1
|
Prókai J, Murlasits Z, Bánhidi M, Csóka L, Gréci V, Atlasz T, Váczi M. The Effects of a 12-Week-Long Sand Exercise Training Program on Neuromechanical and Functional Parameters in Type II Diabetic Patients with Neuropathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5413. [PMID: 37048025 PMCID: PMC10094138 DOI: 10.3390/ijerph20075413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Studies have proven the effectiveness of different weight-bearing exercise interventions for diabetic patients with neuropathy; however, several adverse effects were reported using solid surfaces. Thus, in the present study, we investigated the effects of a novel sand exercise training intervention on biomechanical and functional parameters in seven diabetic patients (age = 62.7 ± 9.7 years) with neuropathy. Patients underwent a 12-week sand exercise training program, using strengthening, stretching, balance, and gait exercises. They were tested for ankle plantar- and dorsiflexion peak torque, active range of motion (ROM), timed up and go (TUG), and bilateral static balance. EMG activity of tibialis anterior (TA), gastrocnemius medialis (GM), and lateralis (GL) muscles were measured during unilateral isometric contraction in plantar- and dorsiflexion. In the intervention period, plantarflexion peak torque improved significantly (p = 0.033), while dorsiflexion torque remained unchanged. Plantar- and dorsiflexion ROM increased (p = 0.032) and (p = 0.021), respectively. EMG activity of GM (p = 0.005) and GL (p = 0.002) measured during dorsiflexion and postural sway in the balance test, as well as time to complete the TUG test, decreased significantly (p = 0.021) and (p = 0.002), respectively. No adverse effect was reported during the intervention period. We concluded that sand exercise training can be a safe and effective method to improve plantarflexion strength, ankle flexibility, and balance, which is reflected in better gait function in patients with diabetic peripheral neuropathy (DPN).
Collapse
Affiliation(s)
- Judit Prókai
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Zsolt Murlasits
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Miklós Bánhidi
- Faculty of Health and Sport Sciences, University of Győr, 9026 Győr, Hungary
| | - László Csóka
- Department of Marketing and Tourism, Faculty of Business and Economics, University of Pécs, 7622 Pécs, Hungary
| | - Viktória Gréci
- Department of Neurology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Gyógypont Rehabilitation, 7623 Pécs, Hungary
| | - Tamás Atlasz
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Márk Váczi
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Muramatsu K, Shimo S, Tamaki T, Ikutomo M, Niwa M. Functional and Structural Changes in the Corticospinal Tract of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22:10123. [PMID: 34576288 PMCID: PMC8472618 DOI: 10.3390/ijms221810123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to reveal functional and morphological changes in the corticospinal tract, a pathway shown to be susceptible to diabetes. Type 1 diabetes was induced in 13-week-old male Wistar rats administered streptozotocin. Twenty-three weeks after streptozotocin injection, diabetic animals and age-matched control animals were used to demonstrate the conduction velocity of the corticospinal tract. Other animals were used for morphometric analyses of the base of the dorsal funiculus of the corticospinal tract in the spinal cord using both optical and electron microscopy. The conduction velocity of the corticospinal tract decreased in the lumbar spinal cord in the diabetic animal, although it did not decrease in the cervical spinal cord. Furthermore, atrophy of the fibers of the base of the dorsal funiculus was observed along their entire length, with an increase in the g-ratio in the lumbar spinal cord in the diabetic animal. This study indicates that the corticospinal tract fibers projecting to the lumbar spinal cord experience a decrease in conduction velocity at the lumbar spinal cord of these axons in diabetic animals, likely caused by a combination of axonal atrophy and an increased g-ratio due to thinning of the myelin sheath.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Toru Tamaki
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0003, Japan;
| | - Masatoshi Niwa
- Department of Occupational Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan;
| |
Collapse
|
3
|
Huang H, Wu S. Application of High-Resolution Ultrasound on Diagnosing Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2021; 14:139-152. [PMID: 33469331 PMCID: PMC7813464 DOI: 10.2147/dmso.s292991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). The typical manifestation is a length-dependent "glove and sock" sensation. At present, diagnosis is mainly dependent on clinical manifestations. Since the pathogenesis is not clear, there are no effective treatment measures. Management consists mainly of glucose control, peripheral nerve nutrition, and other measures to delay the progress of the disease; early diagnosis is therefore crucial to improving prognosis and quality of life for patients with DPN. Due to the lack of obvious symptoms in 50% of patients and the low sensitivity of neuro-electrophysiology to small fibers, the missed diagnosis rate is high. High-resolution ultrasound (HRU), as a convenient noninvasive tool, has been proven by many studies to have excellent clinical value in diagnosing DPN. With the development of related new technology, HRU shows promise for the screening, diagnosing, and follow-up of DPN, which could serve as a biomarker and provide new diagnostic insights. In this paper, we review the ability of HRU to detect nerve cross-sectional area and blood flow, and echo and other image changes, and in showing the characteristics of peripheral nerve morphological changes in patients with DPN. We also explore the application of two other recent technological developments-shear wave elastography (SWE) and ultrasound scoring systems-in improving the diagnostic efficiency of HRU in peripheral neuropathy.
