1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
3
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
4
|
Aslanbay Guler B, Morçimen ZG, Taşdemir Ş, Demirel Z, Turunç E, Şendemir A, Imamoglu E. Design of chemobrionic and biochemobrionic scaffolds for bone tissue engineering. Sci Rep 2024; 14:13764. [PMID: 38877025 PMCID: PMC11178857 DOI: 10.1038/s41598-024-63171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Chemobrionic systems have attracted great attention in material science for development of novel biomimetic materials. This study aims to design a new bioactive material by integrating biosilica into chemobrionic structure, which will be called biochemobrionic, and to comparatively investigate the use of both chemobrionic and biochemobrionic materials as bone scaffolds. Biosilica, isolated from Amphora sp. diatom, was integrated into chemobrionic structure, and a comprehensive set of analysis was conducted to evaluate their morphological, chemical, mechanical, thermal, and biodegradation properties. Then, the effects of both scaffolds on cell biocompatibility and osteogenic differentiation capacity were assessed. Cells attached to the scaffolds, spread out, and covered the entire surface, indicating the absence of cytotoxicity. Biochemobrionic scaffold exhibited a higher level of mineralization and bone formation than the chemobrionic structure due to the osteogenic activity of biosilica. These results present a comprehensive and pioneering understanding of the potential of (bio)chemobrionics for bone regeneration.
Collapse
Affiliation(s)
- Bahar Aslanbay Guler
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Zehra Gül Morçimen
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Şeyma Taşdemir
- Ioengineering Department, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
| | - Zeliha Demirel
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Ezgi Turunç
- Department of Biochemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Aylin Şendemir
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Macalester W, Boussahel A, Moreno-Tortolero RO, Shannon MR, West N, Hill D, Perriman A. A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface. Int J Oral Sci 2024; 16:37. [PMID: 38734663 PMCID: PMC11088668 DOI: 10.1038/s41368-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and β-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.
Collapse
Affiliation(s)
- William Macalester
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, United Kingdom
| | - Asme Boussahel
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| | - Rafael O Moreno-Tortolero
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, United Kingdom
- Centre for Protolife Research, School of Chemistry, University of Bristol, Cantocks Close, Bristol, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Mark R Shannon
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Nicola West
- Periodontology, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, United Kingdom
| | - Darryl Hill
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Adam Perriman
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| |
Collapse
|
6
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH, Kim CS. Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. Int J Biol Macromol 2024; 262:130218. [PMID: 38367780 DOI: 10.1016/j.ijbiomac.2024.130218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Hydrogels, integrating diverse biocompatible materials, have emerged as promising candidates for bone repair applications. This study presents a double network hydrogel designed for bone tissue engineering, combining poly(ethylene glycol) diacrylate (PEGDA) and chitosan (CS) crosslinked through UV polymerization and ionic crosslinking. Concurrently, copper-doped mesoporous silica nanospheres (Cu-MSNs) were synthesized using a one-pot method. Cu-MSNs underwent additional modification through in-situ biomineralization, resulting in the formation of an apatite layer. Polydopamine was employed to facilitate the deposition of Calcium (Ca) and Phosphate (P) ions on the surface of Cu-MSNs (Cu-MSNs/PDA@CaP). Composite hydrogels were created by integrating varied concentrations of Cu-MSNs/PDA@CaP (25, 50, 100, 150, 200 μg/mL). Characterization unveiled distinctive interconnected porous structures within the composite hydrogel, showcasing a notable 169.6 % enhancement in compressive stress (elevating from 89.01 to 240.19 kPa) compared to pure PEGDA. In vitro biocompatibility experiments illustrated that the composite hydrogel maintained elevated cell viability (up to 106.6 %) and facilitated rapid cell proliferation over 7 days. The hydrogel demonstrated a substantial 57.58 % rise in ALP expression and a surprising 235.27 % increase in ARS staining. Moreover, it significantly enhanced the expression of crucial osteogenic genes, such as run-related transcription factors 2 (RUNX2), collagen 1a1 (Col1a1), and secreted phosphoprotein 1 (Spp1), establishing it as a promising scaffold for bone regeneration. This study shows how Cu-MSNs/PDA@CaP were successfully integrated into a double network hydrogel, resulting in a composite material with good biological responses. Due to its improved characteristics, this composite hydrogel holds the potential for advancing bone regeneration procedures.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
7
|
Katebifar S, Arul M, Abdulmalik S, Yu X, Alderete JF, Kumbar SG. NOVEL HIGH-STRENGTH POLYESTER COMPOSITE SCAFFOLDS FOR BONE REGENERATION. POLYM ADVAN TECHNOL 2023; 34:3770-3791. [PMID: 38312483 PMCID: PMC10836609 DOI: 10.1002/pat.6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024]
Abstract
Repair of critical sized bone defects, particularly in load-bearing areas, is a major clinical problem that requires surgical intervention and implantation of biological or engineered grafts. For load-bearing sites, it is essential to use engineered grafts that have both sufficient mechanical strength and appropriate pore properties to support bone repair and tissue regeneration. Unfortunately, the mechanical properties of such grafts are often compromised due to the creation of pores required to facilitate tissue ingrowth following implantation. To overcome the limitations associated with porous scaffolds and their reduced mechanical strength, we have developed a methodology for creating a solid structure that retains its bulk mechanical properties while also evolving into a porous structure in a biological environment through degradation and erosion. In this study, we utilized polyesters that have been approved by the FDA, including poly (lactic acid) (PLA), poly(glycolic acid) (PGA), their copolymer PLGA (PLGA, with a ratio of 85:15 and 50:50 of PLA:PGA), and poly(caprolactone) (PCL). These polymers and their ceramic composites with tricalcium phosphate (TCP) were compression molded into solid forms, which exhibited mechanical properties with compressive modulus as high as 2745 ± 364 MPa within the range of human trabecular bone and in the lower range of human cortical bone. The use of fast-degrading PLGA (50:50) and PGA as porogens allowed the formation of pores within the solid structures due to their degradation, and the TCP acts as a buffering agent to neutralize their acidic degradation byproducts. These scaffolds facilitated the growth of new blood vessels and tissue ingrowth in a subcutaneous implantation model. In addition, in a rat critical-sized mandibular bone defects these scaffolds supported bone growth with 70% of new bone volume fraction. Furthermore, the extent of bone regeneration was found to be higher for the scaffolds with bone morphogenic proteins (BMP2), indicating their suitability for bone repair and regeneration.
Collapse
Affiliation(s)
- Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Xiaojun Yu
- Department of Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Joseph F. Alderete
- Departments of Orthopedic Surgery, Brooke Army Medical Center, Joint Base San Antonio, Texas
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
Aguilar J, Malacrida L, Gunther G, Torrado B, Torres V, Urbano BF, Sánchez SA. Cells immersed in collagen matrices show a decrease in plasma membrane fluidity as the matrix stiffness increases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184176. [PMID: 37328024 DOI: 10.1016/j.bbamem.2023.184176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/18/2023]
Abstract
Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.
Collapse
Affiliation(s)
- Joao Aguilar
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay; Advanced Bioimaging Unit, Institut Pasteur Montevideo, Universidad de la República, Montevideo, Uruguay
| | - German Gunther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Belén Torrado
- Biomedical Engineering Department, University of California at Irvine, California, USA
| | - Viviana Torres
- Departamento de Bioquímica, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Susana A Sánchez
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
9
|
Kyrylenko S, Sowa M, Kazek-Kęsik A, Stolarczyk A, Pisarek M, Husak Y, Korniienko V, Deineka V, Moskalenko R, Matuła I, Michalska J, Jakóbik-Kolon A, Mishchenko O, Pogorielov M, Simka W. Nitrilotriacetic Acid Improves Plasma Electrolytic Oxidation of Titanium for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19863-19876. [PMID: 37041124 PMCID: PMC10141263 DOI: 10.1021/acsami.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.
Collapse
Affiliation(s)
- Sergiy Kyrylenko
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
| | - Maciej Sowa
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Agnieszka Stolarczyk
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Marcin Pisarek
- Institute
of Physical Chemistry PAS, M. Kasprzaka Street 44/52, 01-224 Warsaw, Poland
| | - Yevheniia Husak
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Institute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas
Street, Riga LV-1004, Latvia
| | - Volodymyr Deineka
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
| | - Roman Moskalenko
- Ukrainian-Swedish
Research Center SUMEYA, Sumy State University, 31 Pryvokzalna Street, Sumy 40018, Ukraine
| | - Izabela Matuła
- Faculty
of
Science and Technology, Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty Street 1a, 41-500 Chorzów, Poland
| | - Joanna Michalska
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Agata Jakóbik-Kolon
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Oleg Mishchenko
- Nano
Prime LTD, 25 Metalowców
Street, 39-200 Dębica, Poland
- Zaporizhzhia
State Medical University, 26 Maiakovskyi Avenue, 69035 Zaporizhzhia, Ukraine
| | - Maksym Pogorielov
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Institute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas
Street, Riga LV-1004, Latvia
| | - Wojciech Simka
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| |
Collapse
|
10
|
Galván-Chacón V, de Melo Pereira D, Vermeulen S, Yuan H, Li J, Habibović P. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic. Bioact Mater 2023; 19:127-138. [PMID: 35475029 PMCID: PMC9014318 DOI: 10.1016/j.bioactmat.2022.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- V.P. Galván-Chacón
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - D. de Melo Pereira
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - S. Vermeulen
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - H. Yuan
- Kuros Biosciences BV, 3723 MB, Bilthoven, the Netherlands
| | - J. Li
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - P. Habibović
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
- Corresponding author. Maastricht University, MERLN Institute, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Dadhich P, Kumar P, Roy A, Bitar KN. Advances in 3D Printing Technology for Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Krasilnikova OA, Baranovskii DS, Yakimova AO, Arguchinskaya N, Kisel A, Sosin D, Sulina Y, Ivanov SA, Shegay PV, Kaprin AD, Klabukov ID. Intraoperative Creation of Tissue-Engineered Grafts with Minimally Manipulated Cells: New Concept of Bone Tissue Engineering In Situ. Bioengineering (Basel) 2022; 9:704. [PMID: 36421105 PMCID: PMC9687730 DOI: 10.3390/bioengineering9110704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities.
