1
|
Kunchala SR, van Dijk A, Veldhuizen EJA, Donnellan SC, Haagsman HP, Orgeig S. Avian surfactant protein (SP)-A2 first arose in an early tetrapod before the divergence of amphibians and gradually lost the collagen domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104582. [PMID: 36306971 DOI: 10.1016/j.dci.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The air-liquid interface of the mammalian lung is lined with pulmonary surfactants, a mixture of specific proteins and lipids that serve a dual purpose-enabling air-breathing and protection against pathogens. In mammals, surfactant proteins A (SP-A) and D (SP -D) are involved in innate defence of the lung. Birds seem to lack the SP-D gene, but possess SP-A2, an additional SP-A-like gene. Here we investigated the evolution of the SP-A and SP-D genes using computational gene prediction, homology, simulation modelling and phylogeny with published avian and other vertebrate genomes. PCR was used to confirm the identity and expression of SP-A analogues in various tissue homogenates of zebra finch and turkey. In silico analysis confirmed the absence of SP-D-like genes in all 47 published avian genomes. Zebra finch and turkey SP-A1 and SP-A2 sequences, confirmed by PCR of lung homogenates, were compared with sequenced and in silico predicted vertebrate homologs to construct a phylogenetic tree. The collagen domain of avian SP-A1, especially that of zebra finch, was dramatically shorter than that of mammalian SP-A. Amphibian and reptilian genomes also contain avian-like SP-A2 protein sequences with a collagen domain. NCBI Gnomon-predicted avian and alligator SP-A2 proteins all lacked the collagen domain completely. Both avian SP-A1 and SP-A2 sequences form separate clades, which are most closely related to their closest relatives, the alligators. The C-terminal carbohydrate recognition domain (CRD) of zebra finch SP-A1 was structurally almost identical to that of rat SP-A. In fact, the CRD of SP-A is highly conserved among all the vertebrates. Birds retained a truncated version of mammalian type SP-A1 as well as a non-collagenous C-type lectin, designated SP-A2, while losing the large collagenous SP-D lectin, reflecting their evolutionary trajectory towards a unidirectional respiratory system. In the context of zoonotic infections, how these evolutionary changes affect avian pulmonary surface protection is not clear.
Collapse
Affiliation(s)
- Srinivasa Reddy Kunchala
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sandra Orgeig
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia.
| |
Collapse
|
2
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
3
|
García-Mouton C, Hidalgo A, Arroyo R, Echaide M, Cruz A, Pérez-Gil J. Pulmonary Surfactant and Drug Delivery: An Interface-Assisted Carrier to Deliver Surfactant Protein SP-D Into the Airways. Front Bioeng Biotechnol 2021; 8:613276. [PMID: 33542913 PMCID: PMC7853302 DOI: 10.3389/fbioe.2020.613276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
This work is focused on the potential use of pulmonary surfactant to deliver full-length recombinant human surfactant protein SP-D (rhSP-D) using the respiratory air-liquid interface as a shuttle. Surfactant protein D (SP-D) is a collectin protein present in the pulmonary surfactant (PS) system, involved in innate immune defense and surfactant homeostasis. It has been recently suggested as a potential therapeutic to alleviate inflammatory responses and lung diseases in preterm infants suffering from respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD). However, none of the current clinical surfactants used for surfactant replacement therapy (SRT) to treat RDS contain SP-D. The interaction of SP-D with surfactant components, the potential of PS as a respiratory drug delivery system and the possibility to produce recombinant versions of human SP-D, brings the possibility of delivering clinical surfactants supplemented with SP-D. Here, we used an in vitro setup that somehow emulates the respiratory air-liquid interface to explore this novel approach. It consists in two different compartments connected with a hydrated paper bridge forming a continuous interface. We firstly analyzed the adsorption and spreading of rhSP-D alone from one compartment to another over the air-liquid interface, observing low interfacial activity. Then, we studied the interfacial spreading of the protein co-administered with PS, both at different time periods or as a mixed formulation, and which oligomeric forms of rhSP-D better traveled associated with PS. The results presented here demonstrated that PS may transport rhSP-D long distances over air-liquid interfaces, either as a mixed formulation or separately in a close window time, opening the doors to empower the current clinical surfactants and SRT.
