1
|
Dong Y, Yue T, Wang X, Huo Q, Li W, Zhang S, Zhao Y, Li D. MS4A3 regulates hematopoietic myeloid differentiation through ROS/TGF-β/p38MAPK pathway. Int Immunopharmacol 2024; 143:113578. [PMID: 39532018 DOI: 10.1016/j.intimp.2024.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The hematopoietic homeostasis relies on the intricate regulation of hematopoietic stem cells during their proliferation and differentiation. Myeloid differentiation disorders can lead to chronic myeloid leukemia and acute myeloid leukemia. Previous studies have shown increased expression of MS4A3 in myeloid cells, suggesting that MS4A3 may play a critical role in hematopoietic myeloid differentiation. However, the underlying mechanism and its role in hematopoietic myeloid differentiation require further elucidation. In this study, using K562 cell lines with MS4A3 over-expression (oeMS4A3) and MS4A3 knockdown (shMS4A3), we demonstrated that the overexpression of MS4A3 resulted in an augmented skewing towards myeloid differentiation and cell cycle arrest at G0/G1. In addition, inhibition of ROS, TGF-β, and p38MAPK in oeMS4A3 K562 cells attenuated the skewing of myeloid differentiation. Furthermore, in vivo experiments revealed a slight myeloid differentiation suppression tendency in MS4A3 knockout mice. Taken together, we show that MS4A3 overexpression promote myeloid differentiation skewing through the activation of the ROS/p38MAPK/TGFβ pathway. This study underscored the role of MS4A3 in the hematopoietic myeloid differentiation.
Collapse
Affiliation(s)
- Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Johdi NA, Seng A, Lee WK, Mohamad Said HZ, Fariza Wan Jamaluddin W. Exploring Differentially Expressed Genes and Immune Modulation in Diffuse Large B-Cell Lymphoma through RNA Sequencing Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:652-660. [PMID: 39449770 PMCID: PMC11497327 DOI: 10.30476/ijms.2023.100149.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is globally recognized as the most prevalent and aggressive subtype of non-Hodgkin lymphoma. While conventional treatments are effective initially, the disease can become resistant or relapse over time. This study aimed to examine the differentially expressed genes at the transcriptome level and molecular pathways in DLBCL patients. Methods This investigation utilized RNA sequencing analysis to compare differentially expressed gene samples from five diffuse large B-cell lymphoma patients with two healthy volunteers. These participants were admitted to UKM Medical Center, Kuala Lumpur between 2019 and 2020. The differentially expressed genes were identified using the DESeq2 R package (version 1.10.1) using a negative binomial distribution model. The obtained P values were corrected with the Benjamin and Hochberg method and identified using a False Discovery Rate threshold of <0.05, with log2 fold change (FC) of ≥2 or ≤-2. Results Results showed 73 differentially expressed genes between the two groups, among which 70 genes were downregulated, and three genes were upregulated. The differentially expressed genes analyzed with the Reactome pathway were significantly associated with the downregulation of antimicrobial humoral response (P<0.001), neutrophil degranulation (P<0.001), chemokine receptors bind chemokines (P=0.028), defensins (P=0.028) and metabolism of angiotensinogen (P=0.040). Conclusion These findings suggest that the identified pathways may contribute to cancer progression and weaken the immune response in diffuse large B-cell lymphoma patients. This study offers fresh insights into previously undiscovered downstream targets and pathways modulated by diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Nor Adzimah Johdi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Amanda Seng
- Codon Genomics Sdn Bhd, Seri Kembangan Selangor Darul Ehsan, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, Seri Kembangan Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
3
|
Lv W, Lin S, Zuo Z, Huang Z, Wang Y. Involvement of microglia-expressed MS4A6A in the onset of glioblastoma. Eur J Neurosci 2024; 59:2836-2849. [PMID: 38488530 DOI: 10.1111/ejn.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 05/22/2024]
Abstract
Glioblastoma multiforme (GBM) represents the deadliest form of brain tumour, characterized by its low survival rate and grim prognosis. Cytokines released from glioma-associated microglia/macrophages are involved in establishing the tumour microenvironment, thereby crucially promoting GBM progression. MS4A6A polymorphism was confirmed to be associated with neurodegenerative and polymorphism disease pathobiology, but whether it participates in the regulation of GBM and the underlying mechanisms is still not elucidated. Here, we found that MS4A6A was significantly upregulated in GBM patient samples. The results from the single-cell RNA-sequencing (scRNA-seq) database and immunostaining demonstrated the specific expression of MS4A6A in microglial cells. In vitro, microglial overexpression of MS4A6A stimulated the proliferation and migration of glioblastoma cells. Moreover, high MS4A6A mRNA expression was related to poor prognosis in GBM patients. Our study highlights the potential of MS4A6A as a promising biomarker for GBM, which may provide novel strategies for its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Wenhao Lv
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shengyan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenxing Zuo
- Department of Neurosurgery, Tenth people's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Cen C, Tang J, Su Q, Zhang Z, Yang Z, Mo W. Systemic analysis the expression, prognostic, and immune infiltrates significance of MS4A family in lung cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2025914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Caize Cen
- Department of Clinical Laboratory, First Affiliated Hospital Guangxi Medical University, Nanning, People’s Republic of China
| | - Jiameng Tang
- Department of Clinical Laboratory, First Affiliated Hospital Guangxi Medical University, Nanning, People’s Republic of China
| | - Qisheng Su
- Department of Clinical Laboratory, First Affiliated Hospital Guangxi Medical University, Nanning, People’s Republic of China
| | - Zunni Zhang
- Department of Clinical Laboratory, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital Guangxi Medical University, Nanning, People’s Republic of China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
5
|
Li J, Jin W, Tan Y, Wang B, Wang X, Zhao M, Wang K. Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia. Front Med 2021; 16:627-636. [PMID: 34958450 DOI: 10.1007/s11684-020-0815-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML). However, RUNX1 mutations have been largely under-explored compared with RUNX1 fusions mainly due to their elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a 300-gene signature that significantly distinguished the patients with RUNX1 mutations from those with other AML subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1 mutations and the underlying mechanisms in AML development.
