1
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
2
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
3
|
da Silva Beraldo IJ, Prates Rodrigues M, Polanczyk RS, Verano-Braga T, Lopes-Aguiar C. Proteomic-Based Studies on Memory Formation in Normal and Neurodegenerative Disease-Affected Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:129-158. [PMID: 38409419 DOI: 10.1007/978-3-031-50624-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A critical aspect of cognition is the ability to acquire, consolidate, and evoke memories, which is considerably impaired by neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. These mnemonic processes are dependent on signaling cascades, which involve protein expression and degradation. Recent mass spectrometry (MS)-based proteomics has opened a range of possibilities for the study of memory formation and impairment, making it possible to research protein systems not studied before. However, in the context of synaptic proteome related to learning processes and memory formation, a deeper understanding of the synaptic proteome temporal dynamics after induction of synaptic plasticity and the molecular changes underlying the cognitive deficits seen in neurodegenerative diseases is needed. This review analyzes the applications of proteomics for understanding memory processes in both normal and neurodegenerative conditions. Moreover, the most critical experimental studies have been summarized using the PANTHER overrepresentation test. Finally, limitations associated with investigations of memory studies in physiological and neurodegenerative disorders have also been discussed.
Collapse
Affiliation(s)
- Ikaro Jesus da Silva Beraldo
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Mateus Prates Rodrigues
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Rafaela Schuttenberg Polanczyk
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Núcleo de Proteômica Funcional (NPF), Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Cleiton Lopes-Aguiar
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Schwab K, Melis V, Harrington CR, Wischik CM, Magbagbeolu M, Theuring F, Riedel G. Proteomic Analysis of Hydromethylthionine in the Line 66 Model of Frontotemporal Dementia Demonstrates Actions on Tau-Dependent and Tau-Independent Networks. Cells 2021; 10:2162. [PMID: 34440931 PMCID: PMC8391171 DOI: 10.3390/cells10082162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies. Several of these behavioural phenotypes and tau pathology are reversed by treatment with hydromethylthionine but key pathways underlying these corrections remain elusive. In two proteomic experiments, line 66 mice were compared with wild-type mice and then vehicle and hydromethylthionine treatments of line 66 mice were compared. The brain proteome was investigated using two-dimensional electrophoresis and mass spectrometry to identify protein networks and pathways that were altered due to tau overexpression or modified by hydromethylthionine treatment. Overexpression of mutant tau induced metabolic/mitochondrial dysfunction, changes in synaptic transmission and in stress responses, and these functions were recovered by hydromethylthionine. Other pathways, such as NRF2, oxidative phosphorylation and protein ubiquitination were activated by hydromethylthionine, presumably independent of its function as a tau aggregation inhibitor. Our results suggest that hydromethylthionine recovers cellular activity in both a tau-dependent and a tau-independent fashion that could lead to a wide-spread improvement of homeostatic function in the FTD brain.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Mandy Magbagbeolu
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Franz Theuring
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| |
Collapse
|
5
|
Thordardottir S, Almkvist O, Johansson C, Zetterberg H, Blennow K, Graff C. Cerebrospinal Fluid YKL-40 and Neurogranin in Familial Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2021; 76:941-953. [PMID: 32568193 PMCID: PMC7505010 DOI: 10.3233/jad-191261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND YKL-40 and neurogranin are promising additional cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) which reflect different underlying disease mechanisms. OBJECTIVE To compare the levels of CSF YKL-40 and neurogranin between asymptomatic carriers of familial AD (FAD) mutations (MC) and non-carriers (NC) from the same families. Another objective was to assess changes in YKL-40 and neurogranin, from the presymptomatic to clinical phase of FAD. METHODS YKL-40 and neurogranin, as well as Aβ42, total tau-protein, and phospho-tau, were measured in the CSF of 14 individuals carrying one of three FAD mutations, APPswe (p.KM670/671NL), APParc (p.E693G), and PSEN1 (p.H163Y), as well as in 17 NC from the same families. Five of the MC developed mild cognitive impairment (MCI) during follow-up. RESULTS In this pilot study, there was no difference in either CSF YKL-40 or neurogranin when comparing the presymptomatic MC to the NC. YKL-40 correlated positively with expected years to symptom onset and to age in both the MC and the NC, while neurogranin had no correlation to either variable in either of the groups. A subgroup of the participants underwent more than one CSF sampling in which half of the MC developed MCI during follow-up. The longitudinal data showed an increase in YKL-40 levels in the MC as the expected symptom onset approached. Neurogranin remained stable over time in both the MC and the NC. CONCLUSION These findings support a positive correlation between progression from presymptomatic to symptomatic AD and levels of CSF YKL-40, but not neurogranin.
Collapse
Affiliation(s)
- Steinunn Thordardottir
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Ove Almkvist
- Department of NVS, Karolinska Institutet, Center for Alzheimer Research, Division of Clinical Geriatrics, Huddinge, Sweden
| | - Charlotte Johansson
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UCL Insitute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Caroline Graff
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| |
Collapse
|
6
|
Xu J, Bankov G, Kim M, Wretlind A, Lord J, Green R, Hodges A, Hye A, Aarsland D, Velayudhan L, Dobson RJB, Proitsi P, Legido-Quigley C. Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer's disease. Transl Neurodegener 2020; 9:36. [PMID: 32951606 PMCID: PMC7504646 DOI: 10.1186/s40035-020-00215-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is an urgent need to understand the pathways and processes underlying Alzheimer's disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer's dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. METHODS A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. RESULTS Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE ε4 genotype). CONCLUSIONS Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Giulia Bankov
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Jodie Lord
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Richard J B Dobson
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK.
