1
|
Silverman I, Shaykevich A, Maitra R. The Role of WDR77 in Cancer: More than a PRMT5 Interactor. Mol Cancer Res 2025; 23:269-276. [PMID: 39853175 DOI: 10.1158/1541-7786.mcr-24-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. Although much of the past research on WDR77 has focused on its interaction with protein arginine methyltransferase 5 (PRMT5) in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell-cycle regulation, and apoptosis. WDR77 is a key regulator of cell-cycle progression, regulating the transition from the G1 phase. WDR77 regulates many signaling pathways such as TGFβ in which its role in these cellular pathways underscores its broad oncogenic potential. WDR77 also assists and promotes certain transcription factors such as E2F. Furthermore, in certain cancers, WDR77 enhances steroid hormone receptor activity, uniquely linking it to hormone-driven malignancies. WDR77 often translocates between the nucleus and the cytoplasm, with its location dictating its role in the cell. WDR77 has the ability to adapt its function depending on its location that emphasizes its dynamic role in both promoting and inhibiting tumor growth, depending on cellular context. This dual function makes WDR77 an attractive therapeutic target, as disrupting its interactions with critical signaling pathways or modulating its translocation could yield novel strategies for cancer treatment. Given WDR77's role in oncogenic pathways independent of PRMT5, further exploration of WDR77 and its non-PRMT5-related activities may reveal additional therapeutic opportunities in an array of cancers.
Collapse
Affiliation(s)
- Isaac Silverman
- Department of Biology, Yeshiva University, New York, New York
| | - Aaron Shaykevich
- Department of Biology, Yeshiva University, New York, New York
- Department of Public Health and Preventive Medicine, State University of New York Upstate Medical University, Syracuse, New York
| | | |
Collapse
|
2
|
Lin L, Gao W, Chen Y, Li T, Sha C, Chen L, Yang M, Wei H, Chen Y, Zhu X. Reactive oxygen species-induced SIAH1 promotes granulosa cells' senescence in premature ovarian failure. J Cell Mol Med 2022; 26:2417-2427. [PMID: 35261172 PMCID: PMC8995443 DOI: 10.1111/jcmm.17264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) exposure triggers granulosa cells' (GCs) senescence, which is an important causal factor for premature ovarian failure (POF). However, underlying mechanism in this process remains unknown. In our study, we observed increased ROS levels in POF ovarian tissues, POF patient follicular GCs and cyclophosphamide (CTX) pretreated GCs. Correspondingly, increased SIAH1, reduced TRF2 and GC senescence were also found in these cases. Silencing of SIAH1 rescued ROS‐induced TRF2 reduction and cell senescence in GCs. Moreover, SIAH1 co‐localized with TRF2 in the cytoplasm, facilitating its ubiquitination degradation, further leading to telomere abnormalities in GCs. In conclusion, our findings indicate that ROS induces telomere abnormalities by augmenting SIAH1‐mediated TRF2 degradation, leading to cell senescence in GCs in POF processing.
Collapse
Affiliation(s)
- Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yumei Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Taoqiong Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chunli Sha
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Yang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong Wei
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Chen
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
4
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2020; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García-Carrancá
| |
Collapse
|
5
|
Deng Q, Hou J, Feng L, Lv A, Ke X, Liang H, Wang F, Zhang K, Chen K, Cui H. PHF19 promotes the proliferation, migration, and chemosensitivity of glioblastoma to doxorubicin through modulation of the SIAH1/β-catenin axis. Cell Death Dis 2018; 9:1049. [PMID: 30323224 PMCID: PMC6189144 DOI: 10.1038/s41419-018-1082-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022]
Abstract
PHD finger protein 19 (PHF19), a critical component of the polycomb repressive complex 2 (PRC2), is crucial for maintaining the repressive transcriptional activity of several developmental regulatory genes and plays essential roles in various biological processes. Abnormal expression of PHF19 causes dysplasia or serious diseases, including chronic myeloid disorders and tumors. However, the biological functions and molecular mechanisms of PHF19 in glioblastoma (GBM) remain unclear. Here, we demonstrated that PHF19 expression was positively associated with GBM progression, including cell proliferation, migration, invasion, chemosensitivity, and tumorigenesis. Using XAV-939, a Wnt/β-catenin inhibitor, we found that the effects of PHF19 on GBM cells were β-catenin-dependent. We also demonstrated that PHF19 expression was positively correlated with cytoplasmic β-catenin expression. PHF19 stabilized β-catenin by inhibiting the transcription of seven in absentia homolog 1 (SIAH1), an E3 ubiquitin ligase of β-catenin, through direct binding to the SIAH1 promoter region. Taken together, our results revealed the novel PHF19-SIAH1–β-catenin axis as a potential and promising therapeutic target.
