1
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
3
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
4
|
Yang SJ, Chen YY, Hsu CH, Hsu CW, Chang CY, Chang JR, Dou HY. Activation of M1 Macrophages in Response to Recombinant TB Vaccines With Enhanced Antimycobacterial Activity. Front Immunol 2020; 11:1298. [PMID: 32655570 PMCID: PMC7325470 DOI: 10.3389/fimmu.2020.01298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Pulmonary tuberculosis (TB) is a difficult-to-eliminate disease. Although the Bacille Calmette–Guérin (BCG) vaccine against Mycobacterium tuberculosis (MTB) has been available for decades, its efficacy is variable and has lessened over time. Furthermore, the BCG vaccine no longer protects against newly emerged Beijing strains which are responsible for many current infections in adults. Development of a novel vaccine is urgently needed. In this study, we first tested the efficacy of our recombinant BCG vaccines rBCG1 and rBCG2, compared to parental BCG, against MTB strain H37Ra in mice. Both the bacterial load and the level of lymphocyte infiltration decreased dramatically in the three groups treated with vaccine, especially rBCG1 and rBCG2. Furthermore, the Th1 and Th17 responses increased and macrophage numbers rose in the vaccination groups. Th1-mediated production of cytokines TNF-α, IFN-γ, and MCP-1 as well as M1-polarized cells all increased in lung tissue of the rBCG1 and rBCG2 groups. Clodronate-induced depletion of macrophages reduced the level of protection. Based on these results, we conclude that rBCG vaccines induce a significant increase in the number of M1 macrophages, which augments their potential as TB vaccine candidates.
Collapse
Affiliation(s)
- Shiu-Ju Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chia-Yi, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yu Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
5
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
6
|
Evaluation of profile and functionality of memory T cells in pulmonary tuberculosis. Immunol Lett 2017; 192:52-60. [PMID: 29106984 DOI: 10.1016/j.imlet.2017.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
The cells T CD4+ T and CD8+ can be subdivided into phenotypes naïve, T of central memory, T of effector memory and effector, according to the expression of surface molecules CD45RO and CD27. The T lymphocytes are cells of long life with capacity of rapid expansion and function, after a new antigenic exposure. In tuberculosis, it was found that specific memory T cells are present, however, gaps remain about the role of such cells in the disease immunology. In this study, the phenotypic profile was analyzed and characterized the functionality of CD4+ T lymphocytes and CD8+ T cells of memory and effector, in response to specific stimuli in vitro, in patients with active pulmonary TB, compared to individuals with latent infection with Mycobacterium tuberculosis the ones treated with pulmonary TB. It was observed that the group of patients with active pulmonary tuberculosis was the one which presented the highest proportion of cells T CD4+ of central memory IFN-ɣ+ e TNF-α+, suggesting that in TB, these T of central memory cells would have a profile of protective response, being an important target of study for the development of more effective vaccines; this group also developed lower proportion of CD8+ T effector lymphocytes than the others, a probable cause of specific and less effective response against the bacillus in these individuals; the ones treated for pulmonary tuberculosis were those who developed higher proportion of T CD4+ of memory central IL-17+ cells, indicating that the stimulation of long duration, with high antigenic load, followed by elimination of the pathogen, contribute to more significant generation of such cells; individuals with latent infection by M. tuberculosis and treated for pulmonary tuberculosis, showed greater response of CD8+ T effector lymphocytes IFN-ɣ+ than the controls, suggesting that these cells, as well as CD4+ T lymphocytes, have crucial role of protection against M. tuberculosis. These findings have contributed to a better understanding of the immunologic changes in M. tuberculosis infection and the development of new strategies for diagnosis and prevention of tuberculosis.