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
7
|
Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, Pandey A. Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2019; 13:e1800105. [PMID: 30578620 PMCID: PMC6639119 DOI: 10.1002/prca.201800105] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study is to identify the potential cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease and to evaluate these markers on independent CSF samples using parallel reaction monitoring (PRM) assays. EXPERIMENTAL DESIGN High-Resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology are employed to identify potential biomarkers for Alzheimer's disease. Some of the identified potential biomarkers are validated using PRM assays. RESULTS A total of 2327 proteins are identified in the CSF of which 139 are observed to be significantly altered in the CSF of AD patients. The proteins altered in AD includes a number of known AD marker such as MAPT, NPTX2, VGF, GFAP, and NCAM1 as well as novel biomarkers such as PKM and YWHAG. These findings are validated in a separate set of CSF specimens from AD dementia patients and controls. NPTX2, in combination with PKM or YWHAG, leads to the best results with AUCs of 0.935 and 0.933, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The proteins that are found to be altered in the CSF of patients with AD could be used for monitoring disease progression and therapeutic response and perhaps also for early detection once they are validated in larger studies.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
8
|
Alzheimer's disease in the omics era. Clin Biochem 2018; 59:9-16. [DOI: 10.1016/j.clinbiochem.2018.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
9
|
Thordardottir S, Rodriguez-Vieitez E, Almkvist O, Ferreira D, Saint-Aubert L, Kinhult-Ståhlbom A, Thonberg H, Schöll M, Westman E, Wall A, Eriksdotter M, Zetterberg H, Blennow K, Nordberg A, Graff C. Reduced penetrance of the PSEN1 H163Y autosomal dominant Alzheimer mutation: a 22-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2018; 10:45. [PMID: 29747683 PMCID: PMC5944151 DOI: 10.1186/s13195-018-0374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
Background The range of onset ages within some PSEN1 families is wide, and a few cases of reduced penetrance of PSEN1 mutations have been reported. However, published data on reduced penetrance have been limited to clinical histories, often collected retrospectively and lacking biomarker information. We present a case of reduced penetrance of the PSEN1 H163Y mutation in a carrier prospectively followed for 22 years. Methods Two brothers (A and B), both carriers of the H163Y mutation, were followed between 1995 and 2017. They underwent repeated clinical evaluations, neuropsychological assessments, and cerebrospinal fluid analyses, as well as brain imaging examinations with structural magnetic resonance, [18F]fluorodeoxyglucose positron emission tomography, and [11C]Pittsburgh compound B positron emission tomography. Results Brother A was followed between 44 and 64 years of age. Cognitive symptoms due to Alzheimer’s disease set in at the age of 54. Gradual worsening of symptoms resulted in admittance to a nursing home owing to dependence on others for all activities of daily living. He showed a curvilinear decline in cognitive function on neuropsychological tests, and changes on magnetic resonance imaging, positron emission tomography, and biomarkers in the cerebrospinal fluid supported a clinical diagnosis of Alzheimer’s disease. Brother A died at the age of 64 and fulfilled the criteria for definitive Alzheimer’s disease according to neuropathological examination results. Brother B was followed between the ages of 43 and 65 and showed no cognitive deterioration on repeated neuropsychological test occasions. In addition, no biomarker evidence of Alzheimer’s disease pathology was detected, either on imaging examinations or in cerebrospinal fluid. Conclusions The average (SD) age of symptom onset for PSEN1 H163Y is 51 ± 7 years according to previous studies. However, we present a case of a biomarker-verified reduction in penetrance in a mutation carrier who was still symptom-free at the age of 65. This suggests that other genetic, epigenetic, and/or environmental factors modify the onset age. Electronic supplementary material The online version of this article (10.1186/s13195-018-0374-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steinunn Thordardottir
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, 141 57, Huddinge, Sweden
| | - Ove Almkvist
- Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, 141 57, Huddinge, Sweden.,Department of Psychology, Stockholm University, 106 91, Stockholm, Sweden
| | - Daniel Ferreira
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, 141 57, Huddinge, Sweden
| | - Laure Saint-Aubert
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, 141 57, Huddinge, Sweden.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne Kinhult-Ståhlbom
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Håkan Thonberg
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, 413 45, Gothenburg, Sweden.,Clinical Memory Research Unit, Lund University, 212 24, Malmö, Sweden
| | - Eric Westman
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, 141 57, Huddinge, Sweden
| | - Anders Wall
- Uppsala University, Department of Surgical Sciences, Section of Nuclear Medicine & PET, 751 85, Uppsala, Sweden
| | - Maria Eriksdotter
- Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, 141 57, Huddinge, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 80, Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1N 3BG, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Agneta Nordberg
- Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, 141 57, Huddinge, Sweden
| | - Caroline Graff
