1
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
2
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
3
|
Aluganti Narasimhulu C, Singla DK. Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J Cachexia Sarcopenia Muscle 2021; 12:403-420. [PMID: 33463042 PMCID: PMC8061343 DOI: 10.1002/jcsm.12662] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetic myopathy involves hyperglycaemia and inflammation that causes skeletal muscle dysfunction; however, the potential cellular mechanisms that occur between hyperglycaemia and inflammation, which induces sarcopenia, and muscle dysfunction remain unknown. In this study, we investigated hyperglycaemia-induced inflammation mediating high-mobility group box 1 activation, which is involved in a novel form of cell death, pyroptosis, diabetic sarcopenia, atrophy, and adverse muscle remodelling. Furthermore, we investigated the therapeutic potential of bone morphogenetic protein-7 (BMP-7), an osteoporosis drug, to treat pyroptosis, and diabetic muscle myopathy. METHODS C57BL6 mice were treated with saline (control), streptozotocin (STZ), or STZ + BMP-7 to generate diabetic muscle myopathy. Diabetes was established by determining the increased levels of glucose. Then, muscle function was examined, and animals were sacrificed. Gastrocnemius muscle or blood samples were analysed for inflammation, pyroptosis, weight loss, muscle atrophy, and adverse structural remodelling of gastrocnemius muscle using histology, enzyme-linked immunosorbent assay, immunohistochemistry, western blotting, and reverse transcription polymerase chain reaction. RESULTS A significant (P < 0.05) increase in hyperglycaemia leads to an increase in inflammasome (high-mobility group box 1, toll-like receptor-4, and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing protein 3) formation in diabetic muscle cells. Further analysis showed an up-regulation of the downstream pyroptotic pathway with significant (P < 0.05) number of positive muscle cells expressing pyroptosis-specific markers [caspase-1, interleukin (IL)-1β, IL-18, and gasdermin-D]. Pyroptotic cell death is involved in further increasing inflammation by releasing pro-inflammatory cytokine IL-6. Structural analysis showed the loss of muscle weight, decreased myofibrillar area, and increased fibrosis leading to muscle dysfunction. Consistent with this finding, BMP-7 attenuated hyperglycaemia (~50%), pyroptosis, inflammation, and diabetic adverse structural modifications as well as improved muscle function. CONCLUSIONS In conclusion, we report for the first time that increased hyperglycaemia and inflammation involve cellular pyroptosis that induces significant muscle cell loss and adverse remodelling in diabetic myopathy. We also report that targeting pyroptosis with BMP-7 improves diabetic muscle pathophysiology and muscle function. These findings suggest that BMP-7 could be a potential therapeutic option to treat diabetic myopathy.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Liu W, Eczko JC, Otto M, Bajorat R, Vollmar B, Roesner JP, Wagner NM. Toll-like receptor 2-deficiency on bone marrow-derived cells augments vascular healing of murine arterial lesions. Life Sci 2019; 242:117189. [PMID: 31891724 DOI: 10.1016/j.lfs.2019.117189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
Abstract
AIMS Neointimal hyperplasia contributes to arterial restenosis after percutaneous transluminal coronary angioplasty or vascular surgery. Neointimal thickening after arterial injury is determined by inflammatory processes. We investigated the role of the innate immune receptor toll-like receptor 2 (TLR2) in neointima formation after arterial injury in mice. MATERIALS AND METHODS Carotid artery injury was induced by 10% ferric chloride in C57Bl/6J wild type (WT), TLR2 deficient (B6.129-Tlr2tm1Kir/J, TLR2-/-) and WT mice treated with a TLR2 blocking antibody. 