Collapse
Affiliation(s)
- Olga A. Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Anna O. Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Nadezhda Arguchinskaya
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Anastas Kisel
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Pogodinskaya St. 10 Bld. 1, 119121 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, Bolshaya Pirogovskaya St. 2 Bld. 3, 119435 Moscow, Russia
| | - Sergey A. Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter V. Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| |
Collapse
|
13
|
Iqbal N, Braxton TM, Anastasiou A, Raif EM, Chung CKY, Kumar S, Giannoudis PV, Jha A. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6245. [PMID: 36143561 PMCID: PMC9506122 DOI: 10.3390/ma15186245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Dicalcium Phosphate Dihydrate (DCPD) mineral scaffolds alone do not possess the mechanical flexibility, ease of physicochemical properties' tuneability or suitable porosity required for regenerative bone scaffolds. Herein, we fabricated highly porous freeze-dried chitosan scaffolds embedded with different concentrations of Dicalcium Phosphate Dihydrate (DCPD) minerals, i.e., 0, 20, 30, 40 and 50 (wt)%. Increasing DCPD mineral concentration led to increased scaffold crystallinity, where the % crystallinity for CH, 20, 30, 40, and 50-DCPD scaffolds was determined to be 0.1, 20.6, 29.4, 38.8 and 69.9%, respectively. Reduction in scaffold pore size distributions was observed with increasing DCPD concentrations of 0 to 40 (wt)%; coalescence and close-ended pore formation were observed for 50-DCPD scaffolds. 50-DCPD scaffolds presented five times greater mechanical strength than the DCPD mineral-free scaffolds (CH). DCPD mineral enhanced cell proliferation for the 20, 30 and 40-DCPD scaffolds. 50-DCPD scaffolds presented reduced pore interconnectivity due to the coalescence of many pores in addition to the creation of closed-ended pores, which were found to hinder osteoblast cell proliferation.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sandeep Kumar
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Varghese J, Rajagopal A, Shanmugasundaram S. Role of Biomaterials Used for Periodontal Tissue Regeneration-A Concise Evidence-Based Review. Polymers (Basel) 2022; 14:3038. [PMID: 35956553 PMCID: PMC9370319 DOI: 10.3390/polym14153038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontal infections are noncommunicable chronic inflammatory diseases of multifactorial origin that can induce destruction of both soft and hard tissues of the periodontium. The standard remedial modalities for periodontal regeneration include nonsurgical followed by surgical therapy with the adjunctive use of various biomaterials to achieve restoration of the lost tissues. Lately, there has been substantial development in the field of biomaterial, which includes the sole or combined use of osseous grafts, barrier membranes, growth factors and autogenic substitutes to achieve tissue and bone regeneration. Of these, bone replacement grafts have been widely explored for their osteogenic potential with varied outcomes. Osseous grafts are derived from either human, bovine or synthetic sources. Though the biologic response from autogenic biomaterials may be better, the use of bone replacement synthetic substitutes could be practical for clinical practice. This comprehensive review focuses initially on bone graft replacement substitutes, namely ceramic-based (calcium phosphate derivatives, bioactive glass) and autologous platelet concentrates, which assist in alveolar bone regeneration. Further literature compilations emphasize the innovations of biomaterials used as bone substitutes, barrier membranes and complex scaffold fabrication techniques that can mimic the histologically vital tissues required for the regeneration of periodontal apparatus.
Collapse
Affiliation(s)
- Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (A.R.); (S.S.)
| | | | | |
Collapse
|
15
|
Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. COATINGS 2022. [DOI: 10.3390/coatings12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A good barrier membrane is one of the important factors for effective guided bone/tissue regeneration (GBR/GTR) in the case of periodontal bone defects. Several methods are being discussed to overcome and improve the shortcomings of commercially available membranes. One of the methods is to coat the membrane with bioactive materials. In this study, 41 studies related to coated membranes for GBR/GTR published in the last 5 years were reviewed. These studies reported coating the membrane with various bioactive materials through different techniques to improve osteogenesis, antimicrobial properties, and physical/mechanical properties. The reported studies have been classified and discussed based on the purpose of coating. The goal of the most actively studied research on coating or surface modification of membranes is to improve new bone formation. For this purpose, calcium phosphate, bioactive glass, polydopamine, osteoinduced drugs, chitosan, platelet-rich fibrin, enamel matrix derivatives, amelotin, hyaluronic acid, tantalum, and copper were used as membrane coating materials. The paradigm of barrier membranes is changing from only inert (or biocompatible) physical barriers to bioactive osteo-immunomodulatory for effective guided bone and tissue regeneration. However, there is a limitation that there exists only a few clinical studies on humans to date. Efforts are needed to implement the use of coated membranes from the laboratory bench to the dental chair unit. Further clinical studies are needed in the patients’ group for long-term follow-up to confirm the effect of various coating materials.
Collapse
|
16
|
Chand NRK, Sudhakar BK, Ravikumar G, Gayathri V, Devika P, Vennela T, Rao GS, Rao CS. Influence of multi valent states of vanadium ions in ZnO doped novel calcium fluoro phosphate bio glasses. J Mech Behav Biomed Mater 2022; 131:105230. [PMID: 35561600 DOI: 10.1016/j.jmbbm.2022.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
ZnO-CaF2-P2O5 glasses doped with different concentrations of V2O5 (ranging from 0 to 1.0 mol %) were prepared. The prepared bio glasses are soaked in SBF for duration of 2, 3, 7 and 10 days in separate plastic containers and then kept in incubator maintained at body temperature 36.5 °C. The influence of valence states of vanadium ions (V4+/V5+) with respect to the structural aspects by means of FTIR and Raman Spectra, elastic properties by means of relevant parameters, the thermal stability by means of DTA studies and other spectroscopic properties by using OA and ESR studies are studied. The raise in wavenumber and comparative areas of the two absorption bands corresponding to electronic transitions 2B2g → E2g, 2B2g → 2B1g respectively in optical absorption spectra of these CZPV glasses clearly indicate that vanadium ions have octahedral co-ordination with tetragonal compression due to modifier action of V2O5in the glass network. The optical absorption and ESR studies have revealed that vanadium ions exist in V4+ states. The characteristic temperatures of these prepared glasses obtained from DTA curves explain modifications taking place in the structure of glass network. The structural changes are explained with the aid of FTIR and Raman studies. The bio active nature of the titled glasses is evident from dissociation and pH studies by SEM &EDS of these glasses before and after immersion into SBF.
Collapse
Affiliation(s)
| | - B K Sudhakar
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India
| | - G Ravikumar
- Department of Physics, Sreenidhi Institute of Science and Technology, JNT University, Hyderabad, 501301, India
| | - V Gayathri
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India
| | - P Devika
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India
| | - T Vennela
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India
| | - G Srinivasa Rao
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India.
| | - Ch Srinivasa Rao
- Department of Physics, Andhra Loyola College, Vijayawada, AP, India.
| |
Collapse
|
17
|
Nano-hydroxyapatite-incorporated polycaprolactone nanofibrous scaffold as a dentin tissue engineering-based strategy for vital pulp therapy. Dent Mater 2022; 38:960-977. [PMID: 35331551 DOI: 10.1016/j.dental.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Targeting a tissue engineering-based vital pulp therapy (VPT), this study investigated the incorporation of nano-hydroxyapatite (nHA) into polycaprolactone (PCL) nanofibers, and the metabolism of human dental pulp cells (HDPCs) seeded on the scaffolds. METHODS PCL-based solutions (10% w/v) containing nHA (0 - control; 0.5; 1.0; or 2.0% w/v) were electrospun into nanofibrous scaffolds. The scaffolds were characterized for morphology and composition (MEV/EDS), solubility, the release of calcium/phosphate (C/P), and modulation of medium pH. Then, HDPCs were seeded on the scaffolds and evaluated for cell viability (alamarBlue and live/dead), adhesion and spreading (F-actin), total protein (TP; Lowry), alkaline phosphatase activity (ALP; thymolphthalein assay), expression of odontogenic genes (RT-qPCR), and formation of a mineralized matrix (Alizarin Red). Data were analyzed with ANOVA and post-hocs (α = 5%). RESULTS Higher nHA concentrations roughened fiber surfaces, whereas PCL+ 2%nHA increased the interfibrillar spaces. PCL+ 1%nHA or PCL+ 2%nHA significantly released more C/P but the medium pH was maintained below 8.0. HDPCs viability was not affected by nHA, while cell adhesion/spreading was favored, especially for PCL+ 2%nHA. Higher protein content and ALP activity were seen for scaffolds incorporated with nHA, after 21 days. PCL+ 1%nHA and PCL+ 2%nHA upregulated the expression of DSPP and DMP1 in 14 days, and COL1A1, ALPL, and DMP1 in 21 days. The formation of a mineralized matrix was nHA concentration-dependent, and it was about 9 × higher for PCL+ 2%nHA. SIGNIFICANCE nHA-incorporated PCL nanofibrous scaffolds are cytocompatible and can stimulate the adhesion and odontogenic potential of HDPCs. PCL+ 2%nHA formulation is a bioactive tissue engineering-based cell-homing strategy for VPT.