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57, Huddinge, Sweden. .,Theme Aging, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| |
Collapse
|
10
|
Duits FH, Brinkmalm G, Teunissen CE, Brinkmalm A, Scheltens P, Van der Flier WM, Zetterberg H, Blennow K. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:5. [PMID: 29370833 PMCID: PMC6389073 DOI: 10.1186/s13195-017-0335-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND We investigated whether a panel of 12 potential novel biomarkers consisting of proteins involved in synapse functioning and immunity would be able to distinguish patients with Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI) from control subjects. METHODS We included 40 control subjects, 40 subjects with MCI, and 40 subjects with AD from the Amsterdam Dementia Cohort who were matched for age and sex (age 65 ± 5 years, 19 [48%] women). The mean follow-up of patients with MCI was 3 years. Two or three tryptic peptides per protein were analyzed in cerebrospinal fluid using parallel reaction monitoring mass spectrometry. Corresponding stable isotope-labeled peptides were added and used as reference peptides. Multilevel generalized estimating equations (GEEs) with peptides clustered per subject and per protein (as within-subject variables) were used to assess differences between diagnostic groups. To assess differential effects of individual proteins, we included the diagnosis × protein interaction in the model. Separate GEE analyses were performed to assess differences between stable patients and patients with progressive MCI (MCI-AD). RESULTS There was a main effect for diagnosis (p < 0.01) and an interaction between diagnosis and protein (p < 0.01). Analysis stratified according to protein showed higher levels in patients with MCI for most proteins, especially in patients with MCI-AD. Chromogranin A, secretogranin II, neurexin 3, and neuropentraxin 1 showed the largest effect sizes; β values ranged from 0.53 to 0.78 for patients with MCI versus control subjects or patients with AD, and from 0.67 to 0.98 for patients with MCI-AD versus patients with stable MCI. In contrast, neurosecretory protein VGF was lower in patients with AD than in patients with MCI (ß = -0.93 [SE 0.22]) and control subjects (ß = 0.46 [SE 0.19]). CONCLUSIONS Our results suggest that several proteins involved in vesicular transport and synaptic stability are elevated in patients with MCI, especially in patients with MCI progressing to AD dementia. This may reflect early events in the AD pathophysiological cascade. These proteins may be valuable as disease stage or prognostic markers in an early symptomatic stage of the disease.
Collapse
Affiliation(s)
- Flora H Duits
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Charlotte E Teunissen
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Wiesje M Van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
11
|
Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2017; 12. [PMID: 29028155 DOI: 10.1002/prca.201700131] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 01/04/2023]
Abstract
SCOPE The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered. CONCLUSION AND CLINICAL RELEVANCE PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon Sjödin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
12
|
Insight into the Molecular Imaging of Alzheimer's Disease. Int J Biomed Imaging 2016; 2016:7462014. [PMID: 26880871 PMCID: PMC4736963 DOI: 10.1155/2016/7462014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer's disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer's disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future.
Collapse
|
13
|
Bros P, Delatour V, Vialaret J, Lalere B, Barthelemy N, Gabelle A, Lehmann S, Hirtz C. Quantitative detection of amyloid-β peptides by mass spectrometry: state of the art and clinical applications. ACTA ACUST UNITED AC 2015; 53:1483-93. [DOI: 10.1515/cclm-2014-1048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/20/2015] [Indexed: 11/15/2022]
Abstract
AbstractAlzheimer’s disease (AD) is the most common form of dementia in humans, and a major public health concern with 35 million of patients worldwide. Cerebrospinal fluid (CSF) biomarkers being early diagnostic indicators of AD, it is essential to use the most efficient analytical methods to detect and quantify them accurately. These biomarkers, and more specifically amyloid-β (Aβ) peptides, are measured in routine clinical practice using immunoassays. However, there are several limits to this immunodetection in terms of specificity and multiplexing of the multiple isoforms of the Aβ peptides. To overcome these issues, the quantification of these analytes by mass spectrometry (MS) represents an interesting alternative, and several assays have been described over the past years. This article reviews the different Aβ peptides quantitative MS-based approaches published so far, compares their pre-analytical phase, and the different quantitative strategies implemented that might be suitable for clinical applications.
Collapse
|
14
|
Translational proteomics in Alzheimer's disease and related disorders. Clin Biochem 2013; 46:480-6. [DOI: 10.1016/j.clinbiochem.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
|
15
|
Constantinescu R, Mondello S. Cerebrospinal fluid biomarker candidates for parkinsonian disorders. Front Neurol 2013; 3:187. [PMID: 23346074 PMCID: PMC3549487 DOI: 10.3389/fneur.2012.00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/21/2012] [Indexed: 01/21/2023] Open
Abstract
The Parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson’s disease (PD) and atypical Parkinsonian disorders (APD), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression, and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha-synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in APD compared with PD and healthy controls. The new “omics” techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives.