21 days after injury, carotid arteries were assessed histomorphometrically and for smooth muscle cell (SMC) content. To identify the contribution of circulating cells in mediating the effects of TLR2-deficiency, arterial injury was induced in WT/TLR2-/--chimeric mice and the paracrine modulation of bone marrow-derived cells from WT and TLR2-/- on SMC migration compared in vitro. KEY FINDINGS TLR2-/- mice and WT mice treated with TLR2 blocking antibodies exhibited reduced neointimal thickening (23.7 ± 4.2 and 6.5 ± 3.0 vs. 43.1 ± 5.9 μm, P < 0.05 and P < 0.01), neointimal area (5491 ± 1152 and 315 ± 76.7 vs. 13,756 ± 2627 μm2, P < 0.05 and P < 0.01) and less luminal stenosis compared to WT mice (8.5 ± 1.6 and 5.0 ± 1.3 vs. 22.4 ± 2.2%, both P < 0.001n = 4-8 mice/group). The phenotypes of TLR2-/- vs. WT mice were completely reverted in WT/TLR2-/- bone marrow chimeric mice (5.9 ± 1.5 μm neointimal thickness, 874.2 ± 290.2 μm2 neointima area and 2.7 ± 0.6% luminal stenoses in WT mice transplanted with TLR2-/- bone marrow vs. 23.6 ± 5.1 μm, 3555 ± 511 μm2 and 12.0 ± 1.3% in WT mice receiving WT bone marrow, all P < 0.05, n = 6/group). Neointimal lesions of WT and WT mice transplanted with TLR2-/- bone marrow chimeric mice showed increased numbers of SMC (10.8 ± 1.4 and 12.6 ± 1.4 vs. 3.8 ± 0.9 in TLR2-/- and 3.5 ± 1.1 cells in WT mice transplanted with TLR2-/- bone marrow, all P < 0.05, n = 6). WT bone marrow cells stimulated SMC migration more than TLR2-deficient bone marrow cells (1.7 ± 0.05 vs. 1.3 ± 0.06-fold, P < 0.05, n = 7) and this effect was aggravated by TLR2 stimulation and diminished by TLR2 blockade (1.1 ± 0.03-fold after stimulation with TLR2 agonists and 0.8 ± 0.02-fold after TLR2 blockade vs. control treated cells defined as 1.0, P < 0.05, n = 7). SIGNIFICANCE TLR2-deficiency on hematopoietic but not vessel wall resident cells augments vascular healing after arterial injury. Pharmacological blockade of TLR2 may thus be a promising therapeutic option to improve vessel patency after iatrogenic arterial injury.
Collapse
Affiliation(s)
- W Liu
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - J-C Eczko
- Department of Anesthesia and Intensive Care, University Medical Center Rostock, Rostock, Germany
| | - M Otto
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - R Bajorat
- Department of Anesthesia and Intensive Care, University Medical Center Rostock, Rostock, Germany
| | - B Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - J-P Roesner
- Department of Anesthesia and Intensive Care, University Medical Center Rostock, Rostock, Germany
| | - N-M Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
5
|
Richard SA. Elucidating the novel biomarker and therapeutic potentials of High-mobility group box 1 in Subarachnoid hemorrhage: A review. AIMS Neurosci 2019; 6:316-332. [PMID: 32341986 PMCID: PMC7179354 DOI: 10.3934/neuroscience.2019.4.316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) frequently arises after an aneurysm in a cerebral artery ruptures, resulting into bleeding as well as clot formation. High-mobility group box 1 (HMGB1) is an extremely preserved, universal protein secreted in the nuclei of all cell varieties. This review explores the biomarker as well as therapeutic potentials of HMBG1 in SAH especially during the occurrence of cerebral vasospasms. Plasma HMGB1 levels have proven to be very useful prognosticators of effective outcome as well as death after SAH. Correspondingly, higher HMGB1 levels in the cerebrospinal fluid (CSF) of SAH patients correlated well with poor outcome; signifying that, CSF level of HMGB1 is a novel predictor of outcome following SAH. Nonetheless, the degree of angiographic vasospasm does not always correlate with the degree of neurological deficits in SAH patients. HMGB1 stimulated cerebral vasospasm, augmented gene as well as protein secretory levels of receptor for advance glycation end product (RAGE) in neurons following SAH; which means that, silencing HMGB1 during SAH could be of therapeutic value. Compounds like resveratrol, glycyrrhizin, rhinacanthin, purpurogallin, 4′-O-β-D-Glucosyl-5-O-Methylvisamminol (4OGOMV) as well as receptor-interacting serine/threonine-protein kinase 3 (RIPK3) gene are capable of interacting with HMGB1 resulting in therapeutic benefits following SAH.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana West Africa
| |
Collapse
|
6
|
