1
|
Cunha E, Rebelo S, Carneiro C, Tavares L, Carreira LM, Oliveira M. A polymicrobial biofilm model for testing the antimicrobial potential of a nisin-biogel for canine periodontal disease control. BMC Vet Res 2020; 16:469. [PMID: 33267882 PMCID: PMC7709300 DOI: 10.1186/s12917-020-02646-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Periodontal disease (PD) in dogs is prompted by the establishment of a polymicrobial biofilm at the tooth surface and a subsequent host inflammatory response. Several strategies may be used for PD control, including dental hygiene home care procedures, like toothbrushing, special diet and chew toys that reduce dental plaque accumulation, or professional periodontal treatments. Aiming at PD control, a biogel composed by nisin and guar-gum was previously developed. This work aimed to establish an in vitro model mimicking the PD-associated biofilms and to evaluate the nisin-biogel inhibitory activity against this polymicrobial biofilm by determining its Minimum Biofilm Inhibitory (MBIC) and Eradication Concentrations (MBEC). Bacterial species tested included Neisseria zoodegmatis CCUG 52598T, Corynebacterium canis CCUG 58627T, Porphyromonas cangingivalis DSMZ VPB 4874, Peptostreptococcus canis CCUG 57081 and an Enterococcus faecalis isolate belonging to a collection of oral bacteria obtained from dogs with PD. Before establishing the biofilm, coaggregation between species was determined by optical density measurement after 2 and 24 hours. Nisin-biogel MBIC and MBEC values regarding the polymicrobial biofilm were determined using a modified version of the Calgary biofilm pin lid device, after confirming the presence of the five bacterial species by Fluorescent In Situ Hybridization. RESULTS Only 40% of the bacterial dual suspensions were able to coaggregate at 2 hours, but all species tested exhibited a coaggregation percentage higher than 30% at 24 hours. It was possible to establish a 48 h polymicrobial biofilm model composed by the five bacterial species selected. This model was used to determine nisin-biogel MBIC (26.39 ± 5.89 µg/mL) and MBEC (62.5 ± 27.73 µg/mL) values. CONCLUSIONS Our results showed that the nisin-biogel can inhibit and eradicate PD multispecies biofilms. As this in vitro model mimics an in vivo periodontal polymicrobial biofilm, our results reinforce the potential of the application of nisin-biogel for canine PD control.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| | - Sandra Rebelo
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carla Carneiro
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís Miguel Carreira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| |
Collapse
|
2
|
Park JS, Choi SH, Hwang SM, Hong YJ, Kim TS, Park KU, Song J, Kim EC. The impact of protein extraction protocols on the performance of currently available MALDI-TOF mass spectrometry for identification of mycobacterial clinical isolates cultured in liquid media. Clin Chim Acta 2016; 460:190-5. [DOI: 10.1016/j.cca.2016.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 11/15/2022]
|
3
|
Ganova-Raeva LM, Khudyakov YE. Application of mass spectrometry to molecular diagnostics of viral infections. Expert Rev Mol Diagn 2013; 13:377-88. [PMID: 23638820 DOI: 10.1586/erm.13.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mass spectrometry (MS) has found numerous applications in life sciences. It has high accuracy, sensitivity and wide dynamic range in addition to medium- to high-throughput capabilities. These features make MS a superior platform for analysis of various biomolecules including proteins, lipids, nucleic acids and carbohydrates. Until recently, MS was applied for protein detection and characterization. During the last decade, however, MS has successfully been used for molecular diagnostics of microbial and viral infections with the most notable applications being identification of pathogens, genomic sequencing, mutation detection, DNA methylation analysis, tracking of transmissions, and characterization of genetic heterogeneity. These new developments vastly expand the MS application from experimental research to public health and clinical fields. Matching of molecular techniques with specific requirements of the major MS platforms has produced powerful technologies for molecular diagnostics, which will further benefit from coupling with computational tools for extracting clinical information from MS-derived data.
Collapse
Affiliation(s)
- Lilia M Ganova-Raeva
- Centers for Disease Control and Prevention, Division of Viral Hepatitis, 1600 Clifton Rd. NE, MS A-33, Atlanta, GA 30329, USA.
| | | |
Collapse
|
4
|
Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:4226-9. [PMID: 24068013 DOI: 10.1128/jcm.02612-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel protocols for inactivation and extraction were developed and used to identify 107 Mycobacterium clinical isolates, including Mycobacterium tuberculosis complex, from solid cultures using Vitek matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The protocol using heat inactivation with sonication and cell disruption with glass beads resulted in 82.2% and 88.8% species and genus level identifications, respectively.