Collapse
|
18
|
Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration. Acta Biomater 2022; 140:730-744. [PMID: 34896633 DOI: 10.1016/j.actbio.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds functionalized with biomolecules have been developed for bone regeneration but inducing the regeneration of complex structured bone with neovessels remains a challenge. For this study, we developed three-dimensional printed scaffolds with bioactive surfaces coated with minerals and platelet-derived growth factor. The minerals were homogeneously deposited on the surface of the scaffold using 0.01 M NaHCO3 with epigallocatechin gallate in simulated body fluid solution (M2). The M2 scaffold demonstrated enhanced mineral coating amount per scaffold with a greater compressive modulus than the others which used different concentration of NaHCO3. Then, we immobilized PDGF on the mineralized scaffold (M2/P), which enhanced the osteogenic differentiation of human adipose derived stem cells in vitro and promoted the secretion of pro-angiogenic factors. Cells cultured in M2/P showed remarkable ratio of osteocalcin- and osteopontin-positive nuclei, and M2/P-derived medium induced endothelial cells to form tubule structures. Finally, the implanted M2/P scaffolds onto mouse calvarial defects had regenerated bone in 80.8 ± 9.8% of the defect area with the arterioles were formed, after 8 weeks. In summary, our scaffold, which composed of minerals and pro-angiogenic growth factor, could be used therapeutically to improve the regeneration of bone with a highly vascularized structure. STATEMENT OF SIGNIFICANCE: Surface engineered scaffolds have been developed for bone regeneration but inducing the volumetric regeneration of bone with neovessels remains a challenge. In here, we developed 3D printed scaffolds with bioactive surfaces coated with bio-minerals and platelet-derived growth factors. We proved that the 0.01 M NaHCO3 with polyphenol in simulated body fluid solution enhanced the deposition of bio-minerals and even distribution on the surface of scaffold. The in vitro studies demonstrated that the attached cells on the bioactive surface showed the enhanced osteogenic differentiation and secretion of pro-angiogenic factors. Finally, the scaffold with bioactive surface not only improved the regenerated volume of bone tissues but also increased neovessel formation after in vivo implantation onto mouse calvarial defect.
Collapse
|
19
|
van Santen VJB, Bastidas Coral AP, Hogervorst JMA, Klein-Nulend J, Bakker AD. Biologically Relevant In Vitro 3D-Model to Study Bone Regeneration Potential of Human Adipose Stem Cells. Biomolecules 2022; 12:biom12020169. [PMID: 35204670 PMCID: PMC8961519 DOI: 10.3390/biom12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Standard cell cultures may not predict the proliferation and differentiation potential of human mesenchymal stromal cells (MSCs) after seeding on a scaffold and implanting this construct in a bone defect. We aimed to develop a more biologically relevant in vitro 3D-model for preclinical studies on the bone regeneration potential of MSCs. Human adipose tissue-derived mesenchymal stromal cells (hASCs; five donors) were seeded on biphasic calcium phosphate (BCP) granules and cultured under hypoxia (1% O2) for 14 days with pro-inflammatory TNFα, IL4, IL6, and IL17F (10 mg/mL each) added during the first three days, simulating the early stages of repair (bone construct model). Alternatively, hASCs were cultured on plastic, under 20% O2 and without cytokines for 14 days (standard cell culture). After two days, the bone construct model decreased total DNA (3.9-fold), COL1 (9.8-fold), and RUNX2 expression (19.6-fold) and metabolic activity (4.6-fold), but increased VEGF165 expression (38.6-fold) in hASCs compared to standard cultures. After seven days, the bone construct model decreased RUNX2 expression (64-fold) and metabolic activity (2.3-fold), but increased VEGF165 (54.5-fold) and KI67 expression (5.7-fold) in hASCs compared to standard cultures. The effect of the bone construct model on hASC proliferation and metabolic activity could be largely mimicked by culturing on BCP alone (20% O2, no cytokines). The effect of the bone construct model on VEGF165 expression could be mimicked by culturing hASCs under hypoxia alone (plastic, no cytokines). In conclusion, we developed a new, biologically relevant in vitro 3D-model to study the bone regeneration potential of MSCs. Our model is likely more suitable for the screening of novel factors to enhance bone regeneration than standard cell cultures.
Collapse
|
20
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
21
|
Assessment of the effect of silica calcium phosphate nanocomposite on mesenchymal stromal cell differentiation and bone regeneration in critical size defect. Saudi Dent J 2021; 33:1119-1125. [PMID: 34938057 PMCID: PMC8665165 DOI: 10.1016/j.sdentj.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Objective The research was designed to assess silica calcium phosphate nanocomposite (SCPC) biocompatibility and bioactivity as an osteoinductive scaffold and cell carrier. Consequently, the ability of cell seeded SCPC implant to regenerate a critical size defect in rat calvarium. Materials and Methods The study was conducted in two parts. A series of in vitro experiments on bone marrow stromal cells (MSCs) seeded in the SCPC scaffold evaluated cell attachment, proliferation and osteogenic differentiation. In the second part, a cell seeded SCPC construct was implanted in rat calvarium and bone regeneration was assessed by histological examination to evaluate the newly formed bone quality and the residual graft volume. Results In vitro experimentation revealed that MSCs cultured on SCPC maintained viability and proliferation when seeded into the SCPC. Scanning electron microscopy demonstrated cell adhesion and calcium appetite formation, MSCs differentiated towards the osteogenic lineage as indicated by the upregulation of RUNX2, ALP, Col1a1 markers. Histological examination showed regeneration from the periphery and core of the defect with new bone formation at different stages of maturation. Conclusion Regenerative medicine delivers promising solutions and technologies for application in craniofacial reconstruction. SCPC scaffold has the potential to be used as a cell carrier to achieve stem cell-based bone regeneration, which provides a viable alternative for treatment of challenging critical size defect.
Collapse
|
22
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
23
|
Jeyapalina S, Hillas E, Beck JP, Agarwal J, Shea J. Fluorapatite and fluorohydroxyapatite apatite surfaces drive adipose-derived stem cells to an osteogenic lineage. J Mech Behav Biomed Mater 2021; 125:104950. [PMID: 34740011 DOI: 10.1016/j.jmbbm.2021.104950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hydroxyapatite (HA) scaffolds are common replacement materials used in the clinical management of critical-sized bone defects. This study was undertaken to examine the potential benefits of fluoridated derivatives of hydroxyapatite, fluorapatite (FA), and fluorohydroxyapatite (FHA) as bone scaffolds in conjunction with adipose-derived stem cells (ADSCs). If FHA and FA surfaces could drive the differentiation of stem cells to an osteogenic phenotype, the combination of these ceramic scaffolds with ADSCs could produce materials with mechanical strength and remodeling potential comparable to autologous bone. This study was designed to investigate the ability of the apatite surfaces HA, FA, and FHA produced at different sintering temperatures to drive ADSCs toward osteogenic lineages. METHODS HA, FHA, and FA surfaces sintered at 1150 °C and 1250 °C were seeded with ADSCs and evaluated for cell growth and gene and protein expression of osteogenic markers at 2 and 10 days post-seeding. RESULTS In vitro, ADSC cells were viable on all surfaces; however, differentiation of these cells into osteoblastic lineage only observed in apatite surfaces. ADSCs seeded on FA and FHA expressed genes and proteins related to osteogenic differentiation markers to a greater extent by Day 2 when compared to HA and cell culture controls. By day 10, HA, FA, and FHA all expressed more bone differentiation markers compared to cell culture controls. CONCLUSION FA and FHA apatite scaffolds may promote the differentiation of ADSCs at an earlier time point than HA surfaces. Combining apatite scaffolds with ADSCs has the potential to improve bone regeneration following bone injury.
Collapse
Affiliation(s)
- Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elaine Hillas
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - James Peter Beck
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jayant Agarwal
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
24
|
Guo X, Li M, Qi W, Bai H, Nie Z, Hu Z, Xiao Y, de Bruijn JD, Bao C, Yuan H. Serial cellular events in bone formation initiated by calcium phosphate ceramics. Acta Biomater 2021; 134:730-743. [PMID: 34303865 DOI: 10.1016/j.actbio.2021.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023]
Abstract
To better understand the biological mechanisms triggered by osteoinductive materials in vivo, we evaluated the timeline of cellular responses to osteoinductive materials subcutaneously implanted in FVB mice. More F4/80-positive macrophages were present in osteoinductive tri-CaP ceramic (TCP) with submicron surface topography (TCPs) than non-osteoinductive TCP with micron surface topography (TCPb) at week 1. Moreover, TCPs (but not TCPb) significantly enhanced osteoclastogenesis, and induced macrophages to polarize from M1 to M2 in the first week. The time sequence and relevance of macrophages and osteoclasts responses involved in bone formation was then evaluated through peri-implant injection of specific chemicals in mice implanted with osteoinductive TCPs. Day-1 injection of clodronate liposomes (LipClod) depleted macrophages, inhibited macrophage polarization to M2, blocked osteoclastogenesis and bone formation, while the day-6 injection was less effective. Anti-RANKL antibody (aRANKL) did not affect macrophage colonization but inhibited osteoclastogenesis. Injection of aRANKL before week 2 aborted bone formation in TCPs, while injection at week 4 partially inhibited bone formation. The overall data show that following ectopic implantation, osteoinductive materials allow macrophage colonization in hours to days, macrophage polarization to M2 in days (within 7 days), osteoclastogenesis in weeks (e.g. in 2 weeks) and bone formation thereafter (after 4 weeks). The serial cellular events verified herein bring a new insight on material-induced bone formation and pave the way to further explore the mechanisms triggered by osteoinductive materials. STATEMENT OF SIGNIFICANCE: A series of key cellular events triggered by osteoinductive calcium phosphate ceramic was revealed: macrophages colonized within hours to days, polarization of M2 macrophages occurred within 7 days, osteoclastogenesis mainly occurred in weeks (e.g. in 2 weeks) and bone formation finally arose thereafter (after 4 weeks). Moreover, such time sequence of cellular events was confirmed with specific chemicals (clodronate liposomes and anti-RANKL antibody). The findings verified herein bring a new insight on material-induced bone formation and pave the way to further explore the mechanisms triggered by osteoinductive materials.
