nosZ density and N2O fluxes. Simultaneously, a linear correlation between nirK gene abundance minus nosZ gene abundance with N2O fluxes was also observed. In addition, a statistical model for estimating N2O emissions based on the bacterial denitrifying functional genes was developed and verified to adequately fit the observed emissions. Our results highlighted that biochar amendment would be an alternative strategy for mitigating N2O emissions during manure composting, and the information of related functional bacterial communities could be helpful for understanding the mechanism of N2O emissions.
Collapse
|
29
|
Distinguishing between Microbial Habitats Unravels Ecological Complexity in Coral Microbiomes. mSystems 2016; 1:mSystems00143-16. [PMID: 27822559 PMCID: PMC5080407 DOI: 10.1128/msystems.00143-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
The diverse prokaryotic communities associated with reef-building corals may provide important ecological advantages to their threatened hosts. The consistency of relationships between corals and specific prokaryotes, however, is debated, and the locations where microbially mediated processes occur in the host are not resolved. Here, we examined how the prokaryotic associates of five common Caribbean corals with different evolutionary and ecological traits differ across mucus and tissue habitats. We used physical and chemical separation of coral mucus and tissue and sequencing of partial small-subunit rRNA genes of bacteria and archaea from these samples to demonstrate that coral tissue and mucus harbor unique reservoirs of prokaryotes, with 23 to 49% and 31 to 56% of sequences exclusive to the tissue and mucus habitats, respectively. Across all coral species, we found that 46 tissue- and 22 mucus-specific microbial members consistently associated with the different habitats. Sequences classifying as "Candidatus Amoebophilus," Bacteroidetes-affiliated intracellular symbionts of amoebae, emerged as previously unrecognized tissue associates of three coral species. This study demonstrates how coral habitat differentiation enables highly resolved examination of ecological interactions between corals and their associated microorganisms and identifies previously unrecognized tissue and mucus associates of Caribbean corals for future targeted study. IMPORTANCE This study demonstrates that coral tissue or mucus habitats structure the microbiome of corals and that separation of these habitats facilitates identification of consistent microbial associates. Using this approach, we demonstrated that sequences related to "Candidatus Amoebophilus," recognized intracellular symbionts of amoebae, were highly associated with the tissues of Caribbean corals and possibly endosymbionts of a protistan host within corals, adding a further degree of intricacy to coral holobiont symbioses. Examining specific habitats within complex hosts such as corals is useful for targeting important microbial associations that may otherwise be masked by the sheer microbial diversity associated with all host habitats.
Collapse
|
30
|
Torresi E, Fowler SJ, Polesel F, Bester K, Andersen HR, Smets BF, Plósz BG, Christensson M. Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs-Implications on Micropollutant Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9279-9288. [PMID: 27477857 DOI: 10.1021/acs.est.6b02007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In biofilm systems for wastewater treatment (e.g., moving bed biofilms reactors-MBBRs) biofilm thickness is typically not under direct control. Nevertheless, biofilm thickness is likely to have a profound effect on the microbial diversity and activity, as a result of diffusion limitation and thus substrate penetration in the biofilm. In this study, we investigated the impact of biofilm thickness on nitrification and on the removal of more than 20 organic micropollutants in laboratory-scale nitrifying MBBRs. We used novel carriers (Z-carriers, AnoxKaldnes) that allowed controlling biofilm thickness at 50, 200, 300, 400, and 500 μm. The impact of biofilm thickness on microbial community was assessed via 16S rRNA gene amplicon sequencing and ammonia monooxygenase (amoA) abundance quantification through quantitative PCR (qPCR). Results from batch experiments and microbial analysis showed that (i) the thickest biofilm (500 μm) presented the highest specific biotransformation rate constants (kbio, L g(-1) d(-1)) for 14 out of 22 micropollutants; (ii) biofilm thickness positively associated with biodiversity, which was suggested as the main factor for the observed enhancement of kbio; (iii) the thinnest biofilm (50 μm) exhibited the highest nitrification rate (gN d(-1) g(-1)), amoA gene abundance and kbio values for some of the most recalcitrant micropollutants (i.e., diclofenac and targeted sulfonamides). Although thin biofilms favored nitrification activity and the removal of some micropollutants, treatment systems based on thicker biofilms should be considered to enhance the elimination of a broad spectrum of micropollutants.