Collapse
Affiliation(s)
- Jingming Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beichen Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Lu Q, Guo P, Wang X, Ares I, Lopez-Torres B, Martínez-Larrañaga MR, Li T, Zhang Y, Wang X, Anadón A, Martínez MA. MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol 2021; 39:201-216. [PMID: 34581912 DOI: 10.1007/s10565-021-09639-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Alimentary toxic aleukia (ATA) is correlated with consuming grains contaminated by Fusarium species, particularly T-2 toxin, which causes serious hurt to human and animal health, chiefly in disorders of the haematopoietic system. However, the mechanism of haematopoietic dysfunction induced by T-2 toxin and the possible target pathway for the treatment of T-2 toxin-induced haematopoietic disorder of ATA remains unclear. In this study, genomes and proteomics were used for the first time to investigate the key differential genes and proteins that inhibit erythroid differentiation of K562 cells caused by T-2 toxin, and it was found that heat shock protein 27 (HSP27) and membrane-spanning 4-domains, subfamily A, member 3 (MS4A3) may play an important role in erythroid differentiation. Meanwhile, MS4A3 interference can inhibit the occurrence of erythroid differentiation of K562 cells and promote the phosphorylation of HSP27. Moreover, the binding of HSP27 to MS4A3 in natural state can activate the phosphorylation site of HSP27 (Ser-83), while T-2 toxin can abolish the activation of phosphorylation site by inhibiting the expression of MS4A3. These findings for the first time demonstrated that the MS4A3-HSP27 pathway may function an efficient therapeutic target pathway for treating T-2 toxin elicited haematopoietic disorders of ATA.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaohui Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Tingting Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanyuan Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, 430070, Hubei, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
7
|
Liang Y, Su Q, Wu X. Identification and Validation of a Novel Six-Gene Prognostic Signature of Stem Cell Characteristic in Colon Cancer. Front Oncol 2021; 10:571655. [PMID: 33680915 PMCID: PMC7933554 DOI: 10.3389/fonc.2020.571655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells play crucial roles in the development of colon cancer (COAD). This study tried to explore new markers for predicting the prognosis of colon cancer based on stem cell-related genes. In our study, 424 COAD samples from TCGA were divided into three subtypes based on 412 stem cell-related genes; there were significant differences in prognosis, clinical characteristics, and immune scores between these subtypes. 694 genes were screened between subgroups. Subsequently a six-gene signature (DYDC2, MS4A15, MAGEA1, WNT7A, APOD, and SERPINE1) was established. This model had strong robustness and stable predictive performance in cohorts of different platforms. Taken together, the six-gene signature constructed in this study could be used as a novel prognostic marker for COAD patients.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Tsai CH, Wu AC, Chiang BL, Yang YH, Hung SP, Su MW, Chang YJ, Lee YL. CEACAM3 decreases asthma exacerbations and modulates respiratory syncytial virus latent infection in children. Thorax 2020; 75:725-734. [PMID: 32606071 DOI: 10.1136/thoraxjnl-2019-214132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is associated with childhood asthma. Nevertheless, not all children exposed to RSV develop asthma symptoms, possibly because genes modulate the effects of RSV on asthma exacerbations. OBJECTIVE The purpose of this study was to identify genes that modulate the effect of RSV latent infection on asthma exacerbations. METHODS We performed a meta-analysis to investigate differentially expressed genes (DEGs) of RSV infection from Gene Expression Omnibus datasets. Expression quantitative trait loci (eQTL) methods were applied to select single nucleotide polymorphisms (SNPs) that were associated with DEGs. Gene-based analysis was used to identify SNPs that were significantly associated with asthma exacerbations in the Taiwanese Consortium of Childhood Asthma Study (TCCAS), and validation was attempted in an independent cohort, the Childhood Asthma Management Program (CAMP). Gene-RSV interaction analyses were performed to investigate the association between the interaction of SNPs and RSV latent infection on asthma exacerbations. RESULTS A total of 352 significant DEGs were found by meta-analysis of RSV-related genes. We used 38 123 SNPs related to DEGs to investigate the genetic main effects on asthma exacerbations. We found that eight RSV-related genes (GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3) were significantly associated with asthma exacerbations in TCCAS and also validated in CAMP. In TCCAS, rs7251960 (CEACAM3) significantly modulated the effect of RSV latent infection on asthma exacerbations (false-discovery rate <0.05). The rs7251960 variant was associated with CEACAM3 mRNA expression in lung tissue (p for trend=1.2×10-7). CEACAM3 mRNA was reduced in nasal mucosa from subjects with asthma exacerbations in two independent datasets. CONCLUSIONS rs7251960 is an eQTL for CEACAM3, and CEACAM3 mRNA expression is reduced in subjects experiencing asthma exacerbations. CEACAM3 may be a modulator of RSV latent infection on asthma exacerbations.