Collapse
Affiliation(s)
- Cristina García-Mouton
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Alberto Hidalgo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| |
Collapse
|
4
|
Bravo MF, Lema MA, Marianski M, Braunschweig AB. Flexible Synthetic Carbohydrate Receptors as Inhibitors of Viral Attachment. Biochemistry 2020; 60:999-1018. [PMID: 33094998 DOI: 10.1021/acs.biochem.0c00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.
Collapse
Affiliation(s)
- M Fernando Bravo
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Manuel A Lema
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Adam B Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
5
|
Arroyo R, Echaide M, Wilmanowski R, Martín-González A, Batllori E, Galindo A, Rosenbaum JS, Moreno-Herrero F, Kingma PS, Pérez-Gil J. Structure and activity of human surfactant protein D from different natural sources. Am J Physiol Lung Cell Mol Physiol 2020; 319:L148-L158. [PMID: 32432921 DOI: 10.1152/ajplung.00007.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Surfactant protein D (SP-D) is a C-type lectin that participates in the innate immune defense of lungs. It binds pathogens through its carbohydrate recognition domain in a calcium-dependent manner. Human surfactant protein D (hSP-D) has been routinely obtained from bronchoalveolar lavage of patients suffering from pulmonary alveolar proteinosis (PAP) and from amniotic fluid (AF). As a consequence of the disease, hSP-D obtained from PAP is found in higher amounts and is mainly composed of higher order oligomeric forms. However, PAP-hSP-D has never been directly compared with nonpathological human protein in terms of structure and biological activity. Moreover, the quantitative distribution of the different hSP-D oligomeric forms in human protein obtained from a natural source has never been evaluated. In this work, we have determined the quantitative distribution of AF-hSP-D oligomers, characterized the sugars attached through the N-glycosylation site of the protein, and compared the activity of hSP-D from AF and PAP with respect to their ability to bind and agglutinate bacteria. We have found that fuzzy balls (40%) are the most abundant oligomeric form in AF-hSP-D, very closely followed by dodecamers (33%), with both together constituting 73% of the protein mass. The glycan attached to the N-glycosylation site was found to be composed of fucose, galactose, sialic acid, and N-acetylglucosamine. Finally, in the functional assays performed, hSP-D obtained from PAP showed higher potency, probably as a consequence of its higher proportion of large oligomers compared with hSP-D from AF.
Collapse
Affiliation(s)
- Raquel Arroyo
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | | | | | - Emma Batllori
- Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain.,Department of Obstetrics and Gyneacology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alberto Galindo
- Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain.,Department of Obstetrics and Gyneacology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Fetal Medicine Unit-SAMID, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jan S Rosenbaum
- Research and Development Department, Airway Therapeutics LLC, Cincinnati, Ohio
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, National Center of Biotechnology, CSIC, Madrid, Spain
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| |
Collapse
|
6
|
Nosratabadi R, Alavian SM, Zare-Bidaki M, Shahrokhi VM, Arababadi MK. Innate immunity related pathogen recognition receptors and chronic hepatitis B infection. Mol Immunol 2017; 90:64-73. [PMID: 28704708 DOI: 10.1016/j.molimm.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/30/2023]
Abstract
Innate immunity consists of several kinds of pathogen recognition receptors (PRRs), which participate in the recognition of pathogens and consequently activation of innate immune system against pathogens. Recently, several investigations reported that PRRs may also play key roles in the induction/stimulation of immune system related complications in microbial infections. Hepatitis B virus (HBV), as the main cause of viral hepatitis in human, can induce several clinical forms of hepatitis B and also might be associated with hepatic complications such as cirrhosis and hepatocellular carcinoma (HCC). Based on the important roles of PRRs in the eradication of microbial infections including viral infections and their related complications, it appears that the molecules may be a main part of immune responses against viral infections including HBV and participate in the HBV related complications. Thus, this review article has brought together information regarding the roles of PRRs in immunity against HBV and its complications.
