1
|
Dias GF, Grobe N, Rogg S, Jörg DJ, Pecoits-Filho R, Moreno-Amaral AN, Kotanko P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights From Basic Research and Mathematical Modeling. Front Cell Dev Biol 2020; 8:598148. [PMID: 33363152 PMCID: PMC7755649 DOI: 10.3389/fcell.2020.598148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cells (RBC) are the most abundant cells in the blood. Despite powerful defense systems against chemical and mechanical stressors, their life span is limited to about 120 days in healthy humans and further shortened in patients with kidney failure. Changes in the cell membrane potential and cation permeability trigger a cascade of events that lead to exposure of phosphatidylserine on the outer leaflet of the RBC membrane. The translocation of phosphatidylserine is an important step in a process that eventually results in eryptosis, the programmed death of an RBC. The regulation of eryptosis is complex and involves several cellular pathways, such as the regulation of non-selective cation channels. Increased cytosolic calcium concentration results in scramblase and floppase activation, exposing phosphatidylserine on the cell surface, leading to early clearance of RBCs from the circulation by phagocytic cells. While eryptosis is physiologically meaningful to recycle iron and other RBC constituents in healthy subjects, it is augmented under pathological conditions, such as kidney failure. In chronic kidney disease (CKD) patients, the number of eryptotic RBC is significantly increased, resulting in a shortened RBC life span that further compounds renal anemia. In CKD patients, uremic toxins, oxidative stress, hypoxemia, and inflammation contribute to the increased eryptosis rate. Eryptosis may have an impact on renal anemia, and depending on the degree of shortened RBC life span, the administration of erythropoiesis-stimulating agents is often insufficient to attain desired hemoglobin target levels. The goal of this review is to indicate the importance of eryptosis as a process closely related to life span reduction, aggravating renal anemia.
Collapse
Affiliation(s)
- Gabriela Ferreira Dias
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Renal Research Institute, New York, NY, United States
| | - Nadja Grobe
- Renal Research Institute, New York, NY, United States
| | - Sabrina Rogg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - David J. Jörg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Roberto Pecoits-Filho
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States
| | | | - Peter Kotanko
- Renal Research Institute, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Föller M, Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front Cell Dev Biol 2020; 8:597. [PMID: 32733893 PMCID: PMC7360839 DOI: 10.3389/fcell.2020.00597] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Erythrocytes are among the most abundant cells in mammals and are perfectly adapted to their main functions, i.e., the transport of O2 to peripheral tissues and the contribution to CO2 transport to the lungs. In contrast to other cells, they are fully devoid of organelles. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal death, eryptosis, which is characterized by the presentation of membrane phosphatidylserine on the cell surface and cell shrinkage, hallmarks that are also typical of apoptosis. Eryptosis may be triggered by an increase in the cytosolic Ca2+ concentration, which may be due to Ca2+ influx via non-selective cation channels of the TRPC family. Eryptosis is further induced by ceramide, which sensitizes erythrocytes to the eryptotic effect of Ca2+. Signaling regulating eryptosis further involves a variety of kinases including AMPK, PAK2, cGKI, JAK3, CK1α, CDK4, MSK1/2 and casein kinase. Eryptosis-dependent shrinkage is induced by K+ efflux through Ca2+-activated K+ channel KCa3.1, the Gardos channel. Eryptotic cells are phagocytosed and may adhere to endothelial cells. Eryptosis may help prevent hemolysis since defective erythrocytes usually undergo eryptosis followed by rapid clearance from circulating blood. Excessive eryptosis stimulated by various diseases and xenobiotics may result in anemia and/or impaired microcirculation. This review focuses on the significance and mechanisms of eryptosis as well as on the ion fluxes involved. Moreover, a short summary of further ion transport mechanisms of the erythrocyte membrane is provided.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Florian Lang
- Department of Physiology Institute of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Bissinger R, Schumacher C, Qadri SM, Honisch S, Malik A, Götz F, Kopp HG, Lang F. Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget 2017; 7:14002-14. [PMID: 26872376 PMCID: PMC4924694 DOI: 10.18632/oncotarget.7286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Objectives Anemia is a common complication of malignancy, which could result from either compromised erythropoiesis or decreased lifespan of circulating erythrocytes. Premature suicidal erythrocyte death, characterized by cell shrinkage and phosphatidylserine (PS) externalization, decreases erythrocyte lifespan and could thus cause anemia. Here, we explored whether accelerated eryptosis participates in the pathophysiology of anemia associated with lung cancer (LC) and its treatment. Methods Erythrocytes were drawn from healthy volunteers and LC patients with and without cytostatic treatment. PS exposure (annexin V-binding), cell volume (forward scatter), cytosolic Ca2+ (Fluo3 fluorescence), reactive oxygen species (ROS) production (DCFDA fluorescence) and ceramide formation (anti-ceramide antibody) were determined by flow cytometry. Results Hemoglobin concentration and hematocrit were significantly lower in LC patients as compared to healthy controls, even though reticulocyte number was higher in LC (3.0±0.6%) than in controls (1.4±0.2%). The percentage of PS-exposing erythrocytes was significantly higher in LC patients with (1.4±0.1%) and without (1.2±0.3%) cytostatic treatment as compared to healthy controls (0.6±0.1%). Erythrocyte ROS production and ceramide abundance, but not Fluo3 fluorescence, were significantly higher in freshly drawn erythrocytes from LC patients than in freshly drawn erythrocytes from healthy controls. PS exposure of erythrocytes drawn from healthy volunteers was significantly more pronounced following incubation in plasma from LC patients than following incubation in plasma from healthy controls. Conclusion Anemia in LC patients with and without cytostatic treatment is paralleled by increased eryptosis, which is triggered, at least in part, by increased oxidative stress and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Carla Schumacher
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Qadri SM, Donkor DA, Bhakta V, Eltringham-Smith LJ, Dwivedi DJ, Moore JC, Pepler L, Ivetic N, Nazi I, Fox-Robichaud AE, Liaw PC, Sheffield WP. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin. J Cell Mol Med 2016; 20:710-20. [PMID: 26781477 PMCID: PMC5125577 DOI: 10.1111/jcmm.12778] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.