Collapse
Affiliation(s)
- Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
- Veolia Water Technologies AB-AnoxKaldnes , Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| | - S Jane Fowler
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University , Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet B115, 2800 Kgs. Lyngby, Denmark
| | - Magnus Christensson
- Veolia Water Technologies AB-AnoxKaldnes , Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| |
Collapse
|
31
|
Ye J, Zhao B, An Q, Huang YS. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification. ENVIRONMENTAL TECHNOLOGY 2016; 37:2206-13. [PMID: 26824874 DOI: 10.1080/09593330.2016.1146338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/20/2016] [Indexed: 05/27/2023]
Abstract
Providencia rettgeri strain YL shows the capability of nitrogen removal under sole aerobic conditions. By using isotope ratio mass spectrometry, (15)N-labelled N2O and N2 were detected in aerobic batch cultures containing [Formula: see text], [Formula: see text] or [Formula: see text]. Strain YL converted [Formula: see text], [Formula: see text] and [Formula: see text] to produce more N2O than N2 in the presence of [Formula: see text]. An (15)N isotope tracing experiment confirmed that the nitrogen removal pathway of strain YL was heterotrophic nitrification-aerobic denitrification. The optimal treatment conditions for nitrogen removal were pH of 8, C/N ratio of 12, temperature of 25°C and shaking speed of 105 rpm. A continuous aerobic bioreactor inoculated with strain YL was developed. With an influent [Formula: see text] concentration of 90-200 mg/L, the [Formula: see text] removal efficiency ranged from 80% to 97% and the total nitrogen removal efficiency ranged from 72% to 95%. The nitrogen balance in the continuous bioreactor revealed that approximately 35-52% of influent [Formula: see text] was denitrified aerobically to form gaseous nitrogen. These findings show that the P. rettgeri strain YL has potential application in wastewater treatment for nitrogen removal under sole aerobic conditions.
Collapse
Affiliation(s)
- Jun Ye
- a The Key Laboratory of Eco-environments in Three Gorges Reservoir Region , Chongqing University , Chongqing , People's Republic of China
| | - Bin Zhao
- a The Key Laboratory of Eco-environments in Three Gorges Reservoir Region , Chongqing University , Chongqing , People's Republic of China
| | - Qiang An
- a The Key Laboratory of Eco-environments in Three Gorges Reservoir Region , Chongqing University , Chongqing , People's Republic of China
| | - Yuan-Sheng Huang
- b National Centre for International Research of Low-carbon and Green Buildings , Chongqing University , Chongqing , People's Republic of China
| |
Collapse
|
32
|
AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea. Toxins (Basel) 2016; 8:toxins8060174. [PMID: 27271670 PMCID: PMC4926141 DOI: 10.3390/toxins8060174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.
Collapse
|
33
|
Huang R, Zhao DY, Zeng J, Tian MY, Shen F, Jiang CL, Huang F, Yu ZB, Wu QL. Bioturbation of Tubificid worms affects the abundance and community composition of ammonia-oxidizing archaea and bacteria in surface lake sediments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1192-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Bai Y, Zhang Y, Quan X, Chen S. Enhancing nitrogen removal efficiency and reducing nitrate liquor recirculation ratio by improving simultaneous nitrification and denitrification in integrated fixed-film activated sludge (IFAS) process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:827-834. [PMID: 26901725 DOI: 10.2166/wst.2015.558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An integrated fixed-film activated sludge (IFAS) process (G1) and an activated sludge anoxic-oxic process (G2) were operated at nitrate liquor recirculation ratio (R) of 100, 200 and 300% to investigate the feasibility of enhancing nitrogen removal efficiency (RTN) and reducing R by improving simultaneous nitrification and denitrification (SND) in the IFAS process. The results showed that the effluent NH4(+)-N and total nitrogen (TN) of G1 at R of 200% were less than 1.5 and 14.5 mg/L, satisfying the Chinese discharge standard (NH4(+)-N < 5 mg/L; TN < 15 mg/L). However, the effluent NH4(+)-N and TN of G2 at R of 300% were higher than 8.5 and 15.3 mg/L. It indicated that better RTN could be achieved at a lower R in the IFAS process. The polymerase chain reaction-denaturing gradient gel electrophoresis results implied that nitrifiers and denitrifiers co-existed in one microbial community, facilitating the occurrence of SND in the aerobic reactor of G1, and the contribution of SND to TN removal efficiency ranged 15-19%, which was the main reason that the RTN was improved in the IFAS process. Therefore, the IFAS process was an effective method for improving RTN and reducing R. In practical application, this advantage of the IFAS process can decrease the electricity consumption for nitrate liquor recirculation flow, thereby saving operational costs.