Collapse
Affiliation(s)
- Qing Deng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Liying Feng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Ailing Lv
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Kuijun Chen
- Department 6 of the Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, 400042, Chongqing, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Alaee M, Nool K, Pasdar M. Plakoglobin restores tumor suppressor activity of p53 R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Sci 2018; 109:1876-1888. [PMID: 29660231 PMCID: PMC5989865 DOI: 10.1111/cas.13612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor/transcription factor p53 is mutated in over 50% of all cancers. Some mutant p53 proteins have not only lost tumor suppressor activities but they also gain oncogenic functions (GOF). One of the most frequently expressed GOF p53 mutants is Arg175His (p53R175H ) with well-documented roles in cancer development and progression. Plakoglobin is a cell adhesion and signaling protein and a paralog of β-catenin. Unlike β-catenin that has oncogenic function through its role in the Wnt pathway, plakoglobin generally acts as a tumor/metastasis suppressor. We have shown that plakoglobin interacted with wild type and a number of p53 mutants in various carcinoma cell lines. Plakoglobin and mutant p53 interacted with the promoter and regulated the expression of several p53 target genes. Furthermore, plakoglobin interactions with p53 mutants restored their tumor suppressor/metastasis activities in vitro. GOF p53 mutants induce accumulation and oncogenic activation of β-catenin. Previously, we showed that one mechanism by which plakoglobin may suppress tumorigenesis is by sequestering β-catenin's oncogenic activity. Here, we examined the effects of p53R175H expression on β-catenin accumulation and transcriptional activation and their modifications by plakoglobin coexpression. We showed that p53R175H expression in plakoglobin null cells increased total and nuclear levels of β-catenin and its transcriptional activity. Coexpression of plakoglobin in these cells promoted β-catenin's proteasomal degradation, and decreased its nuclear levels and transactivation. Wnt/β-catenin targets, c-MYC and S100A4 were upregulated in p53R175H cells and were downregulated when plakoglobin was coexpressed. Plakoglobin-p53R175H cells also showed significant reduction in their migration and invasion in vitro.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Kristina Nool
- Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Manijeh Pasdar
- Department of OncologyUniversity of AlbertaEdmontonCanada
| |
Collapse
|
7
|
Hox V, O'Connell MP, Lyons JJ, Sackstein P, Dimaggio T, Jones N, Nelson C, Boehm M, Holland SM, Freeman AF, Tweardy DJ, Olivera A, Metcalfe DD, Milner JD. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J Allergy Clin Immunol 2016; 138:187-199. [PMID: 26948077 PMCID: PMC4931983 DOI: 10.1016/j.jaci.2015.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND During IgE-mediated immediate hypersensitivity reactions, vascular endothelial cells permeabilize in response to mast cell mediators. We have demonstrated previously that patients and mice with signal transducer and activator of transcription 3 (STAT3) mutations (autosomal dominant hyper-IgE syndrome [AD-HIES]) are partially protected from anaphylaxis. OBJECTIVES We sought to study the mechanism by which STAT3 contributes to anaphylaxis and determine whether small-molecule inhibition of STAT3 can prevent anaphylaxis. METHODS Using unaffected and STAT3-inhibited or genetic loss-of-function samples, we performed histamine skin prick tests, investigated the contribution of STAT3 to animal models of anaphylaxis, and measured endothelial cell permeability, gene and protein expression, and histamine receptor-mediated signaling. RESULTS Although mouse mast cell degranulation was minimally affected by STAT3 blockade, mast cell mediator-induced anaphylaxis was blunted