Collapse
|
5
|
Werckenthin C, Gey A, Straubinger RK, Poppert S. Rapid identification of the animal pathogens Streptococcus uberis and Arcanobacterium pyogenes by fluorescence in situ hybridization (FISH). Vet Microbiol 2012; 156:330-5. [DOI: 10.1016/j.vetmic.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
|
6
|
Fast detection of Candida albicans and/or bacteria in blood plasma by “sample-self-focusing” using capillary electrophoresis-laser-induced fluorescence. J Pharm Biomed Anal 2010; 53:75-80. [DOI: 10.1016/j.jpba.2010.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/22/2022]
|
7
|
Kölsch G, Matz-Grund C, Pedersen BV. Ultrastructural and molecular characterization of endosymbionts of the reed beetle genusMacroplea(Chrysomelidae, Donaciinae), and proposal of “CandidatusMacropleicola appendiculatae” and “CandidatusMacropleicola muticae”. Can J Microbiol 2009; 55:1250-60. [DOI: 10.1139/w09-085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be characterized and placed in a phylogenetic context. Here, we describe the ultrastructure of two endosymbiotic species (“ Candidatus Macropleicola appendiculatae” and “ Candidatus Macropleicola muticae”) that reside in cells of the Malpighian tubules of the reed beetle species Macroplea appendiculata and Macroplea mutica , respectively. Fluorescent in situ hybridization using oligonucleotides targeting the 16S rRNA gene specific to Macroplea symbionts verified the localization of the symbionts in these organs. Phylogenetic analysis of 16S rRNA placed “Candidatus Macropleicola” in a clade of typically endosymbiotic Enterobacteriaceae (γ-proteobacteria). Finally, we discuss the evidence available for the hypothesis that the beetle larvae use a secretion produced by the bacteria for the formation of an underwater cocoon.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Corinna Matz-Grund
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Bo V. Pedersen
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|
8
|
Law WS, Li SFY, Kricka LJ. Detection of enteropathogenic Escherichia coli by microchip capillary electrophoresis. Methods Mol Biol 2009; 509:169-179. [PMID: 19212722 DOI: 10.1007/978-1-59745-372-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There is always a need to detect the presence of microorganisms, either as contaminants in food and pharmaceutical industries or bioindicators for disease diagnosis. Hence, it is important to develop efficient, rapid, and simple methods to detect microorganisms. Traditional culturing method is unsatisfactory due to its long incubation time. Molecular methods, although capable of providing a high degree of specificity, are not always useful in providing quick tests of presence or absence of microorganisms. Microchip elec-trophoresis has been recently employed to address problems associated with the detection of microorganisms due to its high versatility, selectivity, sensitivity, and short analysis times. In this work, the potential of PDMS-based microchip electrophoresis in the identification and characterization of microorganism was evaluated. Enteropathogenic E. coli (EPEC) was selected as the model microorganism. To obtain repeat-able separations, sample pretreatment was found to be essential. Microchip electrophoresis with laser-induced fluorescence detection could potentially revolutionize certain aspects of microbiology involving diagnosis, profiling of pathogens, environmental analysis, and many others areas of study.
Collapse
Affiliation(s)
- Wai S Law
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | | | | |
Collapse
|
9
|
Gescher DM, Kovacevic D, Schmiedel D, Siemoneit S, Mallmann C, Halle E, Göbel UB, Moter A. Fluorescence in situ hybridisation (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int J Antimicrob Agents 2008; 32 Suppl 1:S51-9. [PMID: 18718741 DOI: 10.1016/j.ijantimicag.2008.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/16/2022]
Abstract
Sepsis is a life-threatening disease with a high mortality rate. Rapid identification of blood culture isolates plays a crucial role in adequate antimicrobial therapy in sepsis patients. To accelerate microbiological diagnosis, a comprehensive panel of oligonucleotide probes for fluorescence in situ hybridisation (FISH) targeting Gram-positive cocci was compiled and evaluated on 428 positive blood culture specimens. By combining genus-specific and species-specific probes, the assay allowed discrimination of staphylococci, streptococci and enterococci as well as differentiation of therapy-relevant pathogens such as Staphylococcus aureus and Enterococcus faecium/durans. Furthermore, the newly designed FISH probes STREP2, ENCO and GRANU targeted Streptococcus pneumoniae/mitis, Enterococcus spp. (except E. faecalis) and Granulicatella adiacens group, respectively. The FISH assay achieved an overall sensitivity of 98.65% and a specificity of 99.0% and therefore allowed rapid and reliable molecular identification of Gram-positive cocci in blood culture specimens.
Collapse
Affiliation(s)
- Dorothee Maria Gescher
- Institut für Mikrobiologie und Hygiene, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Dorotheenstr. 96, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bao Y, Lantz AW, Crank JA, Huang J, Armstrong DW. The use of cationic surfactants and ionic liquids in the detection of microbial contamination by capillary electrophoresis. Electrophoresis 2008; 29:2587-92. [DOI: 10.1002/elps.200700719] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Law WS, Tay ETT, Feng H, Yu L, Zhao JH, Li SFY. Rapid identification of purified enteropathogenic Escherichia coli by microchip electrophoresis. J Sep Sci 2007; 30:1446-52. [PMID: 17623424 DOI: 10.1002/jssc.200600452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this work, the potential of PDMS-based microchip electrophoresis in the identifications and characterizations of microorganism was evaluated. Enteropathogenic E. coli (EPEC) was selected as the model microorganism. In this study, separation parameters such as applied voltage, concentrations of buffer and buffer modifier, injection voltage, and duration of injection had been investigated and optimized. Determination of EPEC bacteria could be completed within 2 min with good reproducibility. RSDs were less than 0.5 and 5% in migration time and peak area, respectively. Separation efficiency corresponding to plate number of more than 100,000 was achieved. In order to obtain reproducible separations, sample pretreatment was found to be essential. Microchip electrophoresis with LIF detection could potentially revolutionize certain aspects of microbiology involving diagnosis, profiling of pathogens, environmental analysis, and many other areas of study.
Collapse
Affiliation(s)
- Wai Siang Law
- Department of Chemistry, National University of Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Wilks SA, Keevil CW. Targeting species-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of Legionellae in biofilms. Appl Environ Microbiol 2006; 72:5453-62. [PMID: 16885298 PMCID: PMC1538740 DOI: 10.1128/aem.02918-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.
Collapse
Affiliation(s)
- Sandra A Wilks
- Environmental Healthcare Unit, Microbiology Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom.
| | | |
Collapse
|
14
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1110-21. [PMID: 16106339 DOI: 10.1002/jms.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|