Collapse
|
7
|
Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog 2017; 112:20-29. [PMID: 28942172 DOI: 10.1016/j.micpath.2017.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most life-threatening mycobacterial species which is increasing the death rate due to emerging multi-drug resistant (MDR) strains. Concerned health authorities worldwide are interested in developing an effective vaccine to prevent the spread of Mtb. After years of research, including successful identification of many Mtb immunogenic molecules, effective therapeutic agents or a vaccine have yet to be found. However, among the identified Mtb immunogenes, antigen 85 (Ag85) complex (Ag85A, Ag85B, and Ag85C) is receiving attention from scientists as it allows bacteria to evade the host immune response by preventing formation of phagolysosomes for eradication of infection. Due to their importance, A85 molecules are being utilized as tools in diagnostic methods and in the construction of new vaccines, such as recombinant attenuated vaccines, DNA vaccines, and subunit vaccines. This paper represents a comprehensive review of studies on Mtb molecules examining pathogenicity, biochemistry, immunology, and the role of Mtb in therapeutic or vaccine research.
Collapse
Affiliation(s)
- Mohsen Karbalaei Zadeh Babaki
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res 2017; 2017:5212910. [PMID: 28713838 PMCID: PMC5496129 DOI: 10.1155/2017/5212910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5–15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10–20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
Collapse
|
9
|
Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis. Emerg Microbes Infect 2017; 6:e48. [PMID: 28588287 PMCID: PMC5520311 DOI: 10.1038/emi.2017.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/06/2017] [Accepted: 04/09/2017] [Indexed: 11/19/2022]
Abstract
There is an urgent need for new immunodominant antigens to improve the diagnosis of tuberculosis (TB) and the efficacy of the TB vaccine to control the disease worldwide. In this study, we evaluated the diagnostic potential of a novel Mycobacterium tuberculosis (MTB)-specific antigen, Rv2351c, from region of difference (RD) 7 of the MTB genome, and investigated the potency of the vaccine by identifying its immunological function in human and animal immunological experiments. Twenty T-cell epitopes were identified using TEpredict and prediction tools from the Immune Epitope Database and Analysis Resource. A total of 159 subjects, including 61 patients with pulmonary TB, 38 patients with no TB and 55 healthy donors, were recruited and analyzed with an enzyme-linked immunospot (ELISpot) assay. The ELISpot assay using Rv2351c to detect TB infection, as compared with bacteriological tests as the gold standard, had a sensitivity and specificity of 61.4% (35/57) and 91.4% (85/93), respectively. The ELISpot assay using Rv2351c had a good conformance (κ=0.554) as compared with the bacteriological test. Rv2351c also elicited a potent cellular immune response with a high expression of cytokines (IFN-γ (4978±596.7 μg/mL) and IL-4 (68.3±15.5 μg/mL)) and a potent humoral immune response with a high concentration of IgG (1:2.2 × 106), IgG1 (1:4.5 × 105) and IgG2a (1:1.6 × 106) in immunized BALB/c mice. In addition, the ratio of IgG2a/IgG1 indicated that Rv2351c induced cellular immunity in the mice. The results of this study indicated that Rv2351c is an antigen with good immunogenicity that may potentially be used to develop diagnostic techniques and new TB vaccines.
Collapse
|
10
|
Hart BE, Lee S. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy. PLoS Negl Trop Dis 2016; 10:e0005229. [PMID: 27941982 PMCID: PMC5179062 DOI: 10.1371/journal.pntd.0005229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/22/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022] Open
Abstract
Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine. Mycobacterium ulcerans (MU) infection causes a highly disfiguring, necrotic skin disease known as Buruli ulcer (BU). Antibiotic treatments have low efficacy if the infection is diagnosed after ulceration begins, leading to frequent dependence on surgical removal of infected tissues. A prophylactic vaccine for BU does not exist and several attempts to create an effective vaccine have shown limited success. We recently demonstrated that a recombinant strain of M. bovis BCG expressing the immunodominant MU-Ag85A conferred significantly enhanced protection against experimental BU compared to the standard BCG vaccine. Here we show that BCG expression of a fusion between two alternative MU antigens, Ag85B and EsxH, can promote antigen-specific T cell and humoral immune response capable of significantly improving survival and protection against BU pathology, compared to BCG MU-Ag85A alone. These results support the potential for using the highly safe and ubiquitous BCG vaccine as a platform for further BU vaccine development.