Collapse
Affiliation(s)
- Radu Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
16
|
Penke B, Tóth AM, Földi I, Szűcs M, Janáky T. Intraneuronal β-amyloid and its interactions with proteins and subcellular organelles. Electrophoresis 2012; 33:3608-16. [PMID: 23161402 DOI: 10.1002/elps.201200297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/21/2012] [Indexed: 11/09/2022]
Abstract
Amyloidogenic aggregation and misfolding of proteins are linked to neurodegeneration. The mechanism of neurodegeneration in Alzheimer's disease, which gives rise to severe neuronal death and memory loss, is not yet fully understood. The amyloid hypothesis remains the most accepted theory for the pathomechanism of the disease. It was suggested that β-amyloid accumulation may play a key role in initiating the neurodegenerative processes. The recent intracellular β-amyloid (iAβ) hypothesis emphasizes the primary role of iAβ to initiate the disease by interaction with cytoplasmic proteins and cell organelles, thereby triggering apoptosis. Sophisticated methods (proteomics, protein microarray, and super resolution microscopy) have been used for studying iAβ interactions with proteins and membraneous structures. The present review summarizes the studies on the origin of iAβ and the base of its neurotoxicity: interactions with cytosolic proteins and several cell organelles such as endoplasmic reticulum, endosomes, lysosomes, ribosomes, mitochondria, and the microtubular system.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
17
|
Protein markers for the differential diagnosis of vascular dementia and Alzheimer's disease. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:824024. [PMID: 22701795 PMCID: PMC3373063 DOI: 10.1155/2012/824024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/11/2012] [Accepted: 04/03/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia found in all human populations worldwide, while vascular dementia (VaD) is the second most common form of dementia. New biomarkers for early and specific diagnosis of AD and VaD are needed to achieve greater insight into changes occurring in the brain and direct therapeutic strategies. The objective of this explorative study was to discover candidate protein biomarkers for the differential diagnosis between VaD and AD. Surface-enhanced laser desorption/ionization (SELDI) TOF-MS was used to differentially profile proteins and peptides in CSF samples from 28 AD patients and 21 patients with VaD. A combination of univariate (Kruskal-Wallis) and multivariate (independent component analysis) statistical approaches produced a list of 27 proteins and peptides that could differentiate between VaD and AD. These markers represent various physiological processes, such as protein degradation (ubiquitin), protease inhibition (cystatin C and alpha-1-antichymoptrypsin), and inflammation (C3a and C4a) that are known to be represented in neurodegenerative diseases.
Collapse
|
18
|
Beasley-Green A, Bunk D, Rudnick P, Kilpatrick L, Phinney K. A proteomics performance standard to support measurement quality in proteomics. Proteomics 2012; 12:923-31. [DOI: 10.1002/pmic.201100522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Fox S, Aarsland D, Zetterberg H, Vucic S, Mattsson N. Journal Watch. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Susan Fox
- Movement Disorder Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Dag Aarsland
- Alzheimer’s Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, Australia
| | - Niklas Mattsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
20
|
Pottiez G, Jagadish T, Yu F, Letendre S, Ellis R, Duarte NA, Grant I, Gendelman HE, Fox HS, Ciborowski P. Plasma proteomic profiling in HIV-1 infected methamphetamine abusers. PLoS One 2012; 7:e31031. [PMID: 22359561 PMCID: PMC3281056 DOI: 10.1371/journal.pone.0031031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/29/2011] [Indexed: 12/21/2022] Open
Abstract
We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins.
Collapse
Affiliation(s)
- Gwenael Pottiez
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gerlach M, Maetzler W, Broich K, Hampel H, Rems L, Reum T, Riederer P, Stöffler A, Streffer J, Berg D. Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics. J Neural Transm (Vienna) 2012; 119:39-52. [PMID: 21755462 PMCID: PMC3250615 DOI: 10.1007/s00702-011-0682-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/21/2011] [Indexed: 12/16/2022]
Abstract
Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson's disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies.
Collapse
Affiliation(s)
- Manfred Gerlach
- Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstrasse 15, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Davinelli S, Intrieri M, Russo C, Di Costanzo A, Zella D, Bosco P, Scapagnini G. The "Alzheimer's disease signature": potential perspectives for novel biomarkers. IMMUNITY & AGEING 2011; 8:7. [PMID: 21933389 PMCID: PMC3192749 DOI: 10.1186/1742-4933-8-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/20/2011] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Health Sciences, University of Molise, Campobasso, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and the future. NEURODEGENER DIS 2011; 8:413-20. [PMID: 21709402 DOI: 10.1159/000327756] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly. The biochemical changes that precede AD may be present up to 20 years before the clinical manifestation of the disease. The translational development of AD biomarkers may be theoretically achieved via two different strategies: the first strategy can be defined as 'knowledge-based' (deductive method), while the second one is a hypothesis-generating 'unbiased' approach (inductive strategy). The 'knowledge-based' approach relies on a direct understanding of the neuropathological processes that underlie the development of AD. In contrast, the 'unbiased' approach involves the use of modern techniques including proteomics and bioinformatics that allow unbiased investigations of numerous putative markers that may be informative with regard to AD. Cerebrospinal fluid (CSF) dosage of neuropathological AD-associated proteins has already been incorporated into the neurochemical diagnosis of AD, attesting the relevance of translational research. In the last few years, biomarker discovery research has successfully utilized genomics and proteomics for the identification of several promising molecular markers for AD. In the present article, we discuss the present state of the art and the future challenges in the search of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Proteomics Unit, IRCCS Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy. rghidoni @ fatebenefratelli.it
| | | | | | | | | | | |
Collapse
|
24
|