Collapse
Affiliation(s)
- Ching-Hui Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann Chen Wu
- Center for Healthcare Research in Pediatrics (CHeRP), PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Pin Hung
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Heimes A, Brodhagen J, Weikard R, Becker D, Meyerholz MM, Petzl W, Zerbe H, Schuberth HJ, Hoedemaker M, Schmicke M, Engelmann S, Kühn C. Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J Dairy Sci 2020; 103:6364-6373. [PMID: 32307160 DOI: 10.3168/jds.2019-17612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/15/2020] [Indexed: 01/12/2023]
Abstract
Infection and inflammation of the mammary gland, and especially prevention of mastitis, are still major challenges for the dairy industry. Different approaches have been tried to reduce the incidence of mastitis. Genetic selection of cows with lower susceptibility to mastitis promises sustainable success in this regard. Bos taurus autosome (BTA) 18, particularly the region between 43 and 59 Mb, harbors quantitative trait loci (QTL) for somatic cell score, a surrogate trait for mastitis susceptibility. Scrutinizing the molecular bases hereof, we challenged udders from half-sib heifers having inherited either favorable paternal haplotypes for somatic cell score (Q) or unfavorable haplotypes (q) with the Staphylococcus aureus pathogen. RNA sequencing was used for an in-depth analysis of challenge-related alterations in the hepatic transcriptome. Liver exerts highly relevant immune functions aside from being the key metabolic organ. Hence, a holistic approach focusing on the liver enabled us to identify challenge-related and genotype-dependent differentially expressed genes and underlying regulatory networks. In response to the S. aureus challenge, we found that heifers with Q haplotypes displayed more activated immune genes and pathways after S. aureus challenge compared with their q half-sibs. Furthermore, we found a significant enrichment of differentially expressed loci in the genomic target region on BTA18, suggesting the existence of a regionally acting regulatory element with effects on a variety of genes in this region.
Collapse
Affiliation(s)
- A Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - J Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - D Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - M M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany; Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - W Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - M Schmicke
- Faculty of Natural Sciences III, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany
| | - S Engelmann
- Technical University Braunschweig, Institute for Microbiology, 38023 Braunschweig, Germany; Helmholtz Centre for Infection Research, Microbial Proteomics, 38124 Braunschweig, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; Agricultural and Environmental Faculty, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Jiang M, Zou X, Huang W. Ecotropic viral integration site 1 regulates the progression of acute myeloid leukemia via MS4A3-mediated TGFβ/EMT signaling pathway. Oncol Lett 2018; 16:2701-2708. [PMID: 30013666 DOI: 10.3892/ol.2018.8890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a type of malignant tumor that is caused by malignant clone hematopoietic stem cells. The ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is highly expressed in AML, and its expression level has been associated with poor prognosis of AML. Previous studies have indicated that Evi1 may regulate cell proliferation, differentiation and apoptosis by inhibiting the membrane-spanning-4-domains subfamily-A member-3 (MS4A3) gene in AML. The aim of the present study was to investigate the role of Evi1 in the progression of AML. The results revealed that Evi1 was overexpressed in leukemia cells compared with normal T lymphocytes. MicroRNAs (miR)-133 and -431 that target Evi1 were investigated, and it was observed that there was a low expression of miR-431 in AML. The transfection of miR-431 was able to decrease the promoter methylation levels of the Evi1 gene in AML cells. The transfection of miR-431 also suppressed the migration and invasion of AML cells. The present study revealed that the transfection of miR-431 mimic was able to downregulate MS4A3 expression in AML cells. Furthermore, the expression levels of transforming growth factor β (TGFβ) and epithelial-to-mesenchymal transition (EMT) markers fibronectin, α-smooth muscle actin, and vimentin were downregulated following the transfection of miR-431 in AML cells. The overexpression of MS4A3 was also able to suppress miR-431-mediated inhibition of the expression of TGFβ and EMT markers in AML cells. The addition of TGFβ inhibited the downregulation of EMT markers by transfection of miR-431 in AML cells. The transfection of miR-431 suppressed the migration and invasion of AML cells, which was also abolished by the addition of TGFβ. In conclusion, the results of the present study indicated that Evi1 may be a potential molecular target of leukemia therapy via MS4A3-mediated TGFβ/EMT signaling pathway.
Collapse
Affiliation(s)
- Min Jiang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Pediatrics, The Fifth Hospital of Xiamen, Affiliated TongMin Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China
| | - Xueqin Zou
- Department of Internal Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
11
|
Sun L, Zhang Y, Zhang C. Distinct Expression and Prognostic Value of MS4A in Gastric Cancer. Open Med (Wars) 2018; 13:178-188. [PMID: 29756054 PMCID: PMC5941698 DOI: 10.1515/med-2018-0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer has high malignancy and early metastasis, which lead to poor survival rate. In this study, we assessed the expressions and prognostic values of MS4A family, a newly recently discovered family, by two online dataset, GEPIA and Kaplan Meier-plotter. From these results eight members, MS4A2, MS4A6, MS4A7, MS4A8, MS4A14, MS4A15, TMEM176A and TMEM176B showed positive expression in gastric cancer or normal tissues, and these genes were screened for further analysis of prognostic values. We observed that low mRNA expressions of MS4A2, MS4A7, MS4A14, MS4A15, TMEM176A and TMEM176B were correlated with better overall survival (OS) in all gastric cancer patients, while high mRNA expression of MS4A6 was observed to be associated with good prognosis. MS4A8’s high mRNA level was correlated to better OS in diffuse gastric cancer patients. Further, we estimated prognostic values of MS4A family in gastric cancer patients with different clinic-pathological features, including clinical stages, differentiation level, lymph node status and HER2 status. Our results indicate that these eight MS4A members can estimate prognosis in patients with different pathological groups. In conclusion, MS4A family members are potential biomarkers, and may contribute to tumor progression in gastric cancer.