Collapse
Affiliation(s)
- Bryan E. Hart
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunhee Lee
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Muthigi A, George AK, Brancato SJ, Agarwal PK. Novel immunotherapeutic approaches to the treatment of urothelial carcinoma. Ther Adv Urol 2016; 8:203-14. [PMID: 27247630 DOI: 10.1177/1756287216628784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has long played a role in urothelial cancers with the use of bacille Calmette Guérin (BCG) being a mainstay in the treatment of nonmuscle invasive bladder cancer. Novel therapeutic approaches have not significantly impacted mortality in this population and so a renaissance in immunotherapy has resulted. This includes recombinant BCG, oncolytic viruses, monoclonal antibodies, vaccines, and adoptive T-cell therapy. Herein, we provide a review of the current state of the art and future therapies regarding immunotherapeutic strategies for urothelial carcinoma.
Collapse
Affiliation(s)
- Akhil Muthigi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvin K George
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam J Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10- Hatfield CRC, Room 2-5952, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
13
|
Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer. PLoS Negl Trop Dis 2015; 9:e0004046. [PMID: 26393347 PMCID: PMC4579011 DOI: 10.1371/journal.pntd.0004046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. Buruli ulcer, caused by subcutaneous infection with Mycobacterium ulcerans, is a highly disfiguring flesh-eating skin disease with significant morbidity. Besides surgical intervention, 8-week combination antibiotics is the standard of care. However, problems with resistance and toxicity warrant their replacement with efficacious vaccines. Several attempts to generate a vaccine have met with limited success and, to date, BCG remains the only vaccine capable of conferring transient protection. Here we demonstrate that a recombinant BCG-based vaccine expressing the immunodominant M. ulcerans Ag85A is capable of significantly enhancing protection in experimental Buruli ulcer compared to standard BCG, with a decrease in bacterial burden, pathology, and increase in survival. These results support further Buruli ulcer vaccine development using the highly safe and well-established BCG vehicle.
Collapse
|
14
|
Li W, Li M, Deng G, Zhao L, Liu X, Wang Y. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Mol Med Rep 2015; 12:3073-80. [PMID: 25962477 DOI: 10.3892/mmr.2015.3770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| |
Collapse
|
15
|
Chen YY, Lin CW, Huang WF, Chang JR, Su IJ, Hsu CH, Cheng HY, Hsu SC, Dou HY. Recombinant bacille Calmette-Guerin coexpressing Ag85b, CFP10, and interleukin-12 elicits effective protection against Mycobacterium tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 50:90-96. [PMID: 25732698 DOI: 10.1016/j.jmii.2014.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/29/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The tuberculosis (TB) pandemic remains a leading cause of human morbidity and mortality, despite widespread use of the only licensed anti-TB vaccine, bacille Calmette-Guerin (BCG). The protective efficacy of BCG in preventing pulmonary TB is highly variable; therefore, an effective new vaccine is urgently required. METHODS In the present study, we assessed the ability of novel recombinant BCG vaccine (rBCG) against Mycobacterium tuberculosis by using modern immunological methods. RESULTS Enzyme-linked immunospot assays demonstrated that the rBCG vaccine, which coexpresses two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 (rBCG2) elicits greater interferon-γ (IFN-γ) release in the mouse lung and spleen, compared to the parental BCG. In addition, rBCG2 triggers a Th1-polarized response. Our results also showed that rBCG2 vaccination significantly limits M. tuberculosis H37Rv multiplication in macrophages. The rBCG2 vaccine surprisingly induces significantly higher tumor necrosis factor-α (TNF-α) production by peripheral blood mononuclear cells that were exposed to a nonmycobacterial stimulus, compared to the parental BCG. CONCLUSION In this study, we demonstrated that the novel rBCG2 vaccine may be a promising candidate vaccine against M. tuberculosis infection.