Collapse
Affiliation(s)
- Reza Nosratabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
7
|
Eshete M, Bailey K, Duong Thanh Nguyen T, Aryal S, Choi SO. Interaction of Immune System Protein with PEGylated and Un-PEGylated Polymeric Nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/anp.2017.63009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Jackson AN, McLure CA, Dawkins RL, Keating PJ. Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. Immunogenetics 2007; 59:861-72. [PMID: 17943278 DOI: 10.1007/s00251-007-0251-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
We describe a novel extension of the Genomic Matching Technique (GMT) that defines haplotypes of the mannose binding lectin (MBL) region in Zebrafish (D. rerio). Four ancestral haplotypes have been identified to date, with at least one of these demonstrating a significant increase in resistance to L. anguillarum. MBL activates the lectin pathway of the complement system and stimulates the development of the complement cascade and the Membrane Attack Complex. Polymorphisms in humans have been associated with increased susceptibility and severity to a number of pathogenic organisms. As teleosts have a relatively immature acquired immune system, polymorphisms within MBL and other innate defence genes are likely to be critical in defining their susceptibility/resistance to various pathogenic organisms. We report multiple copies of MBL-like genes in D. rerio, with up to three copies tightly linked within a cluster spanning approximately 15 kb on chromosome 2. Genomic analysis suggests that duplication, retroviral insertion and possibly gene mutation and/or deletion have been key factors in the evolution of this cluster. Molecular analysis has revealed extensive polymorphism, including at least five distinct amplicons and haplospecific gene copy number variation. This study demonstrates polymorphism within a critical component of the teleost innate immune system. The polymorphisms and the haplotypes encoding the unique variants are likely to be informative in defining susceptibility/resistance to infectious agents commonly encountered within aquatic environments. Future investigations will define other important haplotypes and transfer the knowledge to other finfish species, thereby enabling selection of broodstock for the aquaculture industry.
Collapse
Affiliation(s)
- Andrew N Jackson
- C.Y. O'Connor ERADE Village, PO Box 5100, Canning Vale, Perth, Western Australia 6155, Australia
| | | | | | | |
Collapse
|
9
|
Crouch EC, Smith K, McDonald B, Briner D, Linders B, McDonald J, Holmskov U, Head J, Hartshorn K. Species differences in the carbohydrate binding preferences of surfactant protein D. Am J Respir Cell Mol Biol 2006; 35:84-94. [PMID: 16514117 PMCID: PMC2658700 DOI: 10.1165/rcmb.2005-0462oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each with identical N-terminal tags remote from the ligand-binding surface. Although rat and mouse showed similar affinities for saccharide competitors, both differed markedly from the human protein. The human neck+CRD preferentially recognized N-acetyl-mannosamine, whereas the rat and mouse proteins showed greater affinity for myoinositol, maltose, and glucose. Although human neck+CRDs bound to maltosyl-agarose and fungal mannan, only rat and mouse neck+CRDs showed significant binding to maltosyl-Toyopearl beads, solid-phase maltosyl-albumin neo-glycoprotein, or the Phil82 strain of influenza A virus. Likewise, human SP-D dodecamers and trimeric subunits of full-length rat, but not full-length human SP-D trimers, bound to maltosyl-Toyopearl. Site-directed mutagenesis of the human neck+CRD demonstrated an important role of Asp324-Asp325 in the recognition of N-acetyl-mannosamine, and substitution of the corresponding murine sequence (Asn324-Asn325) conferred a capacity to interact with immobilized maltose. Thus, ligand recognition by human SP-D involves a complex interplay between saccharide presentation, the valency of trimeric subunits, and species-specific residues that flank the primary carbohydrate binding site.