Juhász G, Földi I, Penke B. Systems biology of Alzheimer's disease: How diverse molecular changes result in memory impairment in AD. Neurochem Int 2011; 58:739-50. [DOI: 10.1016/j.neuint.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 01/13/2023]
|
25
|
Broadwater L, Pandit A, Azzam S, Clements R, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J. Analysis of the mitochondrial proteome in multiple sclerosis cortex. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:630-41. [PMID: 21295140 PMCID: PMC3074931 DOI: 10.1016/j.bbadis.2011.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/09/2011] [Accepted: 01/25/2011] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction has been proposed to play a role in the neuropathology of multiple sclerosis (MS). Previously, we reported significant alterations in the transcription of nuclear-encoded electron transport chain genes in MS and confirmed translational alterations for components of Complexes I and III that resulted in reductions in their activity. To more thoroughly and efficiently elucidate potential alterations in the expression of mitochondrial and related proteins, we have characterized the mitochondrial proteome in postmortem MS and control cortex using Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). Using principal component analysis (PCA) and hierarchical clustering techniques we were able to analyze the differential patterns of SELDI-TOF spectra to reveal clusters of peaks which distinguished MS from control samples. Four proteins in particular were responsible for distinguishing disease from control. Peptide fingerprint mapping unambiguously identified these differentially expressed proteins. Three proteins identified are involved in respiration including cytochrome c oxidase subunit 5b (COX5b), the brain specific isozyme of creatine kinase, and hemoglobin β-chain. The fourth protein identified was myelin basic protein (MBP). We then investigated whether these alterations were consistent in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We found that MBP was similarly altered in EAE but the respiratory proteins were not. These data indicate that while the EAE mouse model may mimic aspects of MS neuropathology which result from inflammatory demyelinating events, there is another distinct mechanism involved in mitochondrial dysfunction in gray matter in MS which is not modeled in EAE.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autopsy
- Biomarkers/analysis
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Case-Control Studies
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fluorescent Antibody Technique
- Glycoproteins/administration & dosage
- Humans
- Immunoprecipitation
- Male
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Myelin Basic Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Mapping
- Principal Component Analysis
- Proteome/analysis
- Proteomics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Laurie Broadwater
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Ashish Pandit
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Robert Clements
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Jonathan Vadnal
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Michael Sulak
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - V. Wee Yong
- Departments of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, CA T2N 4N1
| | - Ernest J. Freeman
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Roger B. Gregory
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| |
Collapse
|
26
|
Colucci-D'Amato L, Farina A, Vissers JPC, Chambery A. Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function. Stem Cell Rev Rep 2011; 7:77-93. [PMID: 20352529 DOI: 10.1007/s12015-010-9136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanisms underlying neural stem cell proliferation, differentiation and maturation play a critical role in the formation and wiring of neuronal connections. This process involves the activation of multiple serial events, which guide the undifferentiated cells to different lineages via distinctive developmental programs, forming neuronal circuits and thus shaping the adult nervous system. Furthermore, alterations within these strictly regulated pathways can lead to severe neurological and psychiatric diseases. In this framework, the investigation of the high dynamic protein expression changes and other factors affecting protein functions, for example post-translational modifications, the alterations of protein interaction networks, is of pivotal importance for the understanding of the molecular mechanisms responsible for cell differentiation. More recently, proteomic studies in neuroscience ("neuroproteomics") are receiving increased interest for the primary understanding of the regulatory networks underlying neuronal differentiation processes. Besides the classical two-dimensional-based proteomic strategies, the emerging platforms for LC-MS shotgun proteomic analysis hold great promise in unraveling the molecular basis of neural stem cell differentiation. In this review, recent advancements in label-free LC-MS quantitative neuroproteomics are highlighted as a new tool for the study of neural differentiation and functions, in comparison to mass spectrometry-based labeling approaches. The more commonly used protein profiling strategies and model systems for the analysis of neural differentiation are also discussed, along with the challenging proteomic approaches aimed to analyze the nervous system-specific organelles, the neural cells secretome and the specific protein interaction networks.
Collapse
Affiliation(s)
- Luca Colucci-D'Amato
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
27
|
Kroksveen A, Opsahl J, Aye T, Ulvik R, Berven F. Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 2011; 74:371-88. [DOI: 10.1016/j.jprot.2010.11.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 01/01/2023]
|
28
|
Nyhlén J, Constantinescu R, Zetterberg H. Problems associated with fluid biomarkers for Parkinson's disease. Biomark Med 2011; 4:671-81. [PMID: 20945980 DOI: 10.2217/bmm.10.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article focuses on biochemical markers that may be used in the diagnostics of Parkinson's disease and associated disorders, and to identify early cases and stratify patients into subgroups. We present an updated account of some currently available candidate fluid biomarkers, and discuss their diagnostic performance and limitations. We also discuss some of the general problems with Parkinson's disease biomarkers and possible ways of moving forward. It may be concluded that a diagnostically useful fluid biomarker for Parkinson's disease is yet to be identified. However, some interesting candidates exist and may prove useful in the future, alone or when analyzed together in patterns.