Collapse
MESH Headings
- Acyltransferases/administration & dosage
- Acyltransferases/genetics
- Acyltransferases/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Enzyme-Linked Immunospot Assay
- Female
- Humans
- Interferon-gamma/metabolism
- Interleukin-12/administration & dosage
- Interleukin-12/genetics
- Leukocytes, Mononuclear/immunology
- Lung/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mycobacterium bovis/genetics
- Mycobacterium bovis/immunology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Spleen/immunology
- Th1 Cells/immunology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Wei Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Han-Yin Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
16
|
da Costa AC, Costa-Júnior ADO, de Oliveira FM, Nogueira SV, Rosa JD, Resende DP, Kipnis A, Junqueira-Kipnis AP. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS One 2014; 9:e112848. [PMID: 25398087 PMCID: PMC4232451 DOI: 10.1371/journal.pone.0112848] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Abadio de Oliveira Costa-Júnior
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fábio Muniz de Oliveira
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sarah Veloso Nogueira
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Joseane Damaceno Rosa
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Danilo Pires Resende
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
17
|
Wang Y, Yang M, Yu Q, Yu L, Shao S, Wang X. Recombinant bacillus Calmette-Guérin in urothelial bladder cancer immunotherapy: current strategies. Expert Rev Anticancer Ther 2014; 15:85-93. [PMID: 25231670 DOI: 10.1586/14737140.2015.961430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been used in the intravesical treatment of urothelial bladder cancer (UBC) for three decades. Despite its efficacy, intravesical BCG therapy is associated with some limitations such as side effects and BCG failure, which have inspired multiple ways to improve it. Recent advances have focused on recombinant BCG (rBCG) which provides a novel tactic for modification of BCG. To date, a number of rBCG strains have been developed and demonstrated to encourage efficacy and safety in preclinical and clinical studies. This review summarizes current rBCG strategies, concerns and future directions in UBC immunotherapy with an intention to encourage further research and eventually to inform clinical decisions.
Collapse
Affiliation(s)
- Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|
18
|
da Costa AC, Nogueira SV, Kipnis A, Junqueira-Kipnis AP. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory. Front Immunol 2014; 5:152. [PMID: 24778634 PMCID: PMC3984997 DOI: 10.3389/fimmu.2014.00152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Bacille Calmette-Guérin (BCG), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort toward the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG) published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words TB, rBCG vaccine, and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of Mycobacterium tuberculosis (Mtb) immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and overexpression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T-cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC:hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - Sarah Veloso Nogueira
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás , Goiânia , Brazil
| |
Collapse
|
19
|
Deng YH, He HY, Zhang FJ. Immunogenicity and protective efficacy conferred by a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin strain expressing interleukin-12p70 of human cytokine and Ag85A of Mycobacterium tuberculosis fusion protein. Scand J Immunol 2013; 78:497-506. [PMID: 24283772 DOI: 10.1111/sji.12116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization provides protection against tuberculosis (TB) in infants, but the antituberculosis protective immunity wanes gradually after initial immunization and lasts less than 15 years. Therefore, more efficacious vaccines are urgently needed. In this study, we constructed a new tuberculosis vaccine of recombinant BCG strain (rBCG-IA), which could express IL-12p70 of human cytokine and Ag85A of M. tuberculosis fusion protein, and investigated its immunogenicity in BALB/c mice by measuring antibody titres, proliferation rate of splenocytes, ratios of CD4(+) T and CD8(+) T cells stimulated by specific antigens and levels of IFN-γ production in antigen-stimulated splenocyte cultures. Meanwhile, we evaluated its protective efficacy against M. tuberculosis H37Rv infection through detecting lung histopathology, organ bacterial loads and lung acid-fast stain. Immunogenicity experiments illustrated that from 2nd to 8th week after immunization, the rBCG-IA vaccine was able to induce the highest level of antibody titres, proliferation rate of splenocytes and IFN-γ production among groups and gained improved ratio of CD4(+) T and CD8(+) T cells from 6th to 8th week after vaccination. And from 2nd to 8th week after M. tuberculosis H37Rv infection, the score of pathology and bacterial loads in the rBCG-IA group were obviously lower than that in rBCG-I group, rBCG-A group or control group (PBST group), but similar to that in BCG group. This study suggested that rBCG-IA was able to elicit stronger humoral and cellular immune responses, but could only confer similar protective efficacy compared with its parental BCG vaccine.
Collapse
Affiliation(s)
- Y H Deng
- Department of Human Anatomy, Medical College, Kunming University of Science and Technology, Kunming, China
| | | | | |
Collapse
|
20
|
Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK. Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 2012; 97:1543-52. [DOI: 10.1007/s00253-012-4416-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
|