Collapse
Affiliation(s)
- Xiaodong Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Mingzheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 400015, China
| | - Wenting Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zhangling Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zhiqiao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Joost D de Bruijn
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, MB Bilthoven 3723, the Netherlands; School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China.
| | - Huipin Yuan
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, MB Bilthoven 3723, the Netherlands; Huipin Yuan's Lab, Sichuan, China.
| |
Collapse
|
25
|
Liu CC, Solderer A, Heumann C, Attin T, Schmidlin PR. Tricalcium phosphate (-containing) biomaterials in the treatment of periodontal infra-bony defects: A systematic review and meta-analysis. J Dent 2021; 114:103812. [PMID: 34530060 DOI: 10.1016/j.jdent.2021.103812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the additional clinical benefit of tricalcium phosphate (TCP) (-containing) biomaterials compared to open flap debridement (OFD) in periodontal infra-bony defects. DATA A literature search was conducted in Pubmed, Embase and Cochrane library for entries published up to 14th July 2021. All randomized controlled trials (RCTs) that compared a TCP (-containing) material with OFD and studies that assessed a beta-TCP group alone, with vertical defect sites with PPD of ≥ 6 mm and/or presence of infra-bony defects of ≥ 3 mm and a minimum follow-up of 6 months were included. Risk of bias was assessed with the Oxford scale. The random-effects (RE) model was synthesized as differences between weighted average (MD) for probing pocket depth (PPD) and clinical attachment level (CAL) between TCP and OFD groups. An RE analysis was also performed for the beta-TCP group alone. STUDY SELECTION Data from 16 RCTs were included in the analysis. Six studies that represented 151 patients and sites were selected for meta-analysis. The overall MD with 95% CI at 6 months was calculated to be -0.47 [-0.83, -0.12; P = 0.0087] and -1.06 [-1.67, -0.46; P = 0.0006] for PPD and CAL, respectively. Whereas MD at 12 months for PPD and CAL was -0.89 [-1.54, -0.23; P = 0.0078] and -1.25 [-1.85, -0.66; P<0.0001], respectively. All results were in favor of TCP (-containing) group over OFD. CONCLUSIONS The results of the study suggest that the use of a TCP (-containing) material may have the potential for additional clinical improvement in PPD and CAL compared with OFD in infra-bony defects, given the limitations of the included evidence. CLINICAL SIGNIFICANCE The use of TCP as a bone graft substitute is becoming increasingly common. Therefore, it would be advantageous if an adjunctive benefit in the regeneration of infra-bony defects could be demonstrated to facilitate material selection.
Collapse
Affiliation(s)
- Chun Ching Liu
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Alex Solderer
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Heumann
- Faculty of Mathematics, Informatics and Statistics, Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Influence of Human Jaw Periosteal Cells Seeded β-Tricalcium Phosphate Scaffolds on Blood Coagulation. Int J Mol Sci 2021; 22:ijms22189942. [PMID: 34576103 PMCID: PMC8467579 DOI: 10.3390/ijms22189942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering offers auspicious opportunities in oral and maxillofacial surgery to heal bone defects. For this purpose, the combination of cells with stability-providing scaffolds is required. Jaw periosteal cells (JPCs) are well suited for regenerative therapies, as they are easily accessible and show strong osteogenic potential. In this study, we analyzed the influence of uncoated and polylactic-co-glycolic acid (PLGA)-coated β-tricalcium phosphate (β-TCP) scaffolds on JPC colonization and subsequent osteogenic differentiation. Furthermore, interaction with the human blood was investigated. This study demonstrated that PLGA-coated and uncoated β-TCP scaffolds can be colonized with JPCs and further differentiated into osteogenic cells. On day 15, after cell seeding, JPCs with and without osteogenic differentiation were incubated with fresh human whole blood under dynamic conditions. The activation of coagulation, complement system, inflammation, and blood cells were analyzed using ELISA and scanning electron microscopy (SEM). JPC-seeded scaffolds showed a dense cell layer and osteogenic differentiation capacity on both PLGA-coated and uncoated β-TCP scaffolds. SEM analyses showed no relevant blood cell attachment and ELISA results revealed no significant increase in most of the analyzed cell activation markers (β-thromboglobulin, Sc5B-9, polymorphonuclear (PMN)-elastase). However, a notable increase in thrombin-antithrombin III (TAT) complex levels, as well as fibrin fiber accumulation on JPC-seeded β-TCP scaffolds, was detected compared to the scaffolds without JPCs. Thus, this study demonstrated that besides the scaffold material the cells colonizing the scaffolds can also influence hemostasis, which can influence the regeneration of bone tissue.
Collapse
|
27
|
Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. JOURNAL OF MATERIALS RESEARCH 2021; 36:3041-3049. [PMID: 35757291 PMCID: PMC9231631 DOI: 10.1557/s43578-021-00311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/15/2023]
Abstract
In this study, magnesium and strontium-doped β-tricalcium phosphates were synthesized to understand dopant impact on substrate chemistry and morphology, and proliferation and osteogenic differentiation of mesenchymal stem cells. Under solid-state synthesis, magnesium doping stabilized the β-phase in tricalcium phosphate, with 22% less α-phase content than control. Strontium doping increased α-phase formation by 17%, and also resulted in greater surface porosity, leading to greater crystal precipitation in vitro. Magnesium also significantly enhanced the proliferation of stem cells (P < 0.05) and differentiation into osteoblasts with increased alkaline phosphatase production (P < 0.05) at all time points. These results indicated that magnesium stabilizes β-tricalcium phosphate in vitro and enhanced early and late-time-point osteoconduction and osteoinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | - Susmita Bose
- Corresponding author , Phone: (509) 335-7461, Fax: (509) 335-4662
| |
Collapse
|
28
|
Bhagavatham SKS, Khanchandani P, Kannan V, Potikuri D, Sridharan D, Pulukool SK, Naik AA, Dandamudi RB, Divi SM, Pargaonkar A, Ray R, Santha SSR, Seshagiri PB, Narasimhan K, Gumdal N, Sivaramakrishnan V. Adenosine deaminase modulates metabolic remodeling and orchestrates joint destruction in rheumatoid arthritis. Sci Rep 2021; 11:15129. [PMID: 34301999 PMCID: PMC8302689 DOI: 10.1038/s41598-021-94607-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease associated with inflammation and joint remodeling. Adenosine deaminase (ADA), a risk factor in RA, degrades adenosine, an anti-inflammatory molecule, resulting in an inflammatory bias. We present an integrative analysis of clinical data, cytokines, serum metabolomics in RA patients and mechanistic studies on ADA-mediated effects on in vitro cell culture models. ADA activity differentiated patients into low and high ADA sets. The levels of the cytokines TNFα, IFNγ, IL-10, TGFβ and sRANKL were elevated in RA and more pronounced in high ADA sets. Serum metabolomic analysis shows altered metabolic pathways in RA which were distinct between low and high ADA sets. Comparative analysis with previous studies shows similar pathways are modulated by DMARDs and biologics. Random forest analysis distinguished RA from control by methyl-histidine and hydroxyisocaproic acid, while hexose-phosphate and fructose-6-phosphate distinguished high ADA from low ADA. The deregulated metabolic pathways of High ADA datasets significantly overlapped with high ADA expressing PBMCs GEO transcriptomics dataset. ADA induced the death of chondrocytes, synoviocyte proliferation, both inflammation in macrophages and their differentiation into osteoclasts and impaired differentiation of mesenchymal stem cells to osteoblasts and mineralization. PBMCs expressing elevated ADA had increased expression of cytokines and P2 receptors compared to synovial macrophages which has low expression of ADA. Our data demonstrates increased cytokine levels and distinct metabolic signatures of RA based on the ADA activity, suggests an important role for ADA in the pathophysiology of RA joints and as a potential marker and therapeutic target in RA patients.