Collapse
Affiliation(s)
- Jakob Nyhlén
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | | |
Collapse
|
29
|
Ottens AK, Bustamante L, Golden EC, Yao C, Hayes RL, Wang KKW, Tortella FC, Dave JR. Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010; 27:1837-52. [PMID: 20698760 DOI: 10.1089/neu.2010.1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diagnosis and treatment of stroke and traumatic brain injury remain significant health care challenges to society. Patient care stands to benefit from an improved understanding of the interactive biochemistry underlying neurotrauma pathobiology. In this study, we assessed the power of neuroproteomics to contrast biochemical responses following ischemic and traumatic brain injuries in the rat. A middle cerebral artery occlusion (MCAO) model was employed in groups of 30-min and 2-h focal neocortical ischemia with reperfusion. Neuroproteomes were assessed via tandem cation-anion exchange chromatography-gel electrophoresis, followed by reversed-phase liquid chromatography-tandem mass spectrometry. MCAO results were compared with those from a previous study of focal contusional brain injury employing the same methodology to characterize homologous neocortical tissues at 2 days post-injury. The 30-min MCAO neuroproteome depicted abridged energy production involving pentose phosphate, modulated synaptic function and plasticity, and increased chaperone activity and cell survival factors. The 2-h MCAO data indicated near complete loss of ATP production, synaptic dysfunction with degraded cytoarchitecture, more conservative chaperone activity, and additional cell survival factors than those seen in the 30-min MCAO model. The TBI group exhibited disrupted metabolism, but with retained malate shuttle functionality. Synaptic dysfunction and cytoarchitectural degradation resembled the 2-h MCAO group; however, chaperone and cell survival factors were more depressed following TBI. These results underscore the utility of neuroproteomics for characterizing interactive biochemistry for profiling and contrasting the molecular aspects underlying the pathobiological differences between types of brain injuries.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Anatomy, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mollenhauer B, El-Agnaf OMA, Marcus K, Trenkwalder C, Schlossmacher MG. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark Med 2010; 4:683-99. [DOI: 10.2217/bmm.10.90] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pursuit of laboratory tests that allow for the reliable and inexpensive identification of subjects with parkinsonism represents a hot topic in translational neuroscience. This unmet need affects the counseling of presymptomatic, at-risk subjects and delays the accurate diagnosis of already symptomatic individuals. The absence of validated markers that are closely linked to the pathological disease process also compromises the objective monitoring of therapeutic interventions in clinical trials. Typical Parkinson’s disease represents a heterogenous syndrome (but the majority of patients suffer from neurodegeneration) that is linked to the misprocessing of α-synuclein (α-Syn). The identification of α-Syn as a bona fide constituent of human cerebrospinal fluid and its quantification in early cross-sectional studies represent the beginning of a new chapter in Parkinson’s disease research. It will determine what role, if any, cerebrospinal fluid α-Syn plays as a biomarker candidate in Lewy inclusion-positive forms of parkinsonism. This article focuses on the progress that has been made in seven recently published papers and highlights the challenges that lie ahead. We also provide specific information regarding standardized operating procedures for cerebrospinal fluid collection in PD biomarker research efforts.
Collapse
Affiliation(s)
| | - Omar MA El-Agnaf
- Department of Biochemistry, Faculty of Medicine & Health Science, United Arab Emirates University, Al Ain, PO Box 17666, United Arab Emirates
| | - Katrin Marcus
- Department of Functional Proteomics, Medizinisches Proteom-Center, ZKFII 1.055, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Klinikstrasse 16; 34128 Kassel, Germany
- Departments of Neurology & Clinical Neurophysiology, Georg-August University Goettingen; Goettingen, Germany
| | | |
Collapse
|
31
|
Spitzer P, Klafki HW, Blennow K, Buée L, Esselmann H, Herruka SK, Jimenez C, Klivenyi P, Lewczuk P, Maler JM, Markus K, Meyer HE, Morris C, Müller T, Otto M, Parnetti L, Soininen H, Schraen S, Teunissen C, Vecsei L, Zetterberg H, Wiltfang J. cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases. Int J Alzheimers Dis 2010; 2010. [PMID: 20886057 PMCID: PMC2945639 DOI: 10.4061/2010/548145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/05/2010] [Indexed: 12/04/2022] Open
Abstract
“clinical NEUroPROteomics of neurodegenerative diseases” (cNEUPRO) is a Specific Targeted Research Project (STREP) within the sixth framework program of the European Commission dedicated to the search for novel biomarker candidates for Alzheimer's disease and other neurodegenerative diseases. The ultimate goal of cNEUPRO is to identify one or more valid biomarker(s) in blood and CSF applicable to support the early and differential diagnosis of dementia disorders. The consortium covers all steps required for the discovery of novel biomarker candidates such as acquisition of high quality CSF and blood samples from relevant patient groups and controls, analysis of body fluids by various methods, and finally assay development and assay validation. Here we report the standardized procedures for diagnosis and preanalytical sample-handling within the project, as well as the status of the ongoing research activities and some first results.
Collapse
Affiliation(s)
- Philipp Spitzer
- Laboratory for Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, LVR-Klinikum Essen, Virchowstraße 174, 45147 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shevchenko G, Sjödin MOD, Malmström D, Wetterhall M, Bergquist J. Cloud-Point Extraction and Delipidation of Porcine Brain Proteins in Combination with Bottom-Up Mass Spectrometry Approaches for Proteome Analysis. J Proteome Res 2010; 9:3903-11. [DOI: 10.1021/pr100116k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ganna Shevchenko
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Marcus O. D. Sjödin
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - David Malmström
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Mandel SA, Morelli M, Halperin I, Korczyn AD. Biomarkers for prediction and targeted prevention of Alzheimer's and Parkinson's diseases: evaluation of drug clinical efficacy. EPMA J 2010. [PMID: 23199065 PMCID: PMC3405324 DOI: 10.1007/s13167-010-0036-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases like Parkinson’s disease (PD) and Alzheimer’s disease (AD) are considered disorders of multifactorial origin, inevitably progressive and having a long preclinical period. Therefore, the availability of biological markers or biomarkers (BMs) for early disease diagnosis will impact the management of AD and PD in several dimensions; it will 1) help to capture high-risk individuals before symptoms develop, a stage where prevention efforts might be expected to have their greatest impact; 2) provide a measure of disease progression that can be evaluated objectively, while clinical measures are much less accurate; 3) help to discriminate between true AD or PD and other causes of a similar clinical syndrome; 4) delineate pathophysiological processes responsible for the disease; 5) determine the clinical efficacy of novel, disease-modifying (neuroprotective) strategies. In the long run the availability of reliable BMs will significantly advance the research and therapeutics of AD and PD.