Wang Y, Du F, Hawez A, Mörgelin M, Thorlacius H. Neutrophil extracellular trap-microparticle complexes trigger neutrophil recruitment via high-mobility group protein 1 (HMGB1)-toll-like receptors(TLR2)/TLR4 signalling. Br J Pharmacol 2019; 176:3350-3363. [PMID: 31206609 PMCID: PMC6692579 DOI: 10.1111/bph.14765] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent data suggest that neutrophil extracellular traps (NETs) form aggregates with microparticles (MPs) upon activation of neutrophils although the functional role of NET-MP complexes remain elusive. The objective of this study was to examine the role of NET-MP aggregates in leukocyte recruitment in vivo. EXPERIMENTAL APPROACH PMA stimulation of murine bone marrow neutrophils generated NET-MP complexes and pretreatment with caspase and calpain inhibitors resulted in the formation of NETs depleted of MPs. Leukocyte-endothelium interactions were studied by using intravital microscopy of the mouse cremaster microcirculation. KEY RESULTS Intrascrotal injection of NET-MP aggregates dose-dependently increased leukocyte recruitment. In contrast, leukocyte responses were markedly reduced after administration of NETs depleted of MPs. Neutrophil depletion abolished intravascular and extravascular leukocytes in response to challenge with NET-MP complexes. Electron microscopy revealed that NET-associated MPs express HMGB1. Notably, immunoneutralization of HMGB1 markedly decreased NET-MP complex-induced neutrophil accumulation. Moreover, inhibition of TLR2 and TLR4 significantly reduced neutrophil recruitment in response to NET-MP aggregates. CONCLUSIONS AND IMPLICATIONS These data show that NET-MP complexes are potent inducers of neutrophil recruitment, which is dependent on HMGB1 expressed on MPs and mediated via TLR2 and TLR4. Blocking MP binding to NETs or downstream inhibition of the HMGB1-TLR2/TLR4 axis might provide useful targets to attenuating NET-dependent tissue damage in acute inflammation.
Collapse
Affiliation(s)
- Yongzhi Wang
- Department of Clinical Sciences, Section of SurgeryLund UniversityMalmöSweden
| | - Feifei Du
- Department of Clinical Sciences, Section of SurgeryLund UniversityMalmöSweden
| | - Avin Hawez
- Department of Clinical Sciences, Section of SurgeryLund UniversityMalmöSweden
| | | | - Henrik Thorlacius
- Department of Clinical Sciences, Section of SurgeryLund UniversityMalmöSweden
| |
Collapse
|
7
|
Lu H, Zhang Z, Barnie PA, Su Z. Dual faced HMGB1 plays multiple roles in cardiomyocyte senescence and cardiac inflammatory injury. Cytokine Growth Factor Rev 2019; 47:74-82. [DOI: 10.1016/j.cytogfr.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
|
8
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang JS, Sheu WHH, Lee WJ, Lee IT, Lin SY, Lee WL, Liang KW, Lin SJ. Levels of serum high mobility group box 1 were independently associated with cardiovascular risk in patients undergoing coronary angiography. Clin Chim Acta 2018; 483:130-134. [DOI: 10.1016/j.cca.2018.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 01/24/2023]
|
10
|
Wu XJ, Chen YY, Gong CC, Pei DS. The role of high-mobility group protein box 1 in lung cancer. J Cell Biochem 2018; 119:6354-6365. [PMID: 29665052 DOI: 10.1002/jcb.26837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
High-mobility group protein box 1(HMGB1)is a ubiquitous highly conserved nuclear protein. Acting as a chromatin-binding factor, HMGB1 binds to DNA and plays an important role in stabilizing nucleosome formation, facilitating gene transcription, DNA repairing, inflammation, cell differentiation, and regulating the activity of steroid hormone receptors. Currently, HMGB1 is discovered to be related to development, progression, and targeted therapy of lung cancer, which makes it an attractive biomarker, and therapeutic target. This review aims to encapsulate the relationship between HMGB1 and lung cancer, suggesting that HMGB1 plays a pivotal role in initiation, development, invasion, metastasis, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Xiao-Jin Wu
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Chen
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China
| | - Chan-Chan Gong
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Chen X, Gao C. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. J Mater Chem B 2018; 6:2065-2077. [DOI: 10.1039/c7tb03080k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uptake of BSA-coated PLGA NPs induces a stronger inflammatory response which is represented by the up-expression of TNF-α.