Collapse
Affiliation(s)
- Sai Krishna Srimadh Bhagavatham
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Prakash Khanchandani
- grid.496668.30000 0004 1767 3076Department of Orthopedics, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Vishnu Kannan
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India ,grid.411552.60000 0004 1766 4022Present Address: Department of Botany/Biotechnology, CMS College, Kottayam, 686001 India
| | | | - Divya Sridharan
- grid.34980.360000 0001 0482 5067Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bengaluru, 560012 India
| | - Sujith Kumar Pulukool
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Ashwin Ashok Naik
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Rajesh Babu Dandamudi
- grid.444651.60000 0004 0496 6988Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India ,Present Address: Phenomenex India, Hyderabad, Telangana 500084 India
| | - Sai Mangala Divi
- grid.496668.30000 0004 1767 3076Department of Biochemistry, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Ashish Pargaonkar
- grid.464737.50000 0004 1775 153XAgilent Technologies India Pvt Ltd, Bengaluru, 560048 India
| | - Rahul Ray
- grid.496668.30000 0004 1767 3076Department of Orthopedics, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Saibharath Simha Reddy Santha
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Polani B. Seshagiri
- grid.34980.360000 0001 0482 5067Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bengaluru, 560012 India
| | - K. Narasimhan
- Sri Sathya Sai General Hospital, Puttaparthi, 515134 India
| | | | - Venketesh Sivaramakrishnan
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| |
Collapse
|
29
|
Tang Z, Chen S, Ni Y, Zhao R, Zhu X, Yang X, Zhang X. Role of Na +, K +-ATPase ion pump in osteoinduction. Acta Biomater 2021; 129:293-308. [PMID: 34087440 DOI: 10.1016/j.actbio.2021.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Porous biphasic calcium phosphate bioceramic (BCP) possesses osteoinductivity to induce the osteoblastic commitment of mesenchymal stem cells (MSCs) and ectopic bone formation. However, the underlying mechanism remains enigmatic. We performed a gene array analysis of MSCs cocultured with BCP to screen for candidate osteoinductive modulators. Na+, K+-ATPase (NKA), an ion transporter, therefore was identified as a crucial ion transporter in regulating the osteogenesis of the cells. NKA activator, a polyclonal antibody, enriched the cytomembrane abundance of NKA and lead to an enhanced osteogenic effect of BCP. As indicated in gene array analysis and suggested by co-immunoprecipitation assay, protein phosphatase 2A (PP2A) was elevated by BCP to dephosphorylate NKA and prevent its endocytosis. The inhibition of NKA by ouabain resulted in an adverse effect on osteoinductivity of BCP. We further altered NKA activity in mice implanted with BCP and found that the intensity and incidence of osteoinduction was increased by the NKA activator. We went one step further by investigating the potential of targeting NKA in osteoporotic bone regeneration. Activating NKA upregulated osteogenic gene expression and calcium deposition ability of osteoporotic osteoblasts. Furthermore, activation of NKA in mice ameliorated estrogen-deficiency induced bone loss, in terms of increased bone mass and improved bending strength. With this osteoinductive bioceramic derived ion transporter target, we demonstrate that the activation of NKA has significant potential to revolutionize the regeneration of bone. STATEMENT OF SIGNIFICANCE: In this study, we identified an important role of Na+, K+-ATPase (NKA) have played in osteoinductivity of biphasic calcium phosphate bioceramic (BCP). Furthermore, we demonstrated the therapeutic potential of targeting NKA in osteoporotic bone regeneration. Numerous gene and protein targets to treat osteoporosis were discovered every year, mainly obtained by genomic and proteomic screenings of a large population. In contrast, our study identified an unrevealed bone regenerating target from the upregulated genes induced by an osteoinductive biomaterial. The approach was cost-saving since it did not require a large sample pool. Furthermore, the target derived from this approach was proven to be anabolic. Identification of an anabolic agent holds significant value since most of the current anti-osteoporotic therapies are antiresorptive.
Collapse
|
30
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
31
|
Li J, Liu Y, Zhang Y, Yao B, Enhejirigala, Li Z, Song W, Wang Y, Duan X, Yuan X, Fu X, Huang S. Biophysical and Biochemical Cues of Biomaterials Guide Mesenchymal Stem Cell Behaviors. Front Cell Dev Biol 2021; 9:640388. [PMID: 33842464 PMCID: PMC8027358 DOI: 10.3389/fcell.2021.640388] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the fields of tissue engineering and regenerative medicine due to their self-renewal capabilities and multipotential differentiation assurance. However, capitalizing on specific factors to precisely guide MSC behaviors is the cornerstone of biomedical applications. Fortunately, several key biophysical and biochemical cues of biomaterials that can synergistically regulate cell behavior have paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for promoting MSC application prospects. Therefore, the identification of these cues in guiding MSC behavior, including cell migration, proliferation, and differentiation, may be of particular importance for better clinical performance. This review focuses on providing a comprehensive and systematic understanding of biophysical and biochemical cues, as well as the strategic engineering of these signals in current scaffold designs, and we believe that integrating biophysical and biochemical cues in next-generation biomaterials would potentially help functionally regulate MSCs for diverse applications in regenerative medicine and cell therapy in the future.
Collapse
Affiliation(s)
- Jianjun Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- Department of General Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yufan Liu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- College of Graduate, Tianjin Medical University, Tianjin, China
- Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot, China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, Datong, China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, PLA Medical College, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, PLA Medical College, Beijing, China
| |
Collapse
|
32
|
Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts. Stem Cells Int 2021; 2021:8843179. [PMID: 33833810 PMCID: PMC8012132 DOI: 10.1155/2021/8843179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is regarded as the most common chronic metabolic bone condition in humans. In osteoporosis, bone mesenchymal stem cells (MSCs) have reduced cellular function. Regenerative medicine using adipose-derived stem cell (ADSC) transplantation can promote the growth and strength of new bones, improve bone stability, and reduce the risk of fractures. Various methods have been attempted to differentiate ADSCs to functioning specialized cells for prospective clinical application. However, commonly used therapies have resulted in damage to the donor site and morbidity, immune reactions, carcinogenic generation, and postoperative difficulties. Photobiomodulation (PBM) improves ADSC differentiation and proliferation along with reducing clinical difficulties such as treatment failures to common drug therapies and late initiation of treatment. PBM is a noninvasive, nonthermal treatment that encourages cells to produce more energy and to undergo self-repair by using visible green and red and invisible near-infrared (NIR) radiation. The use of PBM for ADSC proliferation and differentiation has been widely studied with multiple outcomes observed due to laser fluence and wavelength dependence. In this article, the potential for differentiating ADSCs into osteoblasts and the various methods used, including biological induction, chemical induction, and PBM, will be addressed. Likewise, the optimal laser parameters that could improve the proliferation and differentiation of ADSC, translating into clinical success, will be commented on.
Collapse
|
33
|
Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Elashry MI, Baulig N, Wagner AS, Klymiuk MC, Kruppke B, Hanke T, Wenisch S, Arnhold S. Combined macromolecule biomaterials together with fluid shear stress promote the osteogenic differentiation capacity of equine adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:116. [PMID: 33579348 PMCID: PMC7879632 DOI: 10.1186/s13287-021-02146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Combination of mesenchymal stem cells (MSCs) and biomaterials is a rapidly growing approach in regenerative medicine particularly for chronic degenerative disorders including osteoarthritis and osteoporosis. The present study examined the effect of biomaterial scaffolds on equine adipose-derived MSC morphology, viability, adherence, migration, and osteogenic differentiation. Methods MSCs were cultivated in conjunction with collagen CultiSpher-S Microcarrier (MC), nanocomposite xerogels B30 and combined B30 with strontium (B30Str) biomaterials in osteogenic differentiation medium either under static or mechanical fluid shear stress (FSS) culture conditions. The data were generated by histological means, live cell imaging, cell viability, adherence and migration assays, semi-quantification of alkaline phosphatase (ALP) activity, and quantification of the osteogenic markers runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) expression. Results The data revealed that combined mechanical FSS with MC but not B30 enhanced MSC viability and promoted their migration. Combined osteogenic medium with MC, B30, and B30Str increased ALP activity compared to cultivation in basal medium. Osteogenic induction with MC, B30, and B30Str resulted in diffused matrix mineralization. The combined osteogenic induction with biomaterials under mechanical FSS increased Runx2 protein expression either in comparison to those cells cultivated in BM or those cells induced under static culture. Runx2 and ALP expression was upregulated following combined osteogenic differentiation together with B30 and B30Str regardless of static or FSS culture. Conclusions Taken together, the data revealed that FSS in conjunction with biomaterials promoted osteogenic differentiation of MSCs. This combination may be considered as a marked improvement for clinical applications to cure bone defects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02146-7.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany.
| | - Nadine Baulig
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany.,Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Thomas Hanke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| |
Collapse
|
35
|
Sodhi H, Panitch A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules 2020; 11:E29. [PMID: 33383795 PMCID: PMC7823287 DOI: 10.3390/biom11010029] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosaminoglycans are native components of the extracellular matrix that drive cell behavior and control the microenvironment surrounding cells, making them promising therapeutic targets for a myriad of diseases. Recent studies have shown that recapitulation of cell interactions with the extracellular matrix are key in tissue engineering, where the aim is to mimic and regenerate endogenous tissues. Because of this, incorporation of glycosaminoglycans to drive stem cell fate and promote cell proliferation in engineered tissues has gained increasing attention. This review summarizes the role glycosaminoglycans can play in tissue engineering and the recent advances in their use in these constructs. We also evaluate the general trend of research in this niche and provide insight into its future directions.