Collapse
Affiliation(s)
- Lei Sun
- Department of General Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong Province, China
| | - Yanli Zhang
- Medical Department, Maternity and Child Care Centers, Zaozhuang, 277100, Shandong Province, China
| | - Chao Zhang
- Department of General Surgery, Zaozhuang Municipal Hospital, 41# Longtou Road, Zaozhuang, 277100, Shandong Province, China, Tel. +86-632-3227241
| |
Collapse
|
12
|
Kaneko T, Toshimori K, Iida H. Subcellular localization of MS4A13 isoform 2 in mouse spermatozoa. Reproduction 2017; 154:843-857. [PMID: 28971897 DOI: 10.1530/rep-17-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023]
Abstract
To identify upregulated genes during the development of spermatozoa, we performed PCR-selected subtraction analysis of testes RNA samples from 10-day-old and 12-week-old shrews. A transcript, highly homologous to two mouse transcripts, Ms4a13-1 and Ms4a13-2, was differentially regulated. Ms4a13-2, but not Ms4a13-1, was shown to be primarily expressed in mouse testes in an age-dependent manner. Ms4a13-2 cDNA contains an open-reading frame of 522 nucleotides, encoding a protein of 174 amino acids, with predicted molecular mass, 19,345 Da. MS4A13-2 protein was expressed along the periphery of nuclei of round and elongated spermatids (steps 3-16) in adult mouse testes, and in the equatorial region of the heads of fresh mature mouse spermatozoa. In addition, MS4A13-2 was found to localize to the outer acrosomal membrane in the equatorial region of heads in fresh spermatozoa. In acrosome-reacted spermatozoa, the MS4A13-2 expression extended to the entire sperm head including the postacrosomal region and acrosomal cap. MS4A family proteins are known to facilitate intracellular protein-protein interactions as ion channel/adaptor proteins by oligomerization, and have important regulatory roles in cellular growth, survival and activation. We report that the MS4A family member, MS4A13-2, may form oligomers in sperm membranes, which may be involved in an interaction with the zona pellucida or cumulus during fertilization.
Collapse
Affiliation(s)
- Takane Kaneko
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Toshimori
- Future Medicine Research Center and Department of Reproductive Biology and MedicineGraduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Iida
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Gagez AL, Duroux-Richard I, Leprêtre S, Orsini-Piocelle F, Letestu R, De Guibert S, Tuaillon E, Leblond V, Khalifa O, Gouilleux-Gruart V, Banos A, Tournilhac O, Dupuis J, Jorgensen C, Cartron G, Apparailly F. miR-125b and miR-532-3p predict the efficiency of rituximab-mediated lymphodepletion in chronic lymphocytic leukemia patients. A French Innovative Leukemia Organization study. Haematologica 2017; 102:746-754. [PMID: 28126961 PMCID: PMC5395115 DOI: 10.3324/haematol.2016.153189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The underlying in vivo mechanisms of rituximab action remain incompletely understood in chronic lymphocytic leukemia. Recent data suggest that circulating micro-ribonucleic acids correlate with chronic lymphocytic leukemia progression and response to rituximab. Our study aimed at identifying circulating micro-ribonucleic acids that predict response to rituximab monotherapy in chronic lymphocytic leukemia patients. Using a hierarchical clustering of micro-ribonucleic acid expression profiles discriminating 10 untreated patients with low or high lymphocyte counts, we found 26 micro-ribonucleic acids significantly deregulated. Using individual real-time reverse transcription polymerase chain reaction, the expression levels of micro-ribonucleic acids representative of these two clusters were further validated in a larger cohort (n=61). MiR-125b and miR-532-3p were inversely correlated with rituximab-induced lymphodepletion (P=0.020 and P=0.001, respectively) and with the CD20 expression on CD19+ cells (P=0.0007 and P<0.0001, respectively). In silico analyses of genes putatively targeted by both micro-ribonucleic acids revealed a central role of the interleukin-10 pathway and CD20 (MS4A1) family members. Interestingly, both micro-ribonucleic acids were negatively correlated with MS4A1 expression, while they were positively correlated with MS4A3 and MSA47 Our results identify novel circulating predictive biomarkers for rituximab-mediated lymphodepletion efficacy in chronic lymphocytic leukemia, and suggest a novel molecular mechanism responsible for the rituximab mode of action that bridges miR-125b and miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier: 01370772).