Collapse
Affiliation(s)
- Xinyi Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
12
|
Chen X, Gao C. Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. Colloids Surf B Biointerfaces 2017; 160:372-380. [DOI: 10.1016/j.colsurfb.2017.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
|
13
|
Donndorf P, Abubaker S, Vollmar B, Rimmbach C, Steinhoff G, Kaminski A. Therapeutic progenitor cell application for tissue regeneration: Analyzing the impact of toll-like receptor signaling on c-kit + cell migration following ischemia-reperfusion injury in vivo. Microvasc Res 2017; 112:87-92. [DOI: 10.1016/j.mvr.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/23/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023]
|
14
|
Xu J, Li J, Yu Z, Rao H, Wang S, Lan H. HMGB1 promotes HLF-1 proliferation and ECM production through activating HIF1-α-regulated aerobic glycolysis. Pulm Pharmacol Ther 2017; 45:136-141. [PMID: 28571757 DOI: 10.1016/j.pupt.2017.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023]
Abstract
Aerobic glycolysis is a crucial event in fibroblast differentiation, and extracellular matrix (ECM) production in the progression of pulmonary fibrosis (PF). Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of PF. However, whether aerobic glycolysis contributes to HMGB1-induced fibroblast proliferation and ECM production in PF has not yet been determined. In this study, we investigated the effects of HMGB1 on human embryonic lung fibroblast (HLF-1) proliferation, ECM production, and aerobic glycolysis. The lactate dehydrogenase inhibitor oxamic acid (OA), and PFKFB3 inhibitor 3PO were used to block certain crucial steps of aerobic glycolysis. As a result, we observed an increase of HMGB1 in bronchoalveolar lavage fluid (BALF) in bleomycin (BLM)-treated rats as compared to non-treated rats (control group). A concentration-dependent increase of HLF-1 proliferation and expression of α-SMA and α-collagen I were observed in the HMGB1 group, as well as increases of LDHA activation, glucose uptake levels, glycolytic rate, lactate level, and ATP production. OA and 3PO, or suppression of HIF1-α, blocked the effects of HMGB1. In summary, HMGB1 promotes fibroblast proliferation and ECM production though upregulating expression of HIF1-α to induce an increase of aerobic glycolysis.
Collapse
Affiliation(s)
- JianNing Xu
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China
| | - JingYing Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China
| | - ZhiHong Yu
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China
| | - HaiWei Rao
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China
| | - Shu Wang
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China
| | - HaiBing Lan
- Department of Intensive Care Unit, The Second Affiliated Hospital of NanChang University, Nanchang, People's Republic of China.
| |
Collapse
|
15
|
The Expression of HMGB1 in Bone Marrow MSCs Is Upregulated by Hypoxia with Regulatory Effects on the Apoptosis and Adhesion. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4598927. [PMID: 28050559 PMCID: PMC5168487 DOI: 10.1155/2016/4598927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/24/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023]
Abstract
Background and Aims. Hypoxia regulates the survival of mesenchymal stem cells (MSCs) but the mechanism is unclear. In hypoxia, the level of high mobility group box 1 (HMGB1) was increased in many cells which may be involved in the regulation of cell biology. The aim is to determine whether hypoxia affects the expression of HMGB1 in bone marrow MSCs (BM-MSCs) and to investigate the role of HMGB1 in the apoptosis and adhesion. Methods. BM-MSCs were exposed to hypoxia (1% O2) and normoxia (20% O2) and the expression of HMGB1 was measured by RT-PCR and western blotting. The apoptosis and adhesion of BM-MSCs were evaluated after interfered by different concentrations of HMGB1. Results. Expression of HMGB1 in BM-MSCs showed a significant upregulation in hypoxia when compared to those in normoxia. The adhesion of BM-MSCs was increased by HMGB1 in a concentration-dependent manner; the apoptosis effect of HMGB1 depended on its concentrations: HMGB1 at low concentration (50 ng/mL) promoted the apoptosis of BM-MSCs while HMGB1 at high concentration (≥100 ng/mL) reduced this apoptosis. Conclusions. Hypoxia enhanced the expression of HMGB1 in BM-MSCs with influences on apoptosis and adhesion and this could have a significant effect on the regenerative potential of MSC-based strategies.