Collapse
Affiliation(s)
- Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
36
|
Lee WB, Wang C, Lee JH, Jeong KJ, Jang YS, Park JY, Ryu MH, Kim UK, Lee J, Hwang DS. Whitlockite Granules on Bone Regeneration in Defect of Rat Calvaria. ACS APPLIED BIO MATERIALS 2020; 3:7762-7768. [PMID: 35019516 DOI: 10.1021/acsabm.0c00960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Whitlockite (WH; Ca18Mg2(HPO4)2(PO4)12) is a calcium phosphate based ceramic that contains magnesium ions. As the second most abundant mineral in living bone, WH occupies 25-35 wt % of the inorganic portion of human bone. Compared to hydroxyapatite (HAp, Ca10(PO4)6(OH)2), WH possesses better mechanical properties, faster resorbability, and promotion behavior on the osteogenesis. In this article, we introduced a fabrication method of interconnected porous WH granules through vacuum filtration, followed by sintering treatment based on the thermal stability of WH synthesized using the tri-solvent system. This study presents a histological, radiological, and immunohistochemical evaluation of the bone healing potential of these WH granules in a 5 mm diameter calvarial bone defect in rats. The histological evaluation shows no inflammation or foreign body reaction in the WH group. The WH group displays newly formed bone at the same thickness as the original bone. On the contrary, bone formation is not observed in the nontreated (NT) group. Besides, immunohistochemistry (IHC) confirmed that WH granules promoted bone regeneration with the significantly higher expression of bone morphogenetic proteins-2 (BMP-2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) compared to the NT group without the addition of exogenous cells or growth factors. These results suggest that WH has excellent potential for application in bone tissue regeneration.
Collapse
Affiliation(s)
- Won-Bum Lee
- Department of Oral & Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Caifeng Wang
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Han Lee
- Department of Oral & Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Ki-Jae Jeong
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon-Seo Jang
- Department of Oral Pathology, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Jin-Young Park
- Department of Oral & Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Uk-Kyu Kim
- Department of Oral & Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.,Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-Seok Hwang
- Department of Oral & Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
37
|
Xiao W, Jakimowicz MD, Zampetakis I, Neely S, Scarpa F, Davis SA, Williams DS, Perriman AW. Biopolymeric Coacervate Microvectors for the Delivery of Functional Proteins to Cells. ACTA ACUST UNITED AC 2020; 4:e2000101. [PMID: 33166084 DOI: 10.1002/adbi.202000101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/29/2020] [Indexed: 11/07/2022]
Abstract
The extent to which biologic payloads can be effectively delivered to cells is a limiting factor in the development of new therapies. Limitations arise from the lack of pharmacokinetic stability of biologics in vivo. Encapsulating biologics in a protective delivery vector has the potential to improve delivery profile and enhance performance. Coacervate microdroplets are developed as cell-mimetic materials with established potential for the stabilization of biological molecules, such as proteins and nucleic acids. Here, the development of biodegradable coacervate microvectors (comprising synthetically modified amylose polymers) is presented, for the delivery of biologic payloads to cells. Amylose-based coacervate microdroplets are stable under physiological conditions (e.g., temperature and ionic strength), are noncytotoxic owing to their biopolymeric structure, spontaneously interacted with the cell membrane, and are able to deliver and release proteinaceous payloads beyond the plasma membrane. In particular, myoglobin, an oxygen storage and antioxidant protein, is successfully delivered into human mesenchymal stem cells (hMSCs) within 24 h. Furthermore, coacervate microvectors are implemented for the delivery of human bone morphogenetic protein 2 growth factor, inducing differentiation of hMSCs into osteoprogenitor cells. This study demonstrates the potential of coacervate microdroplets as delivery microvectors for biomedical research and the development of new therapies.
Collapse
Affiliation(s)
- Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Monika D Jakimowicz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
- HH Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- Centre for Organized Matter Chemistry and Centre for Protolife Research School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TF, UK
| | - Sarah Neely
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TF, UK
| | - Sean A Davis
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
| | - David S Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
38
|
Shi Q, Chen Y, Li M, Zhang T, Ding S, Xu Y, Hu J, Chen C, Lu H. Designing a novel vacuum aspiration system to decellularize large-size enthesis with preservation of physicochemical and biological properties. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1364. [PMID: 33313109 PMCID: PMC7723548 DOI: 10.21037/atm-20-3661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Functional and rapid enthesis regeneration remains a challenge after arthroscopic rotator cuff (RC) repair. Tissue-engineering a large-size biomimetic scaffold may be an adjuvant strategy to improve this clinical dilemma. Herein, we developed an optimized protocol to decellularize large-size enthesis as scaffolds for augmenting RC tear. Methods A novel vacuum aspiration system (VAS) was set up, which can provide a negative pressure to suck out cellular substances from tissue blocks without using chemical detergents. Large-size enthesis tissue specimens were harvested from canine infraspinatus tendon (IT) insertion, and then decellularized with an optimized protocol [freeze-thaw processing followed by nuclease digestion and phosphate buffer saline (PBS) rinsing in the custom-designed VAS], or a conventional protocol (freeze-thaw processing followed by nuclease digestion and PBS rinsing), thus fabricating two kinds of acellular enthesis matrix (AEM), namely C-AEM and O-AEM. After that, the C-AEM and O-AEM were comparatively evaluated from the aspect of their physicochemical and biological properties. Results Physiochemically, the O-AEM preserved the morphologies, ingredients, and tensile properties much better than the C-AEM. Biologically, in vitro studies demonstrated that both C-AEM and O-AEM show no cytotoxicity and low immunogenicity, which could promote stem cells attachment and proliferation. Interestingly, O-AEM showed better region-specific inducibility on the interacted stem cell down osteogenic, chondrogenic and tenogenic lineages compared with C-AEM. Additionally, using a canine IT repair model, the injured enthesis patched with O-AEM showed a significant improvement compared with the injured enthesis patched with C-AEM or direct suture histologically. Conclusions The proposed VAS may help us fabricate large-size AEM with good physicochemical and biological properties, and this AEM may have potential clinical applications in patching large/massive RC tear.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Shulin Ding
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
39
|
Chiou G, Jui E, Rhea AC, Gorthi A, Miar S, Acosta FM, Perez C, Suhail Y, Kshitiz, Chen Y, Ong JL, Bizios R, Rathbone C, Guda T. Scaffold Architecture and Matrix Strain Modulate Mesenchymal Cell and Microvascular Growth and Development in a Time Dependent Manner. Cell Mol Bioeng 2020; 13:507-526. [PMID: 33184580 PMCID: PMC7596170 DOI: 10.1007/s12195-020-00648-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis. METHODS The interaction between mesenchymal stem cells (MSCs) seeded on hydroxyapatite scaffolds of 450, 340, and 250 μm pores and microvascular fragments (MVFs) seeded within 20 mg/mL fibrin hydrogels that were cast into the cell-seeded scaffolds, was assessed in vitro over 21 days and compared to the fibrin hydrogels without scaffold but containing both MSCs and MVFs. mRNA sequencing was performed across all groups and a computational mechanics model was developed to validate architecture effects on predicting vascularization driven by stiffer matrix behavior at scaffold surfaces compared to the pore interior. RESULTS Lectin staining of decalcified scaffolds showed continued vessel growth, branching and network formation at 14 days. The fibrin gel provides no resistance to spread-out capillary networks formation, with greater vessel loops within the 450 μm pores and vessels bridging across 250 μm pores. Vessel growth in the scaffolds was observed to be stimulated by hypoxia and successive angiogenic signaling. Fibrin gels showed linear fold increase in VEGF expression and no change in BMP2. Within scaffolds, there was multiple fold increase in VEGF between days 7 and 14 and early multiple fold increases in BMP2 between days 3 and 7, relative to fibrin. There was evidence of yap/taz based hippo signaling and mechanotransduction in the scaffold groups. The vessel growth models determined by computational modeling matched the trends observed experimentally. CONCLUSION The differing nature of hypoxia signaling between scaffold systems and mechano-transduction sensing matrix mechanics were primarily responsible for differences in osteogenic cell and microvessel growth. The computational model implicated scaffold architecture in dictating branching morphology and strain in the hydrogel within pores in dictating vessel lengths.
Collapse
Affiliation(s)
- Gennifer Chiou
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Elysa Jui
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Allison C. Rhea
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229 USA
| | - Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Cynthia Perez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030 USA
- Cancer Systems Biology at Yale, Yale University, West Haven, CT 06516 USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX 78229 USA
| | - Joo L. Ong
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Christopher Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 USA
| |
Collapse
|
40
|
Taylor BL, Perez I, Ciprano J, Freeman COU, Goldstein A, Freeman J. Three-Dimensional Porous Trabecular Scaffold Exhibits Osteoconductive Behaviors In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:241-250. [PMID: 33195795 PMCID: PMC7665166 DOI: 10.1007/s40883-018-0084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/20/2018] [Indexed: 10/25/2022]
Abstract
In the USA, approximately 500,000 bone grafting procedures are performed annually to treat injured or diseased bone. Autografts and allografts are the most common treatment options but can lead to adverse outcomes such as donor site morbidity and mechanical failure within 10 years. Due to this, tissue engineered replacements have emerged as a promising alternative to the biological options. In this study, we characterize an electrospun porous composite scaffold as a potential bone substitute. Various mineralization techniques including electrodeposition were explored to determine the optimal method to integrate mineral content throughout the scaffold. In vitro studies were performed to determine the biocompatibility and osteogenic potential of the nanofibrous scaffolds. The presence of hydroxyapatite (HAp) and brushite throughout the scaffold was confirmed using energy dispersive X-ray fluorescence, scanning electron microscopy, and ash weight analysis. The active flow of ions via electrodeposition mineralization led to a threefold increase in mineral content throughout the scaffold in comparison to static and flow mineralization. Additionally, a ten-layer scaffold was successfully mineralized and confirmed with an alizarin red assay. In vitro studies confirmed the mineralized scaffold was biocompatible with human bone marrow derived stromal cells. Additionally, bone marrow derived stromal cells seeded on the mineralized scaffold with embedded HAp expressed 30% more osteocalcin, a primary bone protein, than these cells seeded on non-mineralized scaffolds and only 9% less osteocalcin than mature pre-osteoblasts on tissue culture polystyrene. This work aims to confirm the potential of a biomimetic mineralized scaffold for full-thickness trabecular bone replacement.