Collapse
Affiliation(s)
- Yang Bai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China E-mail:
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China E-mail:
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China E-mail:
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China E-mail:
| |
Collapse
|
35
|
Vikram S, Guerrero LD, Makhalanyane TP, Le PT, Seely M, Cowan DA. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 2015; 18:1875-88. [PMID: 26470632 DOI: 10.1111/1462-2920.13088] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 11/28/2022]
Abstract
In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Surendra Vikram
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Leandro D Guerrero
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Phuong T Le
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.,Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Li X, Zhang M, Liu F, Li Y, He Y, Zhang S, Wu J. Abundance and distribution of microorganisms involved in denitrification in sediments of a Myriophyllum elatinoides purification system for treating swine wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17906-17916. [PMID: 26165997 DOI: 10.1007/s11356-015-5041-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution from livestock production, particularly swine production, is often managed by the use of constructed wetlands, which incorporate plants such as Myriophyllum elatinoides as a means of treating wastewater. The M. elatinoides purification system has been shown to effectively remove, via nitrification and denitrification, more than 90% of the total nitrogen (TN) and 84% of the NH4 (+)-N produced in swine wastewater. However, the mechanisms of variation in aquatic environmental factors and how the interaction of these factors affects denitrification by microorganisms in sediments remain poorly understood. In this study, the impacts of dissolved oxygen (DO), TN, NH4(+)-N, and NO3(-)-N on the abundance, diversity, and community distribution of denitrifiers in the sediments from different concentrations and types of wastewater including tap water (CK), two strengths of synthetic wastewater: 200 mg NH4(+)-N L(-1) (T1) and 400 mg NH4(+)-N L(-1) (T2), swine wastewater diluted 50% (T3), and swine wastewater (T4) were investigated in a microcosm experiment. A significant improvement was observed in the abundance of denitrification genes (nirK and nirS) in response to increased NO3(-)-N and DO in the swine wastewater sediments. The abundance of these denitrification genes was highest in the T4 sediments compared with other treatments. Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the DO, TN, and NH4(+)-N positively impacted the richness index (S) of the nirK denitrifiers in T1, whereas the NO3(-)-N negatively affected the Simpson diversity index (D) of nirK and nirS denitrifiers in T3 and T4. However, the NO3(-)-N positively affected the nirK and nirS denitrifier community distribution, whereas the DO negatively affected the nirK and nirS denitrifier distribution in T3 and T4. These findings will be helpful in that they allow us to recognize the effects of environmental factors on the formation of the denitrifiers in the sediments in a M. elatinoides purification system.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China.
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
| | - Yang He
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China.
- Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, People's Republic of China.
| |
Collapse
|
37
|
|
38
|
Vannecke TPW, Volcke EIP. Modelling microbial competition in nitrifying biofilm reactors. Biotechnol Bioeng 2015; 112:2550-61. [DOI: 10.1002/bit.25680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 11/07/2022]
Affiliation(s)
- T. P. W. Vannecke
- Department of Biosystems Engineering; Ghent University; Coupure Links 653, 9000 Ghent Belgium
| | - E. I. P. Volcke
- Department of Biosystems Engineering; Ghent University; Coupure Links 653, 9000 Ghent Belgium
| |
Collapse
|
39
|
Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor. Appl Environ Microbiol 2015; 81:5387-94. [PMID: 26048940 DOI: 10.1128/aem.00683-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off.
Collapse
|
40
|
Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i). Appl Environ Microbiol 2015; 81:2976-84. [PMID: 25681182 DOI: 10.1128/aem.03608-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023] Open
Abstract
The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount.
Collapse
|
41
|
Ballarini E, Beyer C, Bauer RD, Griebler C, Bauer S. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 2014; 25:351-71. [PMID: 24122285 DOI: 10.1007/s10532-013-9665-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic /anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.