Collapse
|
16
|
Shimizu T, Yamakuchi M, Biswas KK, Aryal B, Yamada S, Hashiguchi T, Maruyama I. HMGB1 is secreted by 3T3-L1 adipocytes through JNK signaling and the secretion is partially inhibited by adiponectin. Obesity (Silver Spring) 2016; 24:1913-21. [PMID: 27430164 DOI: 10.1002/oby.21549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/13/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Obesity is a chronic inflammatory disease, and adipocytes contribute to obesity-associated inflammation by releasing inflammatory mediators. High mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, mainly localized to cell nuclei, has been recently recognized as an innate pro-inflammatory mediator when released extracellularly. It was hypothesized that HMGB1 is an adipocytokine that acts as an innate pro-inflammatory mediator in white adipose tissue (WAT) of patients with obesity and is associated with insulin resistance. Additionally, it was hypothesized that HMGB1 secretion is regulated by adiponectin. METHODS 3T3-L1 cells were differentiated into mature adipocytes. After tumor necrosis factor-α (TNF-α) stimulation, HMGB1 in culture media was measured. Localizations of HMGB1 in 3T3-L1 adipocytes and human WAT were examined by immunostaining. RESULTS HMGB1 was secreted from TNF-α-induced 3T3-L1 adipocytes through JNK signaling. HMGB1-activated MAP kinases (ERK1/2, JNK) and suppressed insulin-stimulated Akt phosphorylation in 3T3-L1 adipocytes. The cytoplasm in 3T3-L1 adipocytes and adipocytes of WAT from a patient with obesity was intensely stained with HMGB1. Adiponectin partially inhibited TNF-α-induced HMGB1 secretion from 3T3-L1 adipocytes. CONCLUSIONS These findings suggest that HMGB1 is a pro-inflammatory adipocytokine involved in WAT inflammation and insulin resistance in patients with obesity, which may contribute to the progression of metabolic syndrome, and that adiponectin protects against HMGB1-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Toshiaki Shimizu
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kamal Krishna Biswas
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Bibek Aryal
- Cardiovascular and Gastroenterological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
17
|
Voronina N, Lemcke H, Wiekhorst F, Kühn JP, Rimmbach C, Steinhoff G, David R. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA-An optimized targeting approach. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2353-2364. [PMID: 27389150 DOI: 10.1016/j.nano.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/27/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Genetic modulation of angiogenesis is a powerful tool for the treatment of multiple disorders. Here, we describe a strategy to produce modified endothelial cells, which can be efficiently magnetically guided. First, we defined optimal transfection conditions with both plasmid and microRNA, using a polyethyleneimine/magnetic nanoparticle-based vector (PEI/MNP), previously designed in our group. Further, two approaches were assessed in vitro: direct vector guidance and magnetic targeting of transfected cells. Due to its higher efficiency, including simulated dynamic conditions, production of miR/PEI/MNP-modified magnetically responsive cells was selected for further detailed investigation. In particular, we have studied internalization of transfection complexes, functional capacities and intercellular communication of engineered cells and delivery of therapeutic miR. Moreover, we demonstrated that 104 miRNA/PEI/MNP-modified magnetically responsive cells loaded with 0.37pg iron/cell are detectable with MRI. Taken together, our in vitro findings show that PEI/MNP is highly promising as a multifunctional tool for magnetically guided angiogenesis regulation.
Collapse
Affiliation(s)
- Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | | | - Jens-Peter Kühn
- Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany;.
| | - Christian Rimmbach
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| |
Collapse
|
18
|
Chang CZ, Wu SC, Kwan AL, Lin CL. 4'-O-β-D-glucosyl-5-O-methylvisamminol, an active ingredient of Saposhnikovia divaricata, attenuates high-mobility group box 1 and subarachnoid hemorrhage-induced vasospasm in a rat model. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2015; 11:28. [PMID: 26395442 PMCID: PMC4578329 DOI: 10.1186/s12993-015-0074-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) was observed to be an important extracellular mediator involved in vascular inflammation associated with subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of 4'-O-β-D-glucosyl-5-O-methylvisamminol (4OGOMV), C22H28O10, on the alternation of cytokines and HMGB1 in an animal model. METHODS A rodent double hemorrhage SAH model was employed. Administration with 4OGOMV was initiated 1 h after animals were subjected to SAH. Basilar arteries (BAs) were harvested and cortexes examined for HMGB1 mRNA, protein expression (Western blot) and monocyte chemoattractant protein-1 (MCP-1) immunostaining. Cerebrospinal fluid samples were collected to examine IL-1β, IL-6, IL-8 and MCP-1 (rt-PCR). RESULTS Morphological findings revealed endothelial cell deformity, intravascular elastic lamina torture, and smooth muscle necrosis in the vessels of SAH groups. Correspondently, IL-1β, IL-6 and MCP-1 in the SAH-only and SAH-plus vehicle groups was also elevated. 