Collapse
Affiliation(s)
- Anne-Laure Gagez
- CNRS UMR 5235, University of Montpellier, France.,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Isabelle Duroux-Richard
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | | | - Rémi Letestu
- Department of Biological Hematology, APHP, GHUPSSD, Avicenne Hospital, Bobigny, France
| | - Sophie De Guibert
- Department of Clinical Hematology, Pontchaillou Hospital, Rennes, France
| | - Edouard Tuaillon
- Department of Bacteriology-Virology, University Hospital Montpellier, France
| | - Véronique Leblond
- Department of Hematology, La Pitié Salpétrière Hospital, Paris, France
| | - Olfa Khalifa
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | - Anne Banos
- Department of Hematology, Cote Basque Hospital, Bayonne, France
| | - Olivier Tournilhac
- Department of Clinical Hematology, University Hospital Estaing, Clermont-Ferrand, France
| | - Jehan Dupuis
- Unit of Lymphoid Hematologic Malignancies, Henri Mondor Hospital, Créteil, France
| | - Christian Jorgensen
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Guillaume Cartron
- CNRS UMR 5235, University of Montpellier, France .,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Florence Apparailly
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| |
Collapse
|
14
|
Zhao Q, Assimopoulou AN, Klauck SM, Damianakos H, Chinou I, Kretschmer N, Rios JL, Papageorgiou VP, Bauer R, Efferth T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget 2016; 6:38934-51. [PMID: 26472107 PMCID: PMC4770748 DOI: 10.18632/oncotarget.5380] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood. Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK. In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity.
Collapse
Affiliation(s)
- Qiaoli Zhao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Andreana N Assimopoulou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sabine M Klauck
- Working Group Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Ioanna Chinou
- Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - José-Luis Rios
- Department de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | | | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Lindblad O, Cordero E, Puissant A, Macaulay L, Ramos A, Kabir NN, Sun J, Vallon-Christersson J, Haraldsson K, Hemann MT, Borg Å, Levander F, Stegmaier K, Pietras K, Rönnstrand L, Kazi JU. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene 2016; 35:5119-31. [PMID: 26999641 PMCID: PMC5399143 DOI: 10.1038/onc.2016.41] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Therapy directed against oncogenic FLT3 has been shown to induce response in patients with acute myeloid leukemia (AML), but these responses are almost always transient. To address the mechanism of FLT3 inhibitor resistance, we generated two resistant AML cell lines by sustained treatment with the FLT3 inhibitor sorafenib. Parental cell lines carry the FLT3-ITD (tandem duplication) mutation and are highly responsive to FLT3 inhibitors, whereas resistant cell lines display resistance to multiple FLT3 inhibitors. Sanger sequencing and protein mass-spectrometry did not identify any acquired mutations in FLT3 in the resistant cells. Moreover, sorafenib treatment effectively blocked FLT3 activation in resistant cells, whereas it was unable to block colony formation or cell survival, suggesting that the resistant cells are no longer FLT3 dependent. Gene expression analysis of sensitive and resistant cell lines, as well as of blasts from patients with sorafenib-resistant AML, suggested an enrichment of the PI3K/mTOR pathway in the resistant phenotype, which was further supported by next-generation sequencing and phospho-specific-antibody array analysis. Furthermore, a selective PI3K/mTOR inhibitor, gedatolisib, efficiently blocked proliferation, colony and tumor formation, and induced apoptosis in resistant cell lines. Gedatolisib significantly extended survival of mice in a sorafenib-resistant AML patient-derived xenograft model. Taken together, our data suggest that aberrant activation of the PI3K/mTOR pathway in FLT3-ITD-dependent AML results in resistance to drugs targeting FLT3.
Collapse
Affiliation(s)
- O Lindblad
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund, Sweden
| | - E Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - A Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Macaulay
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - A Ramos
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - N N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - J Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - K Haraldsson
- Department of Oncology and Pathology, Lund University, Lund, Sweden
| | - M T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Å Borg
- Department of Oncology and Pathology, Lund University, Lund, Sweden
| | - F Levander
- Bioinformatics Infrastructure for Life Sciences (BILS), Department of Immunotechnology, Lund University, Lund, Sweden
| | - K Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - L Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - J U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| |
Collapse
|
16
|
Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 2015; 126:222-32. [PMID: 26031918 DOI: 10.1182/blood-2015-02-628677] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022] Open
Abstract
Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibited stromal cell-derived factor 1 (SDF-1)α-induced chemotaxis and prosurvival signals of AML cells at nanomolar concentrations more effectively than the small-molecule CXCR4 antagonist AMD3100. In vitro, LY2510924 chiefly inhibited the proliferation of AML cells with little induction of cell death and reduced protection against chemotherapy by stromal cells. In mice with established AML, LY2510924 caused initial mobilization of leukemic cells into the circulation followed by reduction in total tumor burden. LY2510924 had antileukemia effects as monotherapy as well as in combination with chemotherapy. Gene expression profiling of AML cells isolated from LY2510924-treated mice demonstrated changes consistent with loss of SDF-1α/CXCR4 signaling and suggested reduced proliferation and induction of differentiation, which was proved by showing the attenuation of multiple prosurvival pathways such as PI3K/AKT, MAPK, and β-catenin and myeloid differentiation in vivo. Effective disruption of the SDF-1α/CXCR4 axis by LY2510924 may translate into effective antileukemia therapy in future clinical applications.