Collapse
|
42
|
Purssell A, Fruci M, Mikalauskas A, Gilmour C, Poole K. EsrC, an envelope stress-regulated repressor of themexCD-oprJmultidrug efflux operon inPseudomonas aeruginosa. Environ Microbiol 2014; 17:186-98. [DOI: 10.1111/1462-2920.12602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/01/2014] [Accepted: 08/10/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Andrew Purssell
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON K7L 3N6 Canada
| | - Michael Fruci
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON K7L 3N6 Canada
| | - Alaya Mikalauskas
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON K7L 3N6 Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON K7L 3N6 Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON K7L 3N6 Canada
| |
Collapse
|
43
|
Monteiro M, Séneca J, Magalhães C. The history of aerobic ammonia oxidizers: from the first discoveries to today. J Microbiol 2014; 52:537-47. [PMID: 24972807 DOI: 10.1007/s12275-014-4114-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
Collapse
Affiliation(s)
- Maria Monteiro
- EcoBioTec Laboratory, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
| | | | | |
Collapse
|
44
|
Tabernacka A, Zborowska E, Lebkowska M, Borawski M. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:363-369. [PMID: 24316808 DOI: 10.1016/j.jhazmat.2013.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/20/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.
Collapse
Affiliation(s)
- Agnieszka Tabernacka
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland.
| | - Ewa Zborowska
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Maria Lebkowska
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Maciej Borawski
- AstraZeneca Pharma Poland Sp. z o.o., Postępu 18, 02-676 Warsaw, Poland
| |
Collapse
|
45
|
Characterization and comparison of potential denitrifiers in microbial mats from King George Island, Maritime Antarctica. Polar Biol 2013. [DOI: 10.1007/s00300-013-1440-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Tran NH, Urase T, Ngo HH, Hu J, Ong SL. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. BIORESOURCE TECHNOLOGY 2013; 146:721-731. [PMID: 23948223 DOI: 10.1016/j.biortech.2013.07.083] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 05/06/2023]
Abstract
Many efforts have been made to understand the biodegradation of emerging trace organic contaminants (EOCs) in the natural and engineered systems. This review summarizes the current knowledge on the biodegradation of EOCs while having in-depth discussion on metabolism and cometabolism of EOCs. Biodegradation of EOCs is mainly attributed to cometabolic activities of both heterotrophic and autotrophic microorganisms. Metabolism of EOCs can only be observed by heterotrophic microbes. Autotrophic ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaeal (AOA) cometabolize a variety of EOCs via the non-specific enzymes, such as ammonia monooxygenase (AMO). Higher biodegradation of EOCs is often noted under nitrification at high ammonia loading rate. The presence of a growth substrate promotes cometabolic biodegradation of EOCs. Potential strategies for enhancing the biodegradation of EOCs were also proposed in this review.
Collapse
Affiliation(s)
- Ngoc Han Tran
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Taro Urase
- School of Bioscience and Biotechnology, Tokyo University of Technology, Katakura 1404-1, Hachioji, Tokyo 1920982, Japan
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Say Leong Ong
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| |
Collapse
|
47
|
Murdoch RW, Costello Staniec A. Diversity and community analysis of ammonia oxidizing bacteria in a streambed surrounding an artificial dam. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 127:237-243. [PMID: 23764474 DOI: 10.1016/j.jenvman.2013.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/29/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
The degree to which small natural dams affect the native bacterial nitrogen cycling community was explored by molecular methods. The identities and relative abundances of ammonia oxidizing bacteria in the sediment surrounding an artificial dam both at the surface and in the hyporheic zone were characterized. Analyses were performed using tRFLP of the conserved amoA gene using a semi-nested degenerate PCR approach. Additionally, an amoA gene library was constructed to characterize the most dominant sediment genotypes. The results of the tRFLP analyses showed clear differences between the upstream and downstream communities at different depths in the sediment column. Non-metric multidimensional scaling ordination of the tRFLP data set produced a stable one-dimensional solution with significant correlations to oxygen, pH, nitrate, and dissolved organic nitrogen levels. The sample corresponding to the hyporheic zone downstream of the dam showed 28-50% higher amoA richness and higher diversity than the other samples. All gene fragments sequenced from the samples grouped with sequences of the Nitrosospira type. Ordination of 16S rDNA tRFLP data revealed a two dimensional data structure, one axis of which had similar chemical correlation characteristics as the amoA model axis. Taken together, the results from this study suggest that the presence of the dam creates physical and chemical heterogeneity that may foster genetic diversity and community changes amongst ammonia oxidizing bacteria.