Collapse
Affiliation(s)
- Hailun Huang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou550001, People’s Republic of China
| | - Shan Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou550001, People’s Republic of China
- Correspondence: Shan Wu Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou550001, People’s Republic of ChinaTel +86 13312231575 Email
| |
Collapse
|
4
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
5
|
Suda EY, Madeleine P, Hirata RP, Samani A, Kawamura TT, Sacco ICN. Reduced complexity of force and muscle activity during low level isometric contractions of the ankle in diabetic individuals. Clin Biomech (Bristol, Avon) 2017; 42:38-46. [PMID: 28088014 DOI: 10.1016/j.clinbiomech.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study evaluated the structure and amount of variability of surface electromyography (sEMG) patterns and ankle force data during low-level isometric contractions in diabetic subjects with different degrees of neuropathy. METHODS We assessed 10 control subjects and 38 diabetic patients, classified as absent, mild, moderate, or severe neuropathy, by a fuzzy system based on clinical variables. Multichannel sEMG (64-electrode matrix) of tibialis anterior and gastrocnemius medialis muscles were acquired during isometric contractions at 10%, 20%, and 30% of the maximum voluntary contraction, and force levels during dorsi- and plantarflexion were recorded. Standard deviation and sample entropy of force signals were calculated and root mean square and sample entropy were calculated from sEMG signals. Differences among groups of force and sEMG variables were verified using a multivariate analysis of variance. FINDINGS Overall, during dorsiflexion contractions, moderate and severe subjects had higher force standard deviation and moderate subjects had lower force sample entropy. During plantarflexion, moderate subjects had higher force standard deviation and all diabetic subjects had lower entropy. Tibialis anterior presented higher root mean square in absent group and lower entropy in mild subjects. For gastrocnemius medialis, entropy was higher in severe and lower in moderate subjects. INTERPRETATION Diabetic neuropathy affects the complexity of the neuromuscular system during low-level isometric contractions, reducing the system's capacity to adapt to challenging mechanical demands. The observed patterns of neuromuscular complexity were not associated with disease severity, with the majority of alterations recorded in moderate subject.