Collapse
Affiliation(s)
- Brittany L Taylor
- McKay Orthopaedic Research Lab, University of Pennsylvania,
Philadelphia, PA, USA
- Biomedical Engineering, Rutgers University, Piscataway, NJ,
USA
| | - Isabel Perez
- Biomedical Engineering, Rutgers University, Piscataway, NJ,
USA
| | - James Ciprano
- Biomedical Engineering, Rutgers University, Piscataway, NJ,
USA
| | | | - Aaron Goldstein
- Chemical Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA, USA
| | - Joseph Freeman
- Biomedical Engineering, Rutgers University, Piscataway, NJ,
USA
| |
Collapse
|
41
|
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater 2020; 113:1-22. [PMID: 32622053 DOI: 10.1016/j.actbio.2020.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The growing demand for personalized implants and tissue scaffolds requires advanced biomaterials and processing strategies for the fabrication of three-dimensional (3D) structures mimicking the complexity of the extracellular matrix. During the last years, biofabrication approaches like 3D printing of cell-laden (soft) hydrogels have been gaining increasing attention to design such 3D functional environments which resemble natural tissues (and organs). However, often these polymeric hydrogels show poor stability and low printing fidelity and hence various approaches in terms of multi-material mixtures are being developed to enhance pre- and post-printing features as well as cytocompatibility and post-printing cellular development. Additionally, bioactive properties improve the binding to the surrounding (host) tissue at the implantation site. In this review we focus on the state-of-the-art of a particular type of heterogeneous bioinks, which are composed of polymeric hydrogels incorporating inorganic bioactive fillers. Such systems include isotropic and anisotropic silicates like bioactive glasses and nanoclays or calcium-phosphates like hydroxyapatite (HAp), which provide in-situ crosslinking effects and add extra functionality to the matrix, for example mineralization capability. The present review paper discusses in detail such bioactive composite bioink systems based on the available literature, revealing that a great variety has been developed with substantially improved bioprinting characteristics, in comparison to the pure hydrogel counterparts, and enabling high viability of printed cells. The analysis of the results of the published studies demonstrates that bioactive fillers are a promising addition to hydrogels to print stable 3D constructs for regeneration of tissues. Progress and challenges of the development and applications of such composite bioink approaches are discussed and avenues for future research in the field are presented. STATEMENT OF SIGNIFICANCE: Biofabrication, involving the processing of biocompatible hydrogels including cells (bioinks), is being increasingly applied for developing complex tissue and organ mimicking structures. A variety of multi-material bioinks is being investigated to bioprint 3D constructs showing shape stability and long-term biological performance. Composite hydrogel bioinks incorporating inorganic bioreactive fillers for 3D bioprinting are the subject of this review paper. Results reported in the literature highlight the effect of bioactive fillers on bioink properties, printability and on cell behavior during and after printing and provide important information for optimizing the design of future bioinks for biofabrication, exploiting the extra functionalities provided by inorganic fillers. Further functionalization with drugs/growth factors can target enhanced printability and local drug release for more specialized biomedical therapies.
Collapse
|
42
|
Yang BC, Lan SM, Ju CP, Chern Lin JH. Osteoporotic Goat Spine Implantation Study Using a Synthetic, Resorbable Ca/P/S-Based Bone Substitute. Front Bioeng Biotechnol 2020; 8:876. [PMID: 32850733 PMCID: PMC7417633 DOI: 10.3389/fbioe.2020.00876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
One primary purpose of the present study is to clarify whether the highly porous, resorbable Ca/P/S-based bone substitute used in this study would still induce an osteoporotic bone when implanted into the osteoporotic vertebral defects of ovariectomized (OVX) goats, or the newly-grown bone would expectantly be rather healthy bone. The bone substitute material used for the study is a synthetic, 100% inorganic, highly porous and fast-resorbable Ca/P/S-based material (Ezechbone® Granule CBS-400). The results show that the OVX procedure along with a low calcium diet and breeding away from light can successfully induce osteoporosis in the present female experimental goats. The histological examination reveals a newly-formed trabecular bone network within the surgically-created defect of the CBS-400-implanted (OVX_IP) goat. This new trabecular bone network in the OVX_IP goat appears much denser than the OVX goat and comparable to the healthy control goat. Histomorphometry show that, among all the experimental goats, the OVX_IP goat has the highest trabecular thickness and lowest trabecular bone packet prevalence. The differences in trabecular plate separation, trabecular number and trabecular bone tissue area ratio between the OVX_IP goat and the control goat are not significant, indicating that the trabecular bone architecture of the OVX_IP goat has substantially recovered to the normal level in about 6 months after implantation without signs of osteoporosis-related delay in the bone maturing process. The quick and nicely recovered trabecular architecture parameters observed in the OVX_IP goat indicate that the present Ca/P/S-based bone substitute material has a high potential to treat osteoporotic fractures.
Collapse
Affiliation(s)
- Bing-Chen Yang
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Sheng-Min Lan
- Department of Orthopedics, National Cheng-Kung University Hospital Dou-Liou Branch, Yunlin, Taiwan
| | - Chien-Ping Ju
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Jiin-Huey Chern Lin
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
43
|
Burst, Short, and Sustained Vitamin D 3 Applications Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Int J Mol Sci 2020; 21:ijms21093202. [PMID: 32366057 PMCID: PMC7247321 DOI: 10.3390/ijms21093202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Incorporation of 1,25(OH)2 vitamin D3 (vitD3) into tissue-engineered scaffolds could aid the healing of critical-sized bone defects. We hypothesize that shorter applications of vitD3 lead to more osteogenic differentiation of mesenchymal stem cells (MSCs) than a sustained application. To test this, release from a scaffold was mimicked by exposing MSCs to exactly controlled vitD3 regimens. Human adipose stem cells (hASCs) were seeded onto calcium phosphate particles, cultured for 20 days, and treated with 124 ng vitD3, either provided during 30 min before seeding ([200 nM]), during the first two days ([100 nM]), or during 20 days ([10 nM]). Alternatively, hASCs were treated for two days with 6.2 ng vitD3 ([10 nM]). hASCs attached to the calcium phosphate particles and were viable (~75%). Cell number was not affected by the various vitD3 applications. VitD3 (124 ng) applied over 20 days increased cellular alkaline phosphatase activity at Days 7 and 20, reduced expression of the early osteogenic marker RUNX2 at Day 20, and strongly upregulated expression of the vitD3 inactivating enzyme CYP24. VitD3 (124 ng) also reduced RUNX2 and increased CYP24 applied at [100 nM] for two days, but not at [200 nM] for 30 min. These results show that 20-day application of vitD3 has more effect on hASCs than the same total amount applied in a shorter time span.
Collapse
|
44
|
Vermeulen S, de Boer J. Screening as a strategy to drive regenerative medicine research. Methods 2020; 190:80-95. [PMID: 32278807 DOI: 10.1016/j.ymeth.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the field of regenerative medicine, optimization of the parameters leading to a desirable outcome remains a huge challenge. Examples include protocols for the guided differentiation of pluripotent cells towards specialized and functional cell types, phenotypic maintenance of primary cells in cell culture, or engineering of materials for improved tissue interaction with medical implants. This challenge originates from the enormous design space for biomaterials, chemical and biochemical compounds, and incomplete knowledge of the guiding biological principles. To tackle this challenge, high-throughput platforms allow screening of multiple perturbations in one experimental setup. In this review, we provide an overview of screening platforms that are used in regenerative medicine. We discuss their fabrication techniques, and in silico tools to analyze the extensive data sets typically generated by these platforms.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, the Netherlands; BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Jan de Boer
- BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands.