Collapse
Affiliation(s)
- Erika C Crouch
- Dept. of Pathology and Immunology, Campus Box 8118, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sato K, Imai Y, Higashi N, Kumamoto Y, Onami TM, Hedrick SM, Irimura T. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a. Blood 2005; 106:207-15. [PMID: 15784728 DOI: 10.1182/blood-2004-12-4943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Madsen J, Tornoe I, Nielsen O, Koch C, Steinhilber W, Holmskov U. Expression and localization of lung surfactant protein A in human tissues. Am J Respir Cell Mol Biol 2003; 29:591-7. [PMID: 12777246 DOI: 10.1165/rcmb.2002-0274oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung surfactant protein A (SP-A) is a collectin produced by alveolar type II cells and Clara cells. It binds to carbohydrate structures on microorganisms, initiating effector mechanisms of innate immunity and modulating the inflammatory response in the lung. Reverse transcriptase-polymerase chain reaction was performed on a panel of RNAs from human tissues for SP-A mRNA expression. The lung was the main site of synthesis, but transcripts were readily amplified from the trachea, prostate, pancreas, and thymus. Weak expression was observed in the colon and salivary gland. SP-A sequences derived from lung and thymus mRNA revealed the presence of both SP-A1 and SP-A2, whereas only SP-A2 expression was found in the trachea and prostate. Monoclonal antibodies were raised against SP-A and characterized. One of these (HYB 238-4) reacted in Western blotting with both reduced and unreduced SP-A, with N-deglycosylated and collagenase-treated SP-A, and with both recombinant SP-A1 and SP-A2. This antibody was used to demonstrate SP-A in immunohistochemistry of human tissues. Strong SP-A immunoreactivity was seen in alveolar type-II cells, Clara cells, and on and within alveolar macrophages, but no extrapulmonary SP-A immunoreactivity was observed. In contrast to lung surfactant protein D (SP-D), which is generally expressed on mucosal surfaces, SP-A seems to be restricted to the respiratory system.
Collapse
Affiliation(s)
- Jens Madsen
- Department of Immunology and Microbiology, Institute of Medical Biology, University of Southern Denmark, Winsløwparken 21.1, DK-5000 Odense C, Denmark
| | | | | | | | | | | |
Collapse
|
12
|
Green PL, Nair SV, Raftos DA. Secretion of a collectin-like protein in tunicates is enhanced during inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:3-9. [PMID: 12477496 DOI: 10.1016/s0145-305x(02)00067-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The sub-cellular and humoral concentrations of a collectin-like protein from the solitary tunicate, Styela plicata, were measured after in vivo challenge with the inflammatory agent, zymosan. Tunicates were injected with zymosan before hemocytes and serum were harvested, subjected to western blotting and immunostained with an anti-S. plicata collectin antibody to determine the relative titers of collectin-like proteins. Concentrations of the predominant 43kDa collectin polypeptide were found to decrease in hemocytes immediately after zymosan injection, before rising to levels that were six times higher than controls within 96h. Similarly, immunohistochemistry showed that the frequency of collectin-positive hemocytes in the circulating hemolymph increased significantly within 96h of injection. Levels of the 43kDa polypeptide in serum mirrored those of hemocytes. Humoral collectin concentrations decreased immediately after zymosan injection before rising, within 96h post-injection, to levels three times higher than controls. This response to an inflammatory stimulus resembles that of mammalian collectins like mannose-binding lectin. The data suggest that, like its mammalian counterparts, the tunicate collectin acts as an acute phase antigen recognition protein.
Collapse
Affiliation(s)
- Peter L Green
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | | | |
Collapse
|
13
|
Abstract
Collectins and ficolins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune systems, which recognize pathogen-associated molecular patterns. The human collectins, mannan-binding lectin (MBL) and surfactant protein A and D (SP-A and SP-D), are oligomeric proteins composed of carbohydrate-recognition domains (CRDs) attached to collagenous regions and are thus structurally similar to the ficolins, L-ficolin, M-ficolin, and H-ficolin. However, they make use of different CRD structures: C-type lectin domains for the collectins and fibrinogen-like domains for the ficolins. Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination. This limits the infection and concurrently orchestrates the subsequent adaptive immune response. Deficiencies of the proteins may predispose to infections or other complications, e.g., reperfusion injuries or autoimmune diseases. Structure, function, clinical implications, and phylogeny are reviewed.
Collapse
Affiliation(s)
- Uffe Holmskov
- Department of Medical Biology, University of Southern Denmark, DK5000, Odeuse, Denmark.
| | | | | |
Collapse
|
14
|
Abstract
Recent studies have identified a macrophage-specific receptor for the clearance of haemoglobin-haptoglobin complexes, which protects the host against the toxicity of free haemoglobin.
Collapse
Affiliation(s)
- S Gordon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| |
Collapse
|