in Stat3 mutant mice with AD-HIES and in wild-type mice subjected to small-molecule STAT3 inhibition. Histamine skin prick test responses were diminished in patients with AD-HIES. Human umbilical vein endothelial cells derived from patients with AD-HIES or treated with a STAT3 inhibitor did not signal properly through Src or cause appropriate dissolution of the adherens junctions made up of the proteins vascular endothelial-cadherin and β-catenin. Furthermore, we found that diminished STAT3 target microRNA17-92 expression in human umbilical vein endothelial cells from patients with AD-HIES is associated with increased phosphatase and tensin homolog (PTEN) expression, which inhibits Src, and increased E2F transcription factor 1 expression, which regulates β-catenin cellular dynamics. CONCLUSIONS These data demonstrate that STAT3-dependent transcriptional activity regulates critical components for the architecture and functional dynamics of endothelial junctions, thus permitting vascular permeability.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paul Sackstein
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas Dimaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nina Jones
- Clinical Research Directorate/CMRP, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md
| | - Celeste Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
8
|
Yuan F, Chen X, Liu J, Feng W, Wu X, Chen SY. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway. Arch Toxicol 2016; 91:775-784. [PMID: 27270636 DOI: 10.1007/s00204-016-1746-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
Seven in absentia homolog 1 (Siah1) is one of the E3 ubiquitin ligases and plays a key role in regulating target protein degradation. This study was designed to test the hypothesis that Siah1 mediates ethanol-induced apoptosis in NCCs through p38 MAPK-mediated activation of the p53 signaling pathway. We found that exposure of NCCs to ethanol resulted in the increases in the total protein levels of p53 and the phosphorylation of p53 at serine 15. Ethanol exposure also resulted in a significant increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 dramatically reduced the ethanol-induced increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 by siRNA or down-regulation of p38 MAPK by either siRNA or inhibitor significantly diminished ethanol-induced accumulations of p53 and the phosphorylation of p53. In addition, ethanol exposure resulted in a significant increase in the expression of p53 downstream targets and apoptosis in NCCs, which can be significantly diminished by down-regulation of Siah1 with siRNA. Knock-down of p38 MAPK by siRNA also dramatically reduced the ethanol-induced apoptosis. These results demonstrate that Siah1 plays a crucial role in ethanol-induced apoptosis in NCCs, and that the up-regulation of Siah1 by ethanol can trigger apoptosis through p38 MAPK-mediated activation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40292, USA.,University of Louisville Alcohol Research Center, Louisville, KY, 40292, USA
| | - Xiaopan Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40292, USA.,University of Louisville Alcohol Research Center, Louisville, KY, 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40292, USA.,University of Louisville Alcohol Research Center, Louisville, KY, 40292, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40292, USA.,University of Louisville Alcohol Research Center, Louisville, KY, 40292, USA.,Department of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40292, USA. .,University of Louisville Alcohol Research Center, Louisville, KY, 40292, USA.
| |
Collapse
|
9
|
García-Limones C, Lara-Chica M, Jiménez-Jiménez C, Pérez M, Moreno P, Muñoz E, Calzado MA. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 2016; 35:4289-301. [PMID: 26751770 DOI: 10.1038/onc.2015.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023]
Abstract
The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.