Collapse
|
17
|
Nakajima A, Masaki Y, Nakamura T, Kawanami T, Ishigaki Y, Takegami T, Kawano M, Yamada K, Tsukamoto N, Matsui S, Saeki T, Okazaki K, Kamisawa T, Miyashita T, Yakushijin Y, Fujikawa K, Yamamoto M, Hamano H, Origuchi T, Hirata S, Tsuboi H, Sumida T, Morimoto H, Sato T, Iwao H, Miki M, Sakai T, Fujita Y, Tanaka M, Fukushima T, Okazaki T, Umehara H. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease. PLoS One 2015; 10:e0126582. [PMID: 25973893 PMCID: PMC4431830 DOI: 10.1371/journal.pone.0126582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/06/2015] [Indexed: 12/24/2022] Open
Abstract
Background IgG4-related disease (IgG4-RD) is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls. Materials and Methods Peripheral blood mononuclear cells (PBMCs) were obtained from patients with IgG4-RD before and after steroid therapy and from healthy controls. Total RNA was extracted and DNA microarray analysis was performed in two IgG4-RD patients to screen for genes showing changes in expression. Candidate genes were validated by real-time RT-PCR in 27 patients with IgG4-RD and 13 healthy controls. Results DNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot–Leyden crystal protein (CLC), membrane-spanning 4-domain subfamily A member 3 (MS4A3), defensin alpha (DEFA) 3 and 4, and interleukin-8 receptors (IL8R), were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB. Conclusions The expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be involved in the pathogenesis of IgG4-RD as well as in abnormalities of acquired immunity.
Collapse
Affiliation(s)
- Akio Nakajima
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasufumi Masaki
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takuji Nakamura
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takafumi Kawanami
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Tsutomu Takegami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology, Department of Internal Medicine, Kanazawa University Hospital, Ishikawa 920-8641, Japan
| | - Kazunori Yamada
- Division of Rheumatology, Department of Internal Medicine, Kanazawa University Hospital, Ishikawa 920-8641, Japan
| | - Norifumi Tsukamoto
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Shoko Matsui
- Health Administration Center University of Toyama, Toyama 930-0194, Japan
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Niigata 940-2085, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka 573-1191, Japan
| | - Terumi Kamisawa
- Department of Internal Medicine, Tokyo Metropolitan Komagome Hospital, Tokyo 113-8677, Japan
| | - Taiichiro Miyashita
- Department of Rheumatology, National Hospital Organization Nagasaki Medical center, Nagasaki 380-8582, Japan
| | - Yoshihiro Yakushijin
- Department of Clinical Oncology, Ehime Graduate School of Medicine, Ehime 791-0295, Japan
| | - Keita Fujikawa
- Department of Rheumatology, Japan Community Healthcare Organization, Isahaya General Hospital, Nagasaki 854-8501, Japan
| | - Motohisa Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Hokkaido 060-8543, Japan
| | - Hideaki Hamano
- Medical Informatics Division and Department of Internal Medicine, Gastroenterology, Shinshu University School Hospital, Nagano 390-8621, Japan
| | - Tomoki Origuchi
- First Department of Internal Medicine, Department of Immunology and Rheumatology, Nagasaki Graduate School of Health Sciences, Nagasaki 852-8520, Japan
| | - Shintaro Hirata
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka 807-8555, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hisanori Morimoto
- Division of Nephrology, Mitoyo General Hospital, Kagawa 769-1695, Japan
| | - Tomomi Sato
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Haruka Iwao
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Miyuki Miki
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Tomoyuki Sakai
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yoshimasa Fujita
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Masao Tanaka
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Toshihiro Fukushima
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hisanori Umehara
- Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Department of Clinical Immunology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 2015; 94:11-23. [PMID: 25835430 DOI: 10.1038/icb.2015.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcɛRIβ) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Collapse
|
19
|
Heller G, Rommer A, Steinleitner K, Etzler J, Hackl H, Heffeter P, Tomasich E, Filipits M, Steinmetz B, Topakian T, Klingenbrunner S, Ziegler B, Spittler A, Zöchbauer-Müller S, Berger W, Wieser R. EVI1 promotes tumor growth via transcriptional repression of MS4A3. J Hematol Oncol 2015; 8:28. [PMID: 25886616 PMCID: PMC4389965 DOI: 10.1186/s13045-015-0124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The transcription factor Ecotropic Virus Integration site 1 (EVI1) regulates cellular proliferation, differentiation, and apoptosis, and its overexpression contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. METHODS U937T_EVI1, a human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to gene expression profiling. qRT-PCR was used to confirm the regulation of membrane-spanning-4-domains subfamily-A member-3 (MS4A3) by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. RESULTS Gene expression microarray analysis identified 27 unique genes that were up-regulated, and 29 unique genes that were down-regulated, in response to EVI1 induction in the human myeloid cell line U937T. The most strongly repressed gene was MS4A3, and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. MS4A3 mRNA levels were also negatively correlated with those of EVI1 in several published AML data sets. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model by increasing the rate of apoptosis. CONCLUSIONS Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Anna Rommer
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Katarina Steinleitner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Julia Etzler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| | - Petra Heffeter
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Erwin Tomasich
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Martin Filipits
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Birgit Steinmetz