4OGOMV dose-dependently reduced HMGB1 protein expression when compared with the SAH groups.(p < 0.01) Likewise, 400 μg/kg 4OGOMV reduced IL-1β, MCP-1 and HMGB1 mRNA levels as well as MCP-1(+) monocytes when compared with the SAH groups.. CONCLUSION 4OGOMV exerts its neuro-protective effect partly through the dual effect of inhibiting IL-6 and MCP-1 activation and also reduced HMGB1 protein, mRNA and MCP-1(+) leukocytes translocation. This study lends credence to validating 4OGOMV as able to attenuate pro-inflammatory cytokine mRNA, late-onset inflammasome, and cellular basis in SAH-induced vasospasm.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
- Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
19
|
Ohkawara H, Ikeda K, Ogawa K, Takeishi Y. MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) IDENTIFIED AS A MULTIFUNCTIONAL REGULATOR OF VASCULAR RESPONSES. Fukushima J Med Sci 2015; 61:91-100. [PMID: 26370683 DOI: 10.5387/fms.2015-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling molecules in addition to a transmembrane metalloprotease, which degrades interstitial collagens and extracellular matrix components. This review focuses on the multifunctional roles of MT1-MMP as a signaling molecule in vascular responses to pro-atherosclerotic stimuli in the pathogenesis of cardiovascular diseases. First, the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)-MT1-MMP signaling axis contributes to endothelial dysfunction, which is mediated via small GTP-binding protein RhoA and Rac1 activation. Second, MT1-MMP plays a crucial role in reactive oxygen species (ROS) generation through the activation of receptor for advanced glycation end products (AGEs) in smooth muscle cells, indicating that MT1-MMP may be a therapeutic target for diabetic vascular complications. Third, MT1-MMP is involved in RhoA/Rac1 activation and Ca(2+) signaling in the mechanism of thrombin-stimulated endothelial dysfunction and oxidant stress. Fourth, the inhibition of the MT1-MMP/Akt signaling pathway may be an attractive strategy for treating endothelial disordered hemostasis in the development of vascular diseases linked to TNF-α-induced inflammation. Fifth, MT1-MMP through RAGE induced RhoA/Rac1 activation and tissue factor protein upregulation through NF-κB phosphorylation in endothelial cells stimulated by high-mobility group box-1, which plays a key role in the systemic inflammation. These findings suggest that the MT1-MMP-mediated signaling axis may be a promising target for treating atherosclerosis and subsequent cardiovascular diseases.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University
| | | | | | | |
Collapse
|
20
|
Roch T, Ma N, Kratz K, Lendlein A. Cell-based detection of microbial biomaterial contaminations. Clin Hemorheol Microcirc 2015; 60:51-63. [DOI: 10.3233/ch-151939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
- Department of Biology, Institute of Chemistry and Biochemistry, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
- Department of Biology, Institute of Chemistry and Biochemistry, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Sugimoto K, Ohkawara H, Nakamura Y, Takuwa Y, Ishibashi T, Takeishi Y. Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells. PLoS One 2014; 9:e114429. [PMID: 25490770 PMCID: PMC4260861 DOI: 10.1371/journal.pone.0114429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells. METHODS AND RESULTS Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation. CONCLUSIONS The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.
Collapse
Affiliation(s)
- Koichi Sugimoto
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuichi Nakamura
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
22
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
23
|
Li LC, Gao J, Li J. Emerging role of HMGB1 in fibrotic diseases. J Cell Mol Med 2014; 18:2331-9. [PMID: 25284457 PMCID: PMC4302638 DOI: 10.1111/jcmm.12419] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is originally identified as a DNA-binding protein that functions as a structural co-factor critical for proper transcriptional regulation in somatic cells. Recent studies indicate that HMGB1 can be passively released from necrotic cells or actively secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 is a multifunctional cytokine that contributes to the process of infection, injury, inflammation, apoptosis, and immune responses by binding to specific cell-surface receptors. Recently, emerging studies indicate that HMGB1 is closely involved in fibrotic disorders including cystic fibrosis, liver fibrosis and pulmonary fibrosis, while HMGB1 signal inhibitions protect against the experimental models of fibrotic diseases. From a clinical perspective, HMGB1 represents a current challenge that can be exploited orchestrate reparative responses. This review focuses on the crucial role of HMGB1 in the pathogenesis of fibrotic diseases and inhibition of which may represent a promising clinical approach for treating tissue fibrosis.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China; Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202), Pharmaceutical Preparation Section, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | |
Collapse
|
24
|
Hombach-Klonisch S, Natarajan S, Thanasupawat T, Medapati M, Pathak A, Ghavami S, Klonisch T. Mechanisms of therapeutic resistance in cancer (stem) cells with emphasis on thyroid cancer cells. Front Endocrinol (Lausanne) 2014; 5:37. [PMID: 24723911 PMCID: PMC3971176 DOI: 10.3389/fendo.2014.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022] Open
Abstract
The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Manoj Medapati
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Alok Pathak
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Wagner NM, Bierhansl L, Butschkau² A, Noeldge-Schomburg G, Roesner JP, Vollmar B. TLR2-deficiency of cKit+ bone marrow cells is associated with augmented potency to stimulate angiogenic processes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2813-2823. [PMID: 24294367 PMCID: PMC3843261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR2)-deficiency is associated with the preservation of vascular function and TLR2-deficient (TLR2(-/-)) mice exhibit increased neovascularization following induction of hindlimb ischemia. Hematopoietic stem cells play an important role in ischemia-induced angiogenesis and we now investigated whether the effects observed in TLR2(-/-) mice may be attributed to TLR2 deficiency on bone marrow-derived stem cells. APPROACH AND RESULTS cKit-positive (cKit(+)) bone marrow cells (BMC) were isolated from wild type (WT) and TLR2(-/-) mice employing MACS-bead technology. Co-incubation of TLR2(-/-)cKit(+) BMC with mature endothelial cells (ECs) resulted in increased tube formation of ECs on matrigel, augmented sprouting in a 3D-collagen matrix and increased migratory capacity compared to co-incubation with WT cKit(+) BMC. In an in vivo matrigel plug assay, TLR2(-/-)cKit(+) BMC exhibited enhanced formation of capillary-like networks. In a murine model of hindlimb ischemia, administration of TLR2(-/-) cKit(+) BMC to WT mice augmented capillary density and reperfusion of ischemic M. gastrocnemius muscle tissue to the level of TLR2(-/-) mice. Western Blot analysis revealed comparable expression of CXCR4 on TLR2(-/-)cKit(+) BMC but increased activation of the PI3K downstream signaling molecule protein kinase B (PKB/AKT) compared to WT cKit(+) cells. CONCLUSIONS The absence of TLR2 on cKit(+) BMC is associated with augmented potency to support angiogenic processes in vitro and in vivo. Functional inhibition of TLR2 may therefore provide a novel tool to enhance stem cell function for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Nana-Maria Wagner
- Clinic for Anesthesiology and Critical Care Medicine, University Hospital RostockRostock, Germany
| | - Laura Bierhansl
- Clinic for Anesthesiology and Critical Care Medicine, University Hospital RostockRostock, Germany
| | | | | | - Jan Patrick Roesner
- Clinic for Anesthesiology and Critical Care Medicine, University Hospital RostockRostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Hospital RostockRostock, Germany
| |
Collapse
|
26
|
Donndorf P, Ludwig M, Wildschütz F, Useini D, Kaminski A, Vollmar B, Steinhoff G. Intravital microscopy of the microcirculation in the mouse cremaster muscle for the analysis of peripheral stem cell migration. J Vis Exp 2013:e50485. [PMID: 24300446 DOI: 10.3791/50485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the era of intravascular cell application protocols in the context of regenerative cell therapy, the underlying mechanisms of stem cell migration to nonmarrow tissue have not been completely clarified. We describe here the technique of intravital microscopy applied to the mouse cremaster microcirculation for analysis of peripheral bone marrow stem cell migration in vivo. Intravital microscopy of the M. cremaster has been previously introduced in the field of inflammatory research for direct observation of leucocyte interaction with the vascular endothelium. Since sufficient peripheral stem and progenitor cell migration includes similar initial steps of rolling along and firm adhesion at the endothelial lining it is conceivable to apply the M. cremaster model for the observation and quantification of the interaction of intravasculary administered stem cells with the endothelium. As various chemical components can be selectively applied to the target tissue by simple superfusion techniques, it is possible to establish essential microenvironmental preconditions, for initial stem cell recruitment to take place in a living organism outside the bone marrow.
