1
|
Lanznaster D, Dingeo G, Samey RA, Emond P, Blasco H. Metabolomics as a Crucial Tool to Develop New Therapeutic Strategies for Neurodegenerative Diseases. Metabolites 2022; 12:864. [PMID: 36144268 PMCID: PMC9503806 DOI: 10.3390/metabo12090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS), share common pathological mechanisms, including metabolism alterations. However, their specific neuronal cell types affected and molecular biomarkers suggest that there are both common and specific alterations regarding metabolite levels. In this review, we were interested in identifying metabolite alterations that have been reported in preclinical models of NDs and that have also been documented as altered in NDs patients. Such alterations could represent interesting targets for the development of targeted therapy. Importantly, the translation of such findings from preclinical to clinical studies is primordial for the study of possible therapeutic agents. We found that N-acetyl-aspartate (NAA), myo-inositol, and glutamate are commonly altered in the three NDs investigated here. We also found other metabolites commonly altered in both AD and PD. In this review, we discuss the studies reporting such alterations and the possible pathological mechanism underlying them. Finally, we discuss clinical trials that have attempted to develop treatments targeting such alterations. We conclude that the treatment combination of both common and differential alterations would increase the chances of patients having access to efficient treatments for each ND.
Collapse
|
2
|
Diniz LP, Araujo APB, Matias I, Garcia MN, Barros-Aragão FGQ, de Melo Reis RA, Foguel D, Braga C, Figueiredo CP, Romão L, Gomes FCA. Astrocyte glutamate transporters are increased in an early sporadic model of synucleinopathy. Neurochem Int 2020; 138:104758. [PMID: 32439533 DOI: 10.1016/j.neuint.2020.104758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
α-Synuclein protein (α-syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. These diseases are characterized by abnormal motor symptoms, such as tremor at rest, slowness of movement, rigidity of posture, and bradykinesia. Histopathological features of PD include preferential loss of dopaminergic neurons in the substantia nigra and formation of fibrillar intraneuronal inclusions called Lewy bodies and Lewy neurites, which are composed primarily of the α-syn protein. Currently, it is well accepted that α-syn oligomers (αSO) are the main toxic agent responsible for the etiology of PD. Glutamatergic excitotoxicity is associated with several neurological disorders, including PD. Excess glutamate in the synaptic cleft can be taken up by the astrocytic glutamate transporters GLAST and GLT-1. Although this event is the main defense against glutamatergic excitotoxicity, the molecular mechanisms that regulate this process have not yet been investigated in an early sporadic model of synucleinopathy. Here, using an early sporadic model of synucleinopathy, we demonstrated that the treatment of astrocytes with αSO increased glutamate uptake. This was associated with higher levels of GLAST and GLT-1 in astrocyte cultures and in a mouse model of synucleinopathy 24 h and 45 days after inoculation with αSO, respectively. Pharmacological inhibition of the TGF-β1 (transforming growth factor beta 1) pathway in vivo reverted GLAST/GLT-1 enhancement induced by αSO injection. Therefore, our study describes a new neuroprotective role of astrocytes in an early sporadic model of synucleinopathy and sheds light on the mechanisms of glutamate transporter regulation for neuroprotection against glutamatergic excitotoxicity in synucleinopathy.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana Paula Bérgamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus N Garcia
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G Q Barros-Aragão
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Braga
- Campus Duque de Caxias, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
3
|
Fang Q, Zhang Y, Chen X, Li H, Cheng L, Zhu W, Zhang Z, Tang M, Liu W, Wang H, Wang T, Shen T, Chai R. Three-Dimensional Graphene Enhances Neural Stem Cell Proliferation Through Metabolic Regulation. Front Bioeng Biotechnol 2020; 7:436. [PMID: 31998703 PMCID: PMC6961593 DOI: 10.3389/fbioe.2019.00436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Graphene consists of two-dimensional sp2-bonded carbon sheets, a single or a few layers thick, which has attracted considerable interest in recent years due to its good conductivity and biocompatibility. Three-dimensional graphene foam (3DG) has been demonstrated to be a robust scaffold for culturing neural stem cells (NSCs) in vitro that not only supports NSCs growth, but also maintains cells in a more active proliferative state than 2D graphene films and ordinary glass. In addition, 3DG can enhance NSCs differentiation into astrocytes and especially neurons. However, the underlying mechanisms behind 3DG's effects are still poorly understood. Metabolism is the fundamental characteristic of life and provides substances for building and powering the cell. Metabolic activity is tightly tied with the proliferation, differentiation, and self-renewal of stem cells. This study focused on the metabolic reconfiguration of stem cells induced by culturing on 3DG. This study established the correlation between metabolic reconfiguration metabolomics with NSCs cell proliferation rate on different scaffold. Several metabolic processes have been uncovered in association with the proliferation change of NSCs. Especially, culturing on 3DG triggered pathways that increased amino acid incorporation and enhanced glucose metabolism. These data suggested a potential association between graphene and pathways involved in Parkinson's disease. Our work provides a very useful starting point for further studies of NSC fate determination on 3DG.