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Thais Topakian
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Simone Klingenbrunner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Barbara Ziegler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Walter Berger
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Rotraud Wieser
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell 2015; 26:1711-27. [PMID: 25717186 PMCID: PMC4436782 DOI: 10.1091/mbc.e14-07-1221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
MS4A4 traffics through endocytic recycling pathways and stabilizes surface KIT expression by regulating endocytosis and recycling. Silencing MS4A4 reduces KIT recruitment to lipid raft microdomains and PLCg1 signaling while promoting AKT signaling, cell migration, and proliferation. This study is the first to describe functions for human MS4A4. MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C Music
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Newhook TE, Blais EM, Lindberg JM, Adair SJ, Xin W, Lee JK, Papin JA, Parsons JT, Bauer TW. A thirteen-gene expression signature predicts survival of patients with pancreatic cancer and identifies new genes of interest. PLoS One 2014; 9:e105631. [PMID: 25180633 PMCID: PMC4152146 DOI: 10.1371/journal.pone.0105631] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Currently, prognostication for pancreatic ductal adenocarcinoma (PDAC) is based upon a coarse clinical staging system. Thus, more accurate prognostic tests are needed for PDAC patients to aid treatment decisions. METHODS AND FINDINGS Affymetrix gene expression profiling was carried out on 15 human PDAC tumors and from the data we identified a 13-gene expression signature (risk score) that correlated with patient survival. The gene expression risk score was then independently validated using published gene expression data and survival data for an additional 101 patients with pancreatic cancer. Patients with high-risk scores had significantly higher risk of death compared to patients with low-risk scores (HR 2.27, p = 0.002). When the 13-gene score was combined with lymph node status the risk-score further discriminated the length of patient survival time (p<0.001). Patients with a high-risk score had poor survival independent of nodal status; however, nodal status increased predictability for survival in patients with a low-risk gene signature score (low-risk N1 vs. low-risk N0: HR = 2.0, p = 0.002). While AJCC stage correlated with patient survival (p = 0.03), the 13-gene score was superior at predicting survival. Of the 13 genes comprising the predictive model, four have been shown to be important in PDAC, six are unreported in PDAC but important in other cancers, and three are unreported in any cancer. CONCLUSIONS We identified a 13-gene expression signature that predicts survival of PDAC patients and could prove useful for making treatment decisions. This risk score should be evaluated prospectively in clinical trials for prognostication and for predicting response to chemotherapy. Investigation of new genes identified in our model may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Timothy E. Newhook
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edik M. Blais
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - James M. Lindberg
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sara J. Adair
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wenjun Xin
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jae K. Lee
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - J. Thomas Parsons
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
22
|
Ye L, Yao XD, Wan FN, Qu YY, Liu ZY, Shen XX, Li S, Liu XJ, Yue F, Wang N, Dai B, Ye DW. MS4A8B promotes cell proliferation in prostate cancer. Prostate 2014; 74:911-22. [PMID: 24789009 DOI: 10.1002/pros.22802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Prostate cancer cells must maintain or achieve the further ability of proliferation during the progression. The molecular mechanisms, however, remain poorly understood. We identified a novel oncogene, termed membrane-spanning 4-domains, subfamily A, member 8B (MS4A8B), over-expressed in prostate cancer. METHODS We firstly detected MS4A8B mRNA in 13 types of paired human normal and cancer tissues by real-time polymerase chain reaction (RT-PCR). In 140 clinically localized prostate cancer samples from radical prostatectomy, immunohistochemical staining was performed to study MS4A8B and PCNA protein level as an index of proliferative activity, TUNEL staining as an index of apoptosis. As MS4A8B RNAi and cDNA transfection technologies were used, the effect of MS4A8B on cellular vitality was determined in vitro and in vivo. RESULTS MS4A8B mRNA was over-expressed specifically in prostate cancer. Positive ratios of MS4A8B protein expression were 1.94%, 5.92%, and 62.8% in benign, HPIN and prostate cancer, respectively. Moreover, MS4A8B was positively associated with Gleason score, the proliferation index. In vitro, MS4A8B knockdown resulted in G1 -S cell cycle arrest and descended vitality, MS4A8B over-expression with accelerated S phase entry, elevated vitality in prostate cancer cells. Moreover, it was also found that expression of MS4A8B led to changes of Cyclin D1 , Cyclin E1 and PCNA. LNCaP cells transfected with sh-MS4A8B lentivirus particles grew more slowly when subcutaneously injected into the flanks of nude mice. CONCLUSIONS We conclude that the expression of MS4A8B expression promotes cell proliferation and plays an important role in carcinogenesis and progression of prostate cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/physiology
- Cell Cycle Checkpoints/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Flow Cytometry
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Kallikreins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Real-Time Polymerase Chain Reaction
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Lin Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 2014; 11:777-87. [PMID: 24824789 DOI: 10.4161/rna.28828] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Peter E Newburger
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA; Department of Cancer Biology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
24
|