Collapse
Affiliation(s)
- C García-Limones
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - C Jiménez-Jiménez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Pérez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - P Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - E Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M A Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
10
|
Soler-Torronteras R, Lara-Chica M, García V, Calzado MA, Muñoz E. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2730-43. [DOI: 10.1016/j.bbamcr.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/30/2023]
|
11
|
Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 2014; 67:15-24. [PMID: 23700162 DOI: 10.1007/s12013-013-9636-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology 2013; 312:36-47. [DOI: 10.1016/j.tox.2013.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 02/02/2023]
|
13
|
Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2012; 27:792-802. [PMID: 23038274 DOI: 10.1038/leu.2012.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delicate balance between the synthesis and the degradation of proteins ensures cellular homeostasis. Proteases act in an irreversible manner and therefore have to be strictly regulated. The ubiquitin-proteasome system (UPS) is a major pathway for the proteolytic degradation of cellular proteins. As dysregulation of the UPS is observed in most cancers including leukemia, the UPS is a valid target for therapeutic intervention strategies. Ubiquitin-ligases selectively bind substrates to target them for poly-ubiquitinylation and proteasomal degradation. Therefore, pharmacological modulation of these proteins could allow a specific level of control. Increasing evidence accumulates that ubiquitin-ligases termed mammalian seven in absentia homologs (SIAHs) are not only critical for the pathogenesis of solid tumors but also for leukemogenesis. However, the relevance and therapeutic potential of SIAH-dependent processes has not been fully elucidated. Here, we summarize functions of SIAH ubiquitin-ligases in leukemias, how they select leukemia-relevant substrates for proteasomal degradation, and how the expression and activity of SIAH1 and SIAH2 can be modulated in vivo. We also discuss that epigenetic drugs belonging to the group of histone deacetylase inhibitors induce SIAH-dependent proteasomal degradation to accelerate the turnover of leukemogenic proteins. In addition, our review highlights potential areas for future research on SIAH proteins.
Collapse
Affiliation(s)
- O H Krämer
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
15
|
Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 2012; 4:41. [PMID: 22548828 PMCID: PMC3506907 DOI: 10.1186/gm340] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022] Open
Abstract
Background Altered networks of gene regulation underlie many complex conditions, including cancer. Inferring gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task in computational systems biology and its translation to genomic medicine. Although diverse computational and statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality. Methods We report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the CancerResource and PharmGKB webtools and databases. Results We observe large differences in the accuracy with which these methods predict the underlying gene regulatory network depending on features of the data, network size, topology, experiment type, and parameter settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key transcription factors in normal and cancer conditions. Druggabilty analysis of proteins encoded by the 10 highest-confidence target genes, and by 15 genes with differential regulation in normal and cancer conditions, reveals 75% to be potential drug targets. Conclusions Our study represents a concrete application of gene regulatory network inference to ovarian cancer, demonstrating the complete cycle of computational systems biology research, from genome-scale data analysis via network inference, evaluation of methods, to the generation of novel testable hypotheses, their prioritization for experimental validation, and discovery of potential drug targets.
Collapse
|
16
|
Varanasi L, Do PM, Goluszko E, Martinez LA. Rad18 is a transcriptional target of E2F3. Cell Cycle 2012; 11:1131-41. [PMID: 22391204 DOI: 10.4161/cc.11.6.19558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The E2F family of transcription factors responds to a variety of intracellular and extracellular signals and, as such, are key regulators of cell growth, differentiation and cell death. The cellular response to DNA damage is a multistep process generally involving the initial detection of DNA damage, propagation of signals via posttranslational modifications (e.g., phosphorylation and ubiquitination) and, finally, the implementation of a response. We have previously reported that E2F3 can be induced by DNA damage, and that it plays an important role in DNA damage-induced apoptosis. Here, we demonstrate that E2F3 knockdown compromises two canonical DNA damage modification events, the ubiquitination of H2AX and PCNA. We find that the defect in these posttranscriptional modifications after E2F3 knockdown is due to reduced expression of important DNA damage responsive ubiquitin ligases. We characterized the regulation of one of these ligases, Rad18, and we demonstrated that E2F3 associates with the Rad18 promoter and directly controls its activity. Furthermore, we find that ectopic expression of Rad18 is sufficient to rescue the PCNA ubiquitination defect resulting from E2F3 knockdown. Our study reveals a novel facet of E2F3's control of the DNA damage response.