Collapse
Affiliation(s)
- E Y Suda
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - P Madeleine
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - R P Hirata
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - A Samani
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - T T Kawamura
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - I C N Sacco
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Muramatsu K, Niwa M, Nagai M, Kamimura T, Sasaki SI, Ishiguro T. The size of motoneurons of the gastrocnemius muscle in rats with diabetes. Neurosci Lett 2012; 531:109-13. [PMID: 23127853 DOI: 10.1016/j.neulet.2012.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/07/2012] [Accepted: 10/19/2012] [Indexed: 11/15/2022]
Abstract
Alterations in the number and size of motoneurons were studied in the medial gastrocnemius (MG) motor nucleus of diabetic rats (12 or 22 weeks after injection of storeptozotocin) and age-matched controls. Each group contained 6 animals. MG motoneurons were retrogradely labeled by dextran-fluorescein and the number and size of cell bodies were examined. Significantly fewer labeled MG motoneurons were found in the 22-week diabetic rats as compared with age-matched control animals. The mean soma diameter of MG motoneurons was significantly smaller in the 12- and 22-week diabetic animals. Furthermore the soma size for 22-week diabetic animals was smaller than for 12-week diabetic animals. The distribution of average soma diameters in the MG nucleus of control animals was bimodal; cells with larger average diameter were presumed to be alpha-motoneurons and those with smaller diameters were presumed to be gamma. Compared to control animals, the number of smaller MG motoneurons was reduced in 12 week diabetic animals. By 22 weeks, diabetic animals had no small MG motoneurons and the size distribution became unimodal. We conclude that there is a significant decrease in the absolute number and size of MG motoneurons in diabetic rats, with the possibility that the decrease occurred predominantly among the smaller gamma-motoneurons.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Health Science University, Yamanashi, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Garcia CC, Potian JG, Hognason K, Thyagarajan B, Sultatos LG, Souayah N, Routh VH, McArdle JJ. Acetylcholinesterase deficiency contributes to neuromuscular junction dysfunction in type 1 diabetic neuropathy. Am J Physiol Endocrinol Metab 2012; 303:E551-61. [PMID: 22739110 PMCID: PMC3423102 DOI: 10.1152/ajpendo.00622.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/02/2012] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathy is associated with functional and morphological changes of the neuromuscular junction (NMJ) associated with muscle weakness. This study examines the effect of type 1 diabetes on NMJ function. Swiss Webster mice were made diabetic with three interdaily ip injections of streptozotocin (STZ). Mice were severely hyperglycemic within 7 days after the STZ treatment began. Whereas performance of mice on a rotating rod remained normal, the twitch tension response of the isolated extensor digitorum longus to nerve stimulation was reduced significantly at 4 wk after the onset of STZ-induced hyperglycemia. This mechanical alteration was associated with increased amplitude and prolonged duration of miniature end-plate currents (mEPCs). Prolongation of mEPCs was not due to expression of the embryonic acetylcholine receptor but to reduced muscle expression of acetylcholine esterase (AChE). Greater sensitivity of mEPC decay time to the selective butyrylcholinesterase (BChE) inhibitor PEC suggests that muscle attempts to compensate for reduced AChE levels by increasing expression of BChE. These alterations of AChE are attributed to STZ-induced hyperglycemia since similar mEPC prolongation and reduced AChE expression were found for db/db mice. The reduction of muscle end-plate AChE activity early during the onset of STZ-induced hyperglycemia may contribute to endplate pathology and subsequent muscle weakness during diabetes.
Collapse
Affiliation(s)
- Carmen C Garcia
- Dept. of Pharmacology and Physiology, New Jersey Medical School-UMDNJ, MSB-I626, 185 South Orange Ave., Newark, NJ 07101-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Motor End Plate Innervation Loss in Diabetes and the Role of Insulin. J Neuropathol Exp Neurol 2011; 70:323-39. [DOI: 10.1097/nen.0b013e318215669a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats. J Biomed Biotechnol 2010; 2010:931903. [PMID: 20467472 PMCID: PMC2866429 DOI: 10.1155/2010/931903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/18/2010] [Indexed: 11/17/2022] Open
Abstract
Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.
Collapse
|
10
|
Skeletal muscle sorbitol levels in diabetic rats with and without insulin therapy and endurance exercise training. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:737686. [PMID: 20016800 PMCID: PMC2792946 DOI: 10.1155/2009/737686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/23/2009] [Accepted: 09/06/2009] [Indexed: 12/17/2022]
Abstract
Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin.