Proitsi P, Lee SH, Lunnon K, Keohane A, Powell J, Troakes C, Al-Sarraj S, Furney S, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Hodges A. Alzheimer's disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood. Neurobiol Aging 2014; 35:279-90. [DOI: 10.1016/j.neurobiolaging.2013.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 08/03/2013] [Indexed: 12/23/2022]
|
25
|
Luo B, Tseng CC, Adams GB, Lee AS. Deficiency of GRP94 in the hematopoietic system alters proliferation regulators in hematopoietic stem cells. Stem Cells Dev 2013; 22:3062-73. [PMID: 23859598 PMCID: PMC3856911 DOI: 10.1089/scd.2013.0181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/12/2013] [Indexed: 12/18/2022] Open
Abstract
We have previously reported that acute inducible knockout of the endoplasmic reticulum chaperone GRP94 led to an expansion of the hematopoietic stem and progenitor cell pool. Here, we investigated the effectors and mechanisms for this phenomenon. We observed an increase in AKT activation in freshly isolated GRP94-null HSC-enriched Lin(-) Sca-1(+) c-Kit(+) (LSK) cells, corresponding with higher production of PI(3,4,5)P3, indicative of PI3K activation. Treatment of GRP94-null LSK cells with the AKT inhibitor MK2206 compromised cell expansion, suggesting a causal relationship between elevated AKT activation and increased proliferation in GRP94-null HSCs. Microarray analysis demonstrated a 97% reduction in the expression of the hematopoietic cell cycle regulator Ms4a3 in the GRP94-null LSK cells, and real-time quantitative PCR confirmed this down-regulation in the LSK cells but not in the total bone marrow (BM). A further examination comparing freshly isolated BM LSK cells with spleen LSK cells, as well as BM LSK cells cultured in vitro, revealed specific down-regulation of Ms4a3 in freshly isolated BM GRP94-null LSK cells. On examining cell surface proteins that are known to regulate stem cell proliferation, we observed a reduced expression of cell surface connexin 32 (Cx32) plaques in GRP94-null LSK cells. However, suppression of Cx32 hemichannel activity in wild-type LSK cells through mimetic peptides did not lead to increased LSK cell proliferation in vitro. Two other important cell surface proteins that mediate HSC-niche interactions, specifically Tie2 and CXCR4, were not impaired by Grp94 deletion. Collectively, our study uncovers novel and unique roles of GRP94 in regulating HSC proliferation.
Collapse
Affiliation(s)
- Biquan Luo
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Chih Tseng
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gregor B. Adams
- Department of Cell and Neurobiology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy S. Lee
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Zheng CX, Gu ZH, Han B, Zhang RX, Pan CM, Xiang Y, Rong XJ, Chen X, Li QY, Wan HY. Whole-exome sequencing to identify novel somatic mutations in squamous cell lung cancers. Int J Oncol 2013; 43:755-64. [PMID: 23799614 DOI: 10.3892/ijo.2013.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022] Open
Abstract
Squamous cell lung cancer is a major histotype of non-small cell lung cancer (NSCLC) that is distinct from lung adenocarcinoma. We used whole-exome sequencing to identify novel non-synonymous somatic mutations in squamous cell lung cancer. We identified 101 single-nucleotide variants (SNVs) including 77 non-synonymous SNVs (67 missense and 10 nonsense mutations) and 11 INDELs causing frameshifts. We also found four SNVs located within splicing sites. We verified 62 of the SNVs (51 missense, 10 nonsense and 1 splicing-site mutation) and 10 of the INDELs as somatic mutations in lung cancer tissue. Sixteen of the mutated genes were also mutated in at least one patient with a different type of lung cancer in the Catalogue of Somatic Mutation in Cancer (COSMIC) database. Four genes (LPHN2, TP53, MYH2 and TGM2) were mutated in approximately 10% of the samples in the COSMIC database. We identified two missense mutations in C10orf137 and MS4A3 that also occurred in other solid-tumor tissues in the COSMIC database. We found another somatic mutation in EP300 that was mutated in 4.2% of the 2,020 solid-tumor samples in the COSMIC database. Taken together, our results implicate TP53, EP300, LPHN2, C10orf137, MYH2, TGM2 and MS4A3 as potential driver genes of squamous cell lung cancer.
Collapse
Affiliation(s)
- Cui-Xia Zheng
- Department of Respiration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Michel J, Schönhaar K, Schledzewski K, Gkaniatsou C, Sticht C, Kellert B, Lasitschka F, Géraud C, Goerdt S, Schmieder A. Identification of the novel differentiation marker MS4A8B and its murine homolog MS4A8A in colonic epithelial cells lost during neoplastic transformation in human colon. Cell Death Dis 2013; 4:e469. [PMID: 23348583 PMCID: PMC3564002 DOI: 10.1038/cddis.2012.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CD20-homolog Ms4a8a has recently been shown to be a marker for alternatively activated macrophages but its expression is not restricted to hematopoietic cells. Here, MS4A8A/MS4A8B expression was detected in differentiated intestinal epithelium in mouse and human, respectively. Interestingly, no MS4A8B expression was found in human colon carcinoma. Forced overexpression of MS4A8A in the murine colon carcinoma cell line CT26 led to a reduced proliferation and migration rate. In addition, MS4A8A-expressing CT26 cells displayed an increased resistance to hydrogen peroxide-induced apoptosis, which translated in an increased end weight of subcutaneous MS4A8A+ CT26 tumors. Gene profiling of MS4A8A+ CT26 cells revealed a significant regulation of 225 genes, most of them involved in cytoskeletal organization, apoptosis, proliferation, transcriptional regulation and metabolic processes. Thereby, the highest upregulated gene was the intestinal differentiation marker cytokeratin 20. In conclusion, we show that MS4A8A/MS4A8B is a novel differentiation marker of the intestinal epithelium that supports the maintenance of a physiological barrier function in the gut by modulating the transcriptome and by conferring an increased resistance to reactive oxygen species. The absence of MS4A8B in human colonic adenocarcinomas shown in this study might be a helpful tool to differentiate between healthy and neoplastic tissue.
Collapse
Affiliation(s)
- J Michel
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|