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
17
|
Xie C, Wang W, Yang F, Wu M, Mei Y. RUVBL2 is a novel repressor of ARF transcription. FEBS Lett 2012; 586:435-41. [PMID: 22285491 DOI: 10.1016/j.febslet.2012.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/26/2011] [Accepted: 01/18/2012] [Indexed: 12/29/2022]
Abstract
ARF is the second most commonly inactivated tumor suppressor behind p53. It has been implicated in the control of cell proliferation, cell senescence, and tumor suppression. However, the detailed mechanism underlying the transcriptional control of ARF remains largely unknown. Here we report RUVBL2 as a novel transcriptional repressor of ARF. Ectopic expression of RUVBL2 decreases the levels of ARF, whereas knockdown of RUVBL2 results in a marked increase in ARF levels. In addition, RUVBL2 down-regulates the levels of p53 in an ARF-dependent manner. Mechanistically, RUVBL2 binds to the distal region of ARF promoter, thus leading to the repression of ARF transcription. These results suggest an important role of RUVBL2 in the regulation of ARF-p53 pathway.
Collapse
Affiliation(s)
- Chongwei Xie
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci U S A 2011; 108:15840-5. [PMID: 21896753 DOI: 10.1073/pnas.1019312108] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is activated in response to cellular stress to prevent malignant transformation by activation of the DNA repair machinery to preserve the cell, or by induction of apoptosis to eliminate the cell should the damage prove irrevocable. The gene encoding p53 frequently undergoes inactivating mutations in many human cancers, but WT p53 is often expressed at high levels in melanoma, which, as judged from the malignant nature of the disease, fails to act as an effective tumor suppressor. Here we show that p53 directly up-regulates microRNA-149* (miR-149*) that in turn targets glycogen synthase kinase-3α, resulting in increased expression of Mcl-1 and resistance to apoptosis in melanoma cells. Although deficiency in miR-149* undermined survival of melanoma cells and inhibited melanoma growth in a mouse xenograft model, elevated expression of miR-149* was found in fresh human metastatic melanoma isolates, which was associated with decreased glycogen synthase kinase-3α and increased Mcl-1. These results reveal a p53-dependent, miR-149*-mediated pathway that contributes to survival of melanoma cells, provides a rational explanation for the ineffectiveness of p53 to suppress melanoma, and identifies the expression of miR-149* as a mechanism involved in the increased expression of Mcl-1 in melanoma cells.
Collapse
|
19
|
Qin S, Jin L, Zhang J, Liu L, Ji P, Wu M, Wu J, Shi Y. Recognition of unmodified histone H3 by the first PHD finger of bromodomain-PHD finger protein 2 provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor (MORF). J Biol Chem 2011; 286:36944-55. [PMID: 21880731 DOI: 10.1074/jbc.m111.244400] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel β-strand that pairs with the PHD1 two-stranded antiparallel β-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.
Collapse
Affiliation(s)
- Su Qin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu Z, Zheng S, Li Z, Tan J, Yu Q. E2F1 suppresses Wnt/β-catenin activity through transactivation of β-catenin interacting protein ICAT. Oncogene 2011; 30:3979-84. [DOI: 10.1038/onc.2011.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Huang K, Zhang JX, Han L, You YP, Jiang T, Pu PY, Kang CS. MicroRNA roles in beta-catenin pathway. Mol Cancer 2010; 9:252. [PMID: 20858269 PMCID: PMC2955614 DOI: 10.1186/1476-4598-9-252] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023] Open
Abstract
β-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and differentiation. Aberrant β-catenin signaling has been linked to various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to β-catenin signaling in tumorigenesis, with particular focus on the role of microRNAs. Finally, we discuss the potential of β-catenin targeted therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Kai Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jun-Xia Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yong-Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Pei-Yu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| |
Collapse
|