| |
Collapse
|
45
|
Huang CC, Ravindran S, Kang M, Cooper LF, George A. Engineering a Self-Assembling Leucine Zipper Hydrogel System with Function-Specific Motifs for Tissue Regeneration. ACS Biomater Sci Eng 2020; 6:2913-2928. [PMID: 33463282 DOI: 10.1021/acsbiomaterials.0c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein-based self-assembling hydrogels can exhibit remarkably tunable properties as a scaffold for regenerative medicine applications. In this study, we sought to develop a leucine zipper (LZ) based self-assembling hydrogel with function-specific motifs for tissue-specific regeneration. As a proof-of-concept approach, we incorporated (a) calcium-binding domains ESQES and QESQSEQS derived from dentin matrix protein 1 (DMP1) and (b) an heparin-binding domain adjacent preceded by an MMP2 (matrix metalloprotease 2) cleavage site to facilitate loading of heparin binding growth factors, such as BMP-2, VEGF, and TGF-β1, and their release in vivo by endogenous MMP2 proteolytic cleavage. These scaffolds were characterized and evaluated in vitro and in vivo. In vivo studies highlighted the potential of the engineered LZ hydrogel with respect to osteogenic differentiation of stem cells. The premineralized LZ scaffold loaded with HMSCs showed an enhanced osteoinductive property when compared with the control nonmineralized scaffold. The LZ backbone with heparin-binding domain containing an MMP2 cleavage site facilitated tethering of heparin-binding growth factors, such as VEGF, TGF-β1 and BMP2 and demonstrated controlled release of these active growth factor both in vitro and in vivo and demonstrated growth factor specific activity in vivo (BMP-2 and TGF-β1). Overall, we present a versatile protein based self-assembling system with tunable properties for tissue regeneration.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois at Chicago, 801 South Paulina Street, Room 561C, Chicago, Illinois 60612, United States
| | - Sriram Ravindran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois at Chicago, 801 South Paulina Street, Room 561C, Chicago, Illinois 60612, United States
| | - Miya Kang
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois at Chicago, 801 South Paulina Street, Room 561C, Chicago, Illinois 60612, United States
| | - Lyndon F Cooper
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois at Chicago, 801 South Paulina Street, Room 561C, Chicago, Illinois 60612, United States
| | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois at Chicago, 801 South Paulina Street, Room 561C, Chicago, Illinois 60612, United States
| |
Collapse
|
46
|
Singh BN, Veeresh V, Mallick SP, Sinha S, Rastogi A, Srivastava P. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int J Biol Macromol 2020; 153:1-16. [PMID: 32084482 DOI: 10.1016/j.ijbiomac.2020.02.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Over the past decade, various composite materials fabricated using natural or synthetic biopolymers incorporated with bioceramic have been widely investigated for the regeneration of segmental bone defect. In the present study, nano-bioglass incorporated osteoconductive composite scaffolds were fabricated through polyelectrolyte complexation/phase separation and resuspension of separated complex in gelatin matrix. Developed scaffold exhibits controlled bioreactivity, minimize abrupt pH rise (~7.8), optimal swelling behavior (2.6+-3.1) and enhances mechanical strength (0.62 ± 0.18 MPa) under wet condition. Moreover, in-vitro cell study shows that the fabricated scaffold provide suitable template for cellular attachment, spreading, biomineralization and collagen based matrix deposition. Also, the developed scaffold was evaluated for biocompatibility and bone tissue regeneration potential through implantation in non-union segmental bone defect created in rabbit animal model. The obtained histological analysis indicates strong potential of the composite scaffold for bone tissue regeneration, vascularization and reconstruction of defects. Thus, the developed composite scaffold might be a suitable biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bhisham Narayan Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Vivek Veeresh
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Shivam Sinha
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Amit Rastogi
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
47
|
Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomater 2020; 102:458-467. [PMID: 31783141 DOI: 10.1016/j.actbio.2019.11.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
Engineering of materials consisting of hypertrophic cartilage, as physiological template for de novo bone formation through endochondral ossification (ECO), holds promise as a new class of biological bone substitutes. Here, we assessed the efficiency and reproducibility of bone formation induced by the combination of ceramic granules with fractionated human adipose tissue ("nanofat"), followed by in vitro priming to hypertrophic cartilage. Human nanofat was mixed with different volumetric ratios of ceramic granules (0.2-1 mm) and cultured to sequentially induce proliferation (3 weeks), chondrogenesis (4 weeks), and hypertrophy (2 weeks). The resulting engineered constructs were implanted ectopically in nude mouse. The presence of ceramic granules regulated tissue formation, both in vitro and in vivo. In particular, their dispersion in nanofat at a ratio of 1:16 led to significantly increased cell number and glycosaminoglycan accumulation in vitro, as well as amount and inter-donor reproducibility of bone formation in vivo. Our findings outline a strategy for efficient utilization of nanofat for bone regeneration in an autologous setting, which should now be tested at an orthotopic site. STATEMENT OF SIGNIFICANCE: In this study, we assessed the efficiency and reproducibility of bone formation by a combination of ceramic granules and fractionated human adipose tissue, also known as nanofat, in vitro primed into hypertrophic cartilage. The resulting engineered cartilaginous constructs, when implanted ectopically in nude mouse, resulted in bone and bone marrow formation, more reproducibly and strongly that nanofat alone. This project evaluates the impact of ceramic granules on the functionality and chondrogenic differentiation of mesenchymal progenitors inside their native adipose tissue niche and outlines a novel strategy for an efficient application of nanofat for bone regeneration in an autologous setting.
Collapse
|
48
|
Chahal AS, Schweikle M, Lian AM, Reseland JE, Haugen HJ, Tiainen H. Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells. J Tissue Eng 2020; 11:2041731420926840. [PMID: 32537121 PMCID: PMC7268109 DOI: 10.1177/2041731420926840] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
Synthetic hydrogel-amorphous calcium phosphate composites are promising candidates to substitute biologically sourced scaffolds for bone repair. While the hydrogel matrix serves as a template for stem cell colonisation, amorphous calcium phosphate s provide mechanical integrity with the potential to stimulate osteogenic differentiation. Here, we utilise composites of poly(ethylene glycol)-based hydrogels and differently stabilised amorphous calcium phosphate to investigate potential effects on attachment and osteogenic differentiation of human mesenchymal stem cells. We found that functionalisation with integrin binding motifs in the form of RGD tripeptide was necessary to allow adhesion of large numbers of cells in spread morphology. Slow dissolution of amorphous calcium phosphate mineral in the scaffolds over at least 21 days was observed, resulting in the release of calcium and zinc ions into the cell culture medium. While we qualitatively observed an increasingly mineralised extracellular matrix along with calcium deposition in the presence of amorphous calcium phosphate-loaded scaffolds, we did not observe significant changes in the expression of selected osteogenic markers.
Collapse
Affiliation(s)
- Aman S Chahal
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Manuel Schweikle
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Aina-Mari Lian
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Cassaro CV, Justulin LA, de Lima PR, Golim MDA, Biscola NP, de Castro MV, de Oliveira ALR, Doiche DP, Pereira EJ, Ferreira RS, Barraviera B. Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190027. [PMID: 31723344 PMCID: PMC6830407 DOI: 10.1590/1678-9199-jvatitd-2019-0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone tissue repair remains a challenge in tissue engineering. Currently, new materials are being applied and often integrated with live cells and biological scaffolds. The fibrin biopolymer (FBP) proposed in this study has hemostatic, sealant, adhesive, scaffolding and drug-delivery properties. The regenerative potential of an association of FBP, biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSCs) was evaluated in defects of rat femurs. METHODS Adult male Wistar rats were submitted to a 5-mm defect in the femur. This was filled with the following materials and/or associations: BPC; FBP and BCP; FBP and MSCs; and BCP, FBP and MSCs. Bone defect without filling was defined as the control group. Thirty and sixty days after the procedure, animals were euthanatized and subjected to computed tomography, scanning electron microscopy and qualitative and quantitative histological analysis. RESULTS It was shown that FBP is a suitable scaffold for bone defects due to the formation of a stable clot that facilitates the handling and optimizes the surgical procedures, allowing also cell adhesion and proliferation. The association between the materials was biocompatible. Progressive deposition of bone matrix was higher in the group treated with FBP and MSCs. Differentiation of mesenchymal stem cells into osteogenic lineage was not necessary to stimulate bone formation. CONCLUSIONS FBP proved to be an excellent scaffold candidate for bone repair therapies due to application ease and biocompatibility with synthetic calcium-based materials. The satisfactory results obtained by the association of FBP with MSCs may provide a more effective and less costly new approach for bone tissue engineering.
Collapse
Affiliation(s)
- Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Extracellular Matrix Laboratory, Botucatu Biosciences Institute
(IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Patrícia Rodrigues de Lima
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Marjorie de Assis Golim
- Flow Cytometry Laboratory, Blood Center, Botucatu Medical School
(FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Natália Perussi Biscola
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Biosciences
Institute (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Danuta Pulz Doiche
- Department of Animal Reproduction and Veterinary Radiology, School
of Veterinary Medicine and Animal Husbandry, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Elenize Jamas Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| |
Collapse
|
50
|
Kämmerer PW, Pabst AM, Dau M, Staedt H, Al-Nawas B, Heller M. Immobilization of BMP-2, BMP-7 and alendronic acid on titanium surfaces: Adhesion, proliferation and differentiation of bone marrow-derived stem cells. J Biomed Mater Res A 2019; 108:212-220. [PMID: 31587476 DOI: 10.1002/jbm.a.36805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
This study analyzed the influence of titanium (TiO2 ) surface modifications with two osteogenic proteins (BMP-2, BMP-7) and an anti-osteoclastic drug (alendronic acid [AA]) on sandblasted/acid-etched (SLA) and plain TiO2 (PT) on cell adhesion, proliferation and differentiation (alkaline phosphatase [AP] and osteocalcin [OC]) of bone-marrow derived stem cells (BMSCs) after 1, 3 and 7 days in-vitro. Initially, AA surfaces showed the highest cell number and surface coverage. At day 3 and 7, BMP and AA-modified surfaces exhibited a significantly enhanced cell growth. For proliferation, at days 3 and 7, an enhancement on BMP-2, BMP-7 and AA-surfaces was seen. At day 7, SLA also showed a higher proliferation when compared to PT. Initially, AP expression was elevated on SLA and AA surfaces. At days 3 and 7, a significant increased AP expression was seen for SLA, BMP-2, BMP-7 and AA discs. For OC, SLA and AA surfaces had the highest expression after 1 day whereas after 3 and 7 days a significant difference was recorded for SLA, BMP-2, BMP-7 and AA. In conclusion, a beneficial biological effect of a chemical immobilization method of BMP-2, BMP-7 and alendronate onto titanium surfaces on BMSCs was proven.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas M Pabst
- Department of Oral- and Maxillofacial Surgery, Federal Armed Forces Hospital, Koblenz, Germany
| | - Michael Dau
- Department of Oral- and Maxillofacial Surgery, University Medical Center Rostock, Rostock, Germany
| | - Henning Staedt
- Private Practice and Department of Prosthodontics and Materials Science, University Medical Center Rostock, Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Martin Heller
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|