Collapse
|
11
|
Ramji N, Toth C, Kennedy J, Zochodne DW. Does diabetes mellitus target motor neurons? Neurobiol Dis 2006; 26:301-11. [PMID: 17337195 DOI: 10.1016/j.nbd.2006.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 11/02/2006] [Accepted: 11/04/2006] [Indexed: 11/18/2022] Open
Abstract
A pattern of peripheral neurodegeneration occurs in chronic diabetes mellitus in which an early, but selective retraction of distal axons may occur prior to any irretrievable neuronal loss. Clinical observations suggest that sensory systems undergo damage before those of motor neurons. In this work, we examined the fate of the spinal motor neuron in a long-term chronic model of experimental (streptozotocin-induced) diabetes already known to be associated with substantial loss of sensory neurons. The integrity, physiological function, and critical forms of protein expression of the full motor neuron tree was examined in mice exposed to 8 months of diabetes. Motor neurons developed progressive features of distal loss of axonal terminals but without perikaryal dropout, indicating distal axon retraction. While numbers and caliber of motor neuron perikarya and their nerve trunk axons were preserved, axons developed conduction velocity slowing, loss of motor units and neuromuscular junctions, and compensatory single motor unit action potential enlargement. Four critical proteins directly linked to diabetic complications were altered in motor neurons of diabetic mice: an elevated perikaryal expression of RAGE and PARP, molecules associated with cellular stress, along with concurrent rises in HSP-27 and pAKT, molecules alternatively identified with neuroprotective survival. Moreover, Akt mRNA was increased in diabetic lumbar spinal cords. Overall these findings indicate that although motor neurons are resistant to irretrievable dropout, they are targeted nonetheless by diabetes and gradually withdraw their terminals from distal innervation.
Collapse
Affiliation(s)
- Noor Ramji
- University of Calgary, Department of Clinical Neurosciences, Room 168, 3330 Hospital Drive, N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
12
|
Krishnan AV, Kiernan MC. Altered nerve excitability properties in established diabetic neuropathy. ACTA ACUST UNITED AC 2005; 128:1178-87. [PMID: 15758031 DOI: 10.1093/brain/awh476] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The underlying cause of diabetic neuropathy remains unclear, although pathological studies have suggested an ischaemic basis related to microangiopathy, possibly mediated through effects on the energy-dependent Na+/K+ pump. To investigate the pathophysiology of diabetic neuropathy, axonal excitability techniques were undertaken in 20 diabetic patients with neuropathy severity graded through a combination of quantitative sensory testing (QST) using a vibratory stimulus, assessment of symptom severity using the Total Neuropathy Symptom Score (T-NSS) and measurement of glycosylated haemoglobin as a marker of disease control. To assess axonal excitability, compound muscle action potentials were recorded at rest from abductor pollicis brevis following stimulation of the median nerve, and stimulus-response behaviour, threshold electrotonus, a current-threshold relationship and the recovery of excitability were recorded in each patient. All patients had established neuropathy, with abnormalities of T-NSS present in all patients and QST abnormalities present in 65%. Compared with controls, diabetic neuropathy patients had significant reduction in maximal CMAP amplitude (P < 0.0005), accompanied by a 'fanning in' of threshold electrotonus. In addition, the strength-duration time constant was decreased in diabetic neuropathy patients and recovery cycles were altered with reductions in refractoriness, the duration of the relative refractory period, superexcitability and subexcitability. It is proposed that while the changes in threshold electrotonus with supportive findings in the current-threshold relationship are consistent with axonal depolarization, possibly mediated by a decrease in Na+/K+ pump activity, the alterations in the recovery cycle of excitability could be explained on the basis of a smaller action potential, reflecting a limitation on the nodal driving current imposed by a reduction in Na+ conductances.
Collapse
Affiliation(s)
- Arun V Krishnan
- Institute of Neurological Sciences, Prince of Wales Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
13
|
Abstract
PURPOSE The aim of this study was to compare functional capacity in 30 Type 2 Diabetic patients with 30 healthy non-diabetic control subjects. METHODS Physical fitness was evaluated using the "EUROFIT Physical Fitness Test Battery". This battery estimates body composition, cardiopulmonary, musculoskeletal and motor fitness. RESULTS Percentage of body fat (PBF) was higher in the diabetic compared with control groups (P<0.05) although body mass index (BMI) was similar. Biceps and suprailiac skinfold thickness were also greater in the diabetic group (P<0.05). The 6-min walking distance and VO(2max) were significantly lower in the diabetic group (P<0.05). The diabetic patients had lower values of the single leg balance test with eyes opened and closed. Jump-stretch, handgrip and side-bending of trunk tests were also lower in the diabetic patients. CONCLUSION Physical functional capacity is lower in Type 2 diabetic patients than in age-matched control subjects.
Collapse
Affiliation(s)
- Mehtap Ozdirenç
- School of Physical Therapy and Rehabilitation, Dokuz Eylül University, 35340 Inciralti-Izmir, Turkey.
| | | | | |
Collapse
|