Collapse
Affiliation(s)
- Robert W Murdoch
- Department of Civil and Environmental Engineering, Link Hall, Syracuse University, Syracuse, NY 13244, USA.
| | | |
Collapse
|
48
|
Khan SJ, Parveen F, Ahmad A, Hashmi I, Hankins N. Performance evaluation and bacterial characterization of membrane bioreactors. BIORESOURCE TECHNOLOGY 2013; 141:2-7. [PMID: 23453983 DOI: 10.1016/j.biortech.2013.01.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
A bench-scale conventional membrane bioreactor (C-MBR), a moving bed membrane bioreactor (MB-MBR) and an anoxic/oxic membrane bioreactor (A/O-MBR), operating under similar feed, environmental and operating conditions, were each evaluated for their treatment performance and bacterial diversity. MBRs were compared for the removal of organics (COD) and nutrients (N and P) while pure culture techniques were employed for bacterial isolation and an API 20E kit was used to identify the isolates. Pseudomonas aeruginosa, selected as a representative of denitrifying microorganisms, was isolated only from the A/O-MBR using Citrimide Agar. Using PCR, the nitrifying bacteria Nitrosomonas europaea was detected only in the MB-MBR. On the other hand, Nitrobacter winogradskyi was detected in all three reactors. Addition of media and maintenance of a lesser DO resulted in the highest TN removal in the A/O-MBR as compared to the C-MBR and the MB-MBR, whereas better nitrification was observed in the MB-MBR than in the C-MBR.
Collapse
Affiliation(s)
- Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan.
| | | | | | | | | |
Collapse
|
49
|
Liu B, Mao Y, Bergaust L, Bakken LR, Frostegård Å. Strains in the genusThaueraexhibit remarkably different denitrification regulatory phenotypes. Environ Microbiol 2013; 15:2816-28. [DOI: 10.1111/1462-2920.12142] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Binbin Liu
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; N-1432; Norway
| | | | | | - Lars R. Bakken
- Department of Plant and Environmental Sciences; Norwegian University of Life Sciences; Ås; N-1432; Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; N-1432; Norway
| |
Collapse
|
50
|
Carrino-Kyker SR, Smemo KA, Burke DJ. Shotgun metagenomic analysis of metabolic diversity and microbial community structure in experimental vernal pools subjected to nitrate pulse. BMC Microbiol 2013; 13:78. [PMID: 23574744 PMCID: PMC3629998 DOI: 10.1186/1471-2180-13-78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/01/2013] [Indexed: 12/29/2022] Open
Abstract
Background Human activities have greatly increased nitrogen (N) levels in natural habitats through atmospheric N deposition and nutrient leaching, which can have large effects on N cycling and other ecosystem processes. Because of the significant role microorganisms play in N cycling, high inputs of nitrogenous compounds, such as nitrate (NO3-), into natural ecosystems could have cascading effects on microbial community structure and the metabolic processes that microbes perform. To investigate the multiple effects of NO3- pollution on microbial communities, we created two shotgun metagenomes from vernal pool microcosms that were either enriched with a solution of 10 mg NO3--N (+NO3-) or received distilled water as a control (−N). Results After only 20 hours of exposure to NO3-, the initial microbial community had shifted toward one containing a higher proportional abundance of stress tolerance and fermentation environmental gene tags (EGTs). Surprisingly, we found no changes to N metabolism EGTs, even though large shifts in denitrification rates were seen between the +NO3- and –N microcosms. Thus, in the absence of NO3- addition, it is plausible that the microbes used other respiratory pathways for energy. Respiratory pathways involving iron may have been particularly important in our –N microcosms, since iron acquisition EGTs were proportionally higher in the –N metagenome. Additionally, we noted a proportional increase in Acidobacteria and Alphaproteobacteria EGTs in response to NO3- addition. These community shifts in were not evident with TRFLP, suggesting that metagenomic analyses may detect fine-scale changes not possible with community profiling techniques. Conclusions Our results suggest that the vernal pool microbial communities profiled here may rely on their metabolic plasticity for growth and survival when certain resources are limiting. The creation of these metagenomes also highlights how little is known about the effects of NO3- pollution on microbial communities, and the relationship between community stability and function in response to disturbance.
Collapse
|