Collapse
Affiliation(s)
- Qiaojun Fang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yuhua Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiangbo Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Hangzhou Rongze Biotechnology Co., Ltd. Hangzhou, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liya Cheng
- Institute of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wenjuan Zhu
- Zhangjiagang City First People's Hospital, The Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang, China
| | - Zhong Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
5
|
Wang S, Zhang H, Geng B, Xie Q, Li W, Deng Y, Shi W, Pan Y, Kang X, Wang J. 2-arachidonyl glycerol modulates astrocytic glutamine synthetase via p38 and ERK1/2 pathways. J Neuroinflammation 2018; 15:220. [PMID: 30075820 PMCID: PMC6091076 DOI: 10.1186/s12974-018-1254-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background The glutamine synthetase (GS), an astrocyte-specific enzyme, is involved in lipopolysaccharide (LPS)-induced inflammation which activates the mitogen-activated protein kinase (MAPK) signaling. Endocannabinoid 2-arachidonyl glycerol (2-AG) has been described to serve as an endogenous mediator of analgesia and neuroprotection. However, whether 2-AG can directly influence astrocytic GS and MAPK expressions remains unknown. Methods In the present study, the effects of 2-AG on astrocytic GS expression, p38 and ERK1/2 expression, cell viability, and apoptosis following LPS exposure were investigated. Results The results revealed that LPS exposure increased GS expression with p38 activation in the early phase and decreased GS expression with activation of ERK1/2, decrease of cell viability, and increase of apoptosis in the late phase. Inhibition of p38 reversed GS increase in the early phase while inhibition of ERK1/2 reversed GS decrease in the late phase induced by LPS exposure. 2-AG protected astrocytes from increase of apoptosis and decrease of cell viability induced by the late phase of LPS exposure. In the early phase of LPS exposure, 2-AG could suppress the increase of GS expression and activation of p38 signaling. In the late phase of LPS exposure, 2-AG could reverse the decrease of GS expression and activation of ERK1/2 induced by LPS. Conclusion These findings suggest that 2-AG could maintain the GS expression in astrocytes to a relatively stable level through modulating MAPK signaling and protect astrocytes from LPS exposure.
Collapse
Affiliation(s)
- Shenghong Wang
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Hua Zhang
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Bin Geng
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China.,Department of Orthopaedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Qiqi Xie
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Wenzhou Li
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yajun Deng
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Weidong Shi
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yunyan Pan
- Clinical Laboratory, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Xuewen Kang
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China.,Department of Orthopaedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China
| | - Jing Wang
- Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Gansu, 730030, People's Republic of China.
| |
Collapse
|
6
|
Crabbé M, Van der Perren A, Weerasekera A, Himmelreich U, Baekelandt V, Van Laere K, Casteels C. Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson's disease and levodopa-induced dyskinesia. Neurobiol Aging 2018; 61:82-92. [DOI: 10.1016/j.neurobiolaging.2017.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
|