Collapse
Affiliation(s)
- Peter Donndorf
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University Rostock
| | | | | | | | | | | | | |
Collapse
|
27
|
Timm F, Vollmar B. Heterogeneity of the intrahepatic portal venous blood flow: impact on hepatocyte transplantation. Microvasc Res 2012; 86:34-41. [PMID: 23220352 DOI: 10.1016/j.mvr.2012.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The poor repopulation rate of the liver by transplanted hepatocytes markedly hampers liver cell therapy, which might be due to a limited sequestration of cells within the hepatic microvasculature. We therefore present intravital fluorescence microscopic data of transplanted hepatocytes immediately after portal venous injection demonstrating their intrahepatic distribution. METHODS Male Wistar rats were transplanted with freshly isolated, rhodamine 123 labelled, primary rat hepatocytes. Cells (10(6) in 0.5 ml) were slowly injected via a catheter in the V. lienalis over 2 min. Their distribution in the left lateral liver lobe was visualized simultaneously as well as over the following 30 min by intravital fluorescence microscopy. In a second set of animals green fluorescent microspheres exhibiting a size of 15 μm were injected and observed identically. For further analyses of portal venous blood flow distribution sodium fluorescein was injected via the V. lienalis as well as via the V. jugularis. RESULTS In vivo imaging allowed the clear detection and observation of hepatocytes flowing into the liver and forming microemboli, which are trapped particularly in small distal portal branches. To a minor extent they were trapped as solitary cells in the periportal zone of sinusoids. Most interestingly, the distribution of cells within the liver was highly heterogeneous, as wide areas of acini were found free of transplanted cells after portal venous injection, while neighbouring areas showed disproportionately high hepatocyte occurrence. To further investigate this phenomenon sodium fluorescein was injected via the V. lienalis instead and an identical heterogeneous distribution pattern with clear anatomical borders defining highly, semi, and non-portal venous perfused liver acini could be observed. In contrast, systemic injection of sodium fluorescein via the V. jugularis in the same animals resulted in a homogenous dispersion within the liver. CONCLUSION Using in vivo fluorescence microscopy and exclusive portal venous injection of a fluorescent dye, we provide evidence for the existence of liver areas, differentially supplied by portal venous blood. As a consequence, hepatocytes transplanted via the portal tract are very heterogeneously distributed within the liver. This observation forces us to reconsider our current knowledge on (i) monitoring engrafted cells, (ii) the optimal hepatocyte number to be transplanted, (iii) portal hypertension after cell injection, and last but not least (iv) the optimal transplantation route. Moreover, the established model for in vivo visualization of transplanted hepatocytes allows development of new therapeutic strategies facilitating an improved engraftment of cells.
Collapse
Affiliation(s)
- Franziska Timm
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany.
| | | |
Collapse
|
28
|
Donndorf P, Useini D, Lux CA, Vollmar B, Delyagina E, Laupheimer M, Kaminski A, Steinhoff G. Analyzing migratory properties of human CD133(+) stem cells in vivo after intraoperative sternal bone marrow isolation. Cell Transplant 2012; 22:1627-35. [PMID: 23051098 DOI: 10.3727/096368912x657729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human bone marrow stem cell populations have been applied for cardiac regeneration purposes within different clinical settings in the recent past. The migratory capacity of applied stem cell populations towards injured tissue, after undergoing specific peri-interventional harvesting and isolation procedures, represents a key factor limiting therapeutic efficacy. We therefore aimed at analyzing the migratory capacity of human cluster of differentiation (CD) 133(+) bone marrow stem cells in vivo after intraoperative harvesting from the sternal bone marrow. Human CD133(+) bone marrow stem cells were isolated from the sternal bone marrow of patients undergoing cardiac surgery at our institution. Migratory capacity towards stromal cell-derived factor-1α (SDF-1α) gradients was tested in vitro and in vivo by intravital fluoresecence microscopy, utilizing the cremaster muscle model in severe combined immunodeficient (SCID) mice and analyzing CD133(+) cell interaction with the local endothelium. Furthermore, the role of a local inflammatory stimulus for CD133(+) cell interaction with the endothelium was studied. In order to describe endothelial response upon chemokine stimulation laser scanning microscopy of histological cremaster muscle samples was performed. SDF-1α alone was capable to induce relevant early CD133(+) cell interaction with the endothelium, indicated by the percentage of rolling CD133(+) cells (45.9±1.8% in "SDF-1" vs. 17.7±2.7% in "control," p<0.001) and the significantly reduced rolling velocity after SDF-1α treatment. Furthermore, SDF-1α induced firm endothelial adhesion of CD133(+) cells in vivo. Firm endothelial adhesion, however, was significantly enhanced by additional inflammatory stimulation with tumor necrosis factor-α (TNF-α) (27.9±4.3 cells/mm(2)in "SDF-1 + TNF" vs. 2.2±1.1 cells/mm(2) in "control," p<0.001). CD133(+) bone marrow stem cells exhibit sufficient in vivo homing towards SDF-1α gradients in an inflammatory microenvironment after undergoing standardized intraoperative harvesting and isolation from the sternal bone marrow.
Collapse
Affiliation(s)
- Peter Donndorf
- Reference and Translation Centre for Cardiac Stem Cell Therapy, Department for Cardiac Surgery, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|