Collapse
Affiliation(s)
- Silvia A. Mandel
- Eve Topf Center for Neurodegenerative Diseases Research and Department of Molecular Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Micaela Morelli
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Ilan Halperin
- The Israeli Psycological Association, Beersheba, Israel
| | - Amos D. Korczyn
- Tel-Aviv University Medical School Sieratzki Chair of Neurology, Ramat-Aviv, Israel
| |
Collapse
|
34
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
35
|
Fiala M, Veerhuis R. Biomarkers of inflammation and amyloid-beta phagocytosis in patients at risk of Alzheimer disease. Exp Gerontol 2010; 45:57-63. [PMID: 19699791 PMCID: PMC2955441 DOI: 10.1016/j.exger.2009.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/14/2022]
Abstract
The ultimate goal of diagnostic research is a blood test detecting the risk of Alzheimer disease (AD) before neuronal damage develops. Current amyloid-beta (Abeta) tests do not detect the process leading to neurodegeneration. Novel immunologic and proteomics tests are based on aberrant appearance of inflammatory cytokines in the CSF and other protein biomarkers in the CSF or blood, and immune biomarkers of peripheral blood mononuclear cells (PBMC's). Cytokines, chemokines, complement factors, serum amyloid P component, and signaling proteins in the CSF or blood may be a rich source of diagnostic biomarkers, but the power of these tests will need to be examined in prospective studies. Recently-described flow cytometric test of defective Abeta phagocytosis detects patients with AD with a high sensitivity and specificity in distinct populations (confirmed AD patients vs. active University professors), but further experience is necessary for its use in general population at risk of AD. The analysis of the transcriptome of peripheral blood mononuclear cells "stressed" by Abeta is beginning to unravel the relations between specific pathways and AD. Thus novel diagnostic tests may provide biomarkers for pre-clinical detection, clarification of progression from MCI to AD, and follow-up of patients in clinical trials of immunostimulating therapies.
Collapse
Affiliation(s)
- Milan Fiala
- Departments of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
36
|
Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T. An update on clinical proteomics in Alzheimer's research. J Neurochem 2009; 112:1386-414. [PMID: 20050976 DOI: 10.1111/j.1471-4159.2009.06558.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a pathologically complex and aetiologically multifactorial dementing disorder affecting millions of people worldwide. The pathological brain changes are assumed to occur decades prior to the onset of clinical symptoms. The diagnosis of early AD remains problematic and is mainly based on clinical and neuropsychological findings after the onset of symptoms. Currently available drugs are able to delay the symptom progression of the disease but not to attenuate the progression of pathological brain changes. Many studies exploring AD proteomes have been conducted as the middle of 1990s as a consequence of recent advances in the development of both gel-based and gel-free proteomics approaches. It is hoped that proteomics can contribute to improving the understanding, diagnosis, and follow-up of the progression of AD. In this review, we summarise the present status of proteome alterations, with emphasis on quantitative approaches, in AD brain, CSF and blood, and their relevance to dementia research.
Collapse
Affiliation(s)
- Minna A Korolainen
- Department of Neurology, University of Kuopio and Kuopio University Hospital, Kuopio, Finland
| | | | | | | |
Collapse
|
37
|
Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2009; 2010:906082. [PMID: 20029632 PMCID: PMC2793423 DOI: 10.1155/2010/906082] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 09/01/2009] [Indexed: 01/17/2023] Open
Abstract
Protein profiling using SELDI-TOF-MS has gained over the past few years an increasing interest in the field of biomarker discovery. The technology presents great potential if some parameters, such as sample handling, SELDI settings, and data analysis, are strictly controlled. Practical considerations to set up a robust and sensitive strategy for biomarker discovery are presented. This paper also reviews biological fluids generally available including a description of their peculiar properties and the preanalytical challenges inherent to sample collection and storage. Finally, some new insights for biomarker identification and validation challenges are provided.
Collapse
|
38
|
Mollenhauer B, Trenkwalder C. Neurochemical biomarkers in the differential diagnosis of movement disorders. Mov Disord 2009; 24:1411-26. [PMID: 19412961 DOI: 10.1002/mds.22510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the neurochemical analysis of neuronal proteins in cerebrospinal fluid (CSF) has become increasingly accepted for the diagnosis of neurodegenerative dementia diseases such as Alzheimer's disease and Creutzfeldt-Jakob disease. CSF surrounds the central nervous system, and in the composition of CSF proteins one finds brain-specific proteins that are prioritized from blood-derived proteins. Levels of specific CSF proteins could be very promising biomarkers for central nervous system diseases. We need the development of more easily accessible biomarkers, in the blood. In neurodegenerative diseases with and without dementia, studies on CSF and blood proteins have investigated the usefulness of biomarkers in differential diagnosis. The clinical diagnoses of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration still rely mainly on clinical symptoms as defined by international classification criteria. In this article, we review CSF biomarkers in these movement disorders and discuss recent published reports on the neurochemical intra vitam diagnosis of neurodegenerative disorders (including recent CSF alpha-synuclein findings).