Collapse
Affiliation(s)
- Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | | | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jane C Moore
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Pepler
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nikola Ivetic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
7
|
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013; 14:9848-72. [PMID: 23698771 PMCID: PMC3676817 DOI: 10.3390/ijms14059848] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is a universal signalling molecule involved in regulating cell cycle and fate, metabolism and structural integrity, motility and volume. Like other cells, red blood cells (RBCs) rely on Ca2+ dependent signalling during differentiation from precursor cells. Intracellular Ca2+ levels in the circulating human RBCs take part not only in controlling biophysical properties such as membrane composition, volume and rheological properties, but also physiological parameters such as metabolic activity, redox state and cell clearance. Extremely low basal permeability of the human RBC membrane to Ca2+ and a powerful Ca2+ pump maintains intracellular free Ca2+ levels between 30 and 60 nM, whereas blood plasma Ca2+ is approximately 1.8 mM. Thus, activation of Ca2+ uptake has an impressive impact on multiple processes in the cells rendering Ca2+ a master regulator in RBCs. Malfunction of Ca2+ transporters in human RBCs leads to excessive accumulation of Ca2+ within the cells. This is associated with a number of pathological states including sickle cell disease, thalassemia, phosphofructokinase deficiency and other forms of hereditary anaemia. Continuous progress in unravelling the molecular nature of Ca2+ transport pathways allows harnessing Ca2+ uptake, avoiding premature RBC clearance and thrombotic complications. This review summarizes our current knowledge of Ca2+ signalling in RBCs emphasizing the importance of this inorganic cation in RBC function and survival.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| |
Collapse
|
8
|
Qadri SM, Mahmud H, Lang E, Gu S, Bobbala D, Zelenak C, Jilani K, Siegfried A, Föller M, Lang F. Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene. J Cell Mol Med 2012; 16:1085-93. [PMID: 21781276 PMCID: PMC4365887 DOI: 10.1111/j.1582-4934.2011.01387.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Loss-of-function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apcMin/+) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca2+ activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC-deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin–luciferase in isolated erythrocytes from apcMin/+ mice and wild-type mice (apc+/+). Clearance of circulating erythrocytes was estimated by carboxyfluorescein-diacetate-succinimidyl-ester labelling. As a result, apcMin/+ mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Extracellular Ca2+ removal or inhibition of Ca2+ entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca2+-entry by treatment with Ca2+-ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Following retrieval and injection into the circulation of the same mice, apcMin/+ erythrocytes were more rapidly cleared from circulating blood than apc+/+ erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apcMin/+ mice. The observations point to accelerated eryptosis and subsequent clearance of apcMin/+ erythrocytes, which contributes to or even accounts for the enhanced erythrocyte turnover, anaemia and splenomegaly in those mice.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F. Protein kinase CK1α regulates erythrocyte survival. Cell Physiol Biochem 2012; 29:171-80. [PMID: 22415086 DOI: 10.1159/000337598] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 01/14/2023] Open
Abstract
Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.
Collapse
|
10
|
Kucherenko YV, Lang F. Inhibition of cation channels in human erythrocytes by spermine. J Membr Biol 2010; 237:93-106. [PMID: 21063869 DOI: 10.1007/s00232-010-9310-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
Abstract
In erythrocytes, spermine concentration decreases gradually with age, which is paralleled by increases of cytosolic Ca²+ concentration, with subsequent cell shrinkage and cell membrane scrambling. Cytosolic Ca²+ was estimated from fluo-3 fluorescence, cell volume from forward scatter, cell membrane scrambling from annexin V binding and cation channel activity with whole-cell patch-clamp in human erythrocytes. Extracellular spermine exerted a dual effect on erythrocyte survival. At 200 μM spermine blunted the increase of intracellular Ca²+, cell shrinkage and annexin V binding following 48 h exposure of cells at +37 °C. In contrast, short exposure (10-30 min) of cells to 2 mM spermine was accompanied by increased cytosolic Ca²+ and annexin binding. Intracellular addition of spermine at subphysiological concentration (0.2 μM) significantly decreased the conductance of monovalent cations (Na+, K+, NMDG+) and of Ca²+. Moreover, spermine (0.2 μM) blunted the stimulation of voltage-independent cation channels by Cl⁻ removal. Spermine (0.2 and 200 μM) added to the extracellular bath solution similarly inhibited the cation conductance in Cl⁻-containing bath solution. The effect of 0.2 μM spermine, but not the effect of 200 μM, was rapidly reversible. Acute addition (250 μM) of a naphthyl acetyl derivative of spermine (200 μM) again significantly decreased basal cation conductance in NaCl bath solution and inhibited voltage-independent cation channels. Spermine is a powerful regulator of erythrocyte cation channel cytosolic Ca²+ activity and, thus, cell survival.
Collapse
Affiliation(s)
- Yuliya V Kucherenko
- Department of Physiology Institute I, Eberhard-Karls Universität Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|