Collapse
|
39
|
Zetterberg H, Andreasson U, Blennow K. CSF antithrombin III and disruption of the blood-brain barrier. J Clin Oncol 2009; 27:2302-3; author reply 2303-4. [PMID: 19332721 DOI: 10.1200/jco.2008.19.8598] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Eisen A. Amyotrophic lateral sclerosis: A 40-year personal perspective. J Clin Neurosci 2009; 16:505-12. [PMID: 19231200 DOI: 10.1016/j.jocn.2008.07.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 07/29/2008] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) or motor neuron disease (MND) shares with other neurodegenetrative disorders of the aging nervous system a polygenic, multifactorial aetiology. Less than 10% are familial and these too probably are associated with several interactive genes. The onset of ALS predates development of clinical symptoms by an unknown interval which may extend several years. The cause of neurodegeneration remains unknown but a common end-point is protein misfolding which in turn causes cell function failure. The complex nature of ALS has hindered therapeutic advances. In recent years longer survival is attributable largely to institution of non-invasive ventilation with BiPAP and timely implementation of percutaneous endoscopic gastrostomy (PEG) feeding. Symptomatic treatment has advanced improving quality of life. Several encouraging avenues of therapy for ALS are beginning to be emerge raising hope for real benefit. They include protective autoimmunity, vaccines against misfolded protein epitopes and other deleterious species, new drug delivery systems employing nanotechnology and the potential of stem cell therapy.
Collapse
Affiliation(s)
- Andrew Eisen
- Neurology, University of British Columbia, 2862 Highbury Street, Vancouver, British Columbia, V6R 3T6, Canada.
| |
Collapse
|
41
|
Halperin I, Morelli M, Korczyn AD, Youdim MBH, Mandel SA. Biomarkers for evaluation of clinical efficacy of multipotential neuroprotective drugs for Alzheimer's and Parkinson's diseases. Neurotherapeutics 2009; 6:128-40. [PMID: 19110204 PMCID: PMC5084261 DOI: 10.1016/j.nurt.2008.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last century, the world population has shown a staggering increase in its proportion of elderly members and thus neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD), respectively, are becoming an increasing burden on society. Among the diverse, significant challenges facing clinicians, is the improvement of diagnostic measures to detect early and subtle symptoms, a phase in which prevention efforts might be expected to have their greatest impact and provide a measure of disease progression that can be evaluated during the course of drug treatment. At present, clinical diagnosis of AD and PD is based on a constellation of symptoms and manifestations, although the disease originated several years earlier. Given the multiple etiological nature of AD and PD, it is reasonable to assume that the initial causative pathobiological processes may differ between the affected individuals. Therefore, the availability of biological markers or biomarkers will help not only early disease diagnosis, but also delineate the pathological mechanisms more definitively and reliably than the traditional cognitive and neurological phenotypes. In the current article, we review the literature on biochemical, genetic, and neuroimaging biomarkers and discuss their predictive value as indicative for disease vulnerability to detect individuals at risk for PD and AD, and to determine the clinical efficacy of novel, disease-modifying (neuroprotective) strategies.
Collapse
Affiliation(s)
- Ilan Halperin
- Tel-Aviv Sourasky Medical Center, Department of Neurology, Memory Clinic, 64239 Tel-Aviv, Israel
| | - Micaela Morelli
- grid.7763.50000000417553242Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, 09124 Cagliari, Italy
| | - Amos D. Korczyn
- grid.12136.370000000419370546Sieratzki Chair of Neurology, Tel-Aviv University Medical School, 31096 Ramat-Aviv, Israel
| | - Moussa B. H. Youdim
- Eve Topf Center for Neurodegenerative Diseases Research and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel, Efron St., P.O.B. 9697, 31096 Haifa, Israel
| | - Silvia A. Mandel
- Eve Topf Center for Neurodegenerative Diseases Research and Dept. of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel, Efron St., P.O.B. 9697, 31096 Haifa, Israel
| |
Collapse
|
42
|
Abstract
The human central nervous system (CNS) is the most complex organ in nature, composed of ten trillion cells forming complex neural networks using a quadrillion synaptic connections. Proteins, their modifications, and their interactions are integral to CNS function. The emerging field of neuroproteomics provides us with a wide-scope view of posttranslation protein dynamics within the CNS to better our understanding of its function, and more often, its dysfunction consequent to neurodegenerative disorders. This chapter reviews methodology employed in the neurosciences to study the neuroproteome in health and disease. The chapter layout parallels this volume's four parts. Part I focuses on modeling human neuropathology in animals as surrogate, accessible, and controllable platforms in our research. Part II discusses methodology used to focus analysis onto a subneuroproteome. Part III reviews analytical and bioinformatic technologies applied in neuroproteomics. Part IV discusses clinical neuroproteomics, from processing of human biofluids to translation in biomarkers research. Neuroproteomics continues to mature as a discipline, confronting the extreme complexity of the CNS proteome and its dynamics, and providing insight into the molecular mechanisms underlying how our nervous system works and how it is compromised by injury and disease.
Collapse
|
43
|
Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Abstract
Alzheimer disease is the most common cause of dementia, yet its clinical diagnosis remains uncertain until an eventual postmortem histopathology examination. Currently, therapy for patients with Alzheimer disease only treats the symptoms; however, it is anticipated that new disease-modifying drugs will soon become available.Diagnostic tools for detecting Alzheimer disease at an incipient stage that can reliably differentiate the disease from other forms of dementia are of key importance for optimal treatment. Biomarkers have the potential to aid in a correct diagnosis, and great progress has been made in the discovery and development of potentially useful biomarkers in recent years. This includes single protein biomarkers in the cerebrospinal fluid, as well as multi-component biomarkers, and biomarkers based on gene expression. Novel biomarkers that use blood and urine, the more easily available clinical samples, are also being discovered and developed. The plethora of potential biomarkers currently being investigated may soon provide biomarkers that fulfill different functions, not only for diagnostic purposes but also for drug development and to follow disease progression.
Collapse
|
45
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|