1
|
Li J, Fu L, Lu Q, Guo S, Chen S, Xia T, Wang M, Chen L, Bai Y, Xia H. Comparison of the osteogenic potential of fibroblasts from different sources. Tissue Cell 2024; 88:102358. [PMID: 38537379 DOI: 10.1016/j.tice.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVE With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Si Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
2
|
Park JY, Kwon YH, Song YW, Cha JK, Jung UW, Thoma D, Jung R. Is transmucosal healing of an implant as effective as submerged healing when simultaneous guided bone regeneration is performed? A preclinical study. J Clin Periodontol 2024; 51:330-337. [PMID: 38087817 DOI: 10.1111/jcpe.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 11/16/2023] [Indexed: 02/17/2024]
Abstract
AIM To investigate whether transmucosal healing is as effective as submerged healing in terms of buccal bone regeneration when guided bone regeneration (GBR) is performed simultaneously with implant placement. MATERIALS AND METHODS In six dogs, buccal dehiscence defects were created in the edentulous mandibular ridge, sized 5 × 5 × 3 mm (length × height × depth). In each defect, a bone-level implant was placed, and four experimental groups were randomly assigned as follows: (i) transmucosal healing with GBR (T-GBR), (ii) transmucosal healing without GBR (T-control), (iii) submerged healing with GBR (S-GBR) and (iv) submerged healing without GBR (S-control). Data analyses were based on histological slides 5 months after implant placement. RESULTS The T-GBR group showed significant differences compared to the control groups regarding defect height resolution, buccal bone thickness and mineralized tissue area (p < .05), but showed no significant differences when compared with the S-GBR group (p > .05). CONCLUSIONS The mode of healing (transmucosal vs. submerged) does not influence bone regeneration at implant sites. The clinician may therefore choose the approach based on further clinical and patient-specific parameters.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, South Korea
| | - Yoon-Hee Kwon
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Young Woo Song
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, South Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Daniel Thoma
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Ronald Jung
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Watanabe T, Hasuike A, Wakuda S, Kogure K, Min S, Watanabe N, Sakai R, Chaurasia A, Arai Y, Sato S. Resorbable bilayer membrane made of L-lactide-ε-caprolactone in guided bone regeneration: an in vivo experimental study. Int J Implant Dent 2024; 10:1. [PMID: 38270674 PMCID: PMC10811307 DOI: 10.1186/s40729-024-00520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Guided bone regeneration (GBR) is an accepted method in dental practice that can successfully increase the bone volume of the host at sites chosen for implant placement; however, existing GBR membranes exhibit rapid absorption and lack of adequate space maintenance capabilities. We aimed to compare the effectiveness of a newly developed resorbable bilayer membrane composed of poly (L-lactic acid) and poly (-caprolactone) (PLACL) with that of a collagen membrane in a rat GBR model. METHODS The rat calvaria was used as an experimental model, in which a plastic cylinder was placed. We operated on 40 male Fisher rats and subsequently performed micro-computed tomography and histomorphometric analyses to assess bone regeneration. RESULTS Significant bone regeneration was observed, which was and similar across all the experimental groups. However, after 24 weeks, the PLACL membrane demonstrated significant resilience, and sporadic partial degradation. This extended preservation of the barrier effect has great potential to facilitate optimal bone regeneration. CONCLUSIONS The PLACL membrane is a promising alternative to GBR. By providing a durable barrier and supporting bone regeneration over an extended period, this resorbable bilayer membrane could address the limitations of the current membranes. Nevertheless, further studies and clinical trials are warranted to validate the efficacy and safety of The PLACL membrane in humans.
Collapse
Affiliation(s)
- Taito Watanabe
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, 101-8310, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Dental Research Center, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| | - Shin Wakuda
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, 101-8310, Japan
| | - Keisuke Kogure
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, 101-8310, Japan
| | - Seiko Min
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX, 77054, USA
| | - Norihisa Watanabe
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ryo Sakai
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, King George's Medical University, Chowk, 226003, India
| | - Yoshinori Arai
- Dental Research Center, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| |
Collapse
|
4
|
Abundo R, Dellavia CPB, Canciani E, Daniele M, Dioguardi M, Zambelli M, Perelli M, Mastrangelo F. Alveolar Ridge Preservation with a Novel Cross-Linked Collagen Sponge: Histological Findings from a Case Report. J Clin Med 2023; 12:7599. [PMID: 38137668 PMCID: PMC10743811 DOI: 10.3390/jcm12247599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Alveolar ridge preservation (ARP) is a well-documented procedure to maintain bone volume after tooth extraction in order to place implants. However, at the end of the healing process, the residual biomaterial that is not reabsorbed remains embedded in the bone over time. Ribose cross-linked biomaterials demonstrated their ability to promote osteoconduction and complete resorption. The aim of this study was to evaluate the histological healing pattern of a novel ribose cross-linked collagen sponge used as a grafting material left exposed in human sockets at the time of tooth extraction. On a single patient, non-restorable lower first molars were extracted on both sides, and a ribose cross-linked collagen sponge was placed bilaterally in the cavities and left uncovered at the end of the surgery. After six months, core biopsies were taken immediately prior to implant placement; after the sample preparation, a histological analysis was performed. The results are very promising for substitution with newly formed bone and the amount of residual material. Ribose cross-linked collagen sponge could represent a valid alternative to conventional biomaterials for ARP procedures with no need for flap advancement and/or the addition of a membrane to cover the graft, reducing the invasiveness, complexity, and costs of the treatment.
Collapse
Affiliation(s)
| | | | - Elena Canciani
- Microscopic Anatomy, University of Milan, 20126 Milan, Italy;
| | - Monica Daniele
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.D.); (M.D.)
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.D.); (M.D.)
| | | | | | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.D.); (M.D.)
| |
Collapse
|
5
|
McColl E, Macbeth N. Missing the point. Br Dent J 2023; 235:841-843. [PMID: 38066121 DOI: 10.1038/s41415-023-6618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Affiliation(s)
- E McColl
- Peninsula Dental School, Plymouth, United Kingdom.
| | - N Macbeth
- Lichfield, Staffordshire, United Kingdom.
| |
Collapse
|
6
|
Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000 2023; 93:56-76. [PMID: 37855164 DOI: 10.1111/prd.12502] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 10/20/2023]
Abstract
Dental implants revolutionized the treatment options for restoring form, function, and esthetics when one or more teeth are missing. At sites of insufficient bone, guided bone regeneration (GBR) is performed either prior to or in conjunction with implant placement to achieve a three-dimensional prosthetic-driven implant position. To date, GBR is well documented, widely used, and constitutes a predictable and successful approach for lateral and vertical bone augmentation of atrophic ridges. Evidence suggests that the use of barrier membranes maintains the major biological principles of GBR. Since the material used to construct barrier membranes ultimately dictates its characteristics and its ability to maintain the biological principles of GBR, several materials have been used over time. This review, summarizes the evolution of barrier membranes, focusing on the characteristics, advantages, and disadvantages of available occlusive barrier membranes and presents results of updated meta-analyses focusing on the effects of these membranes on the overall outcome.
Collapse
Affiliation(s)
- Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Ulvi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Ma YF, Yan XZ. Periodontal Guided Tissue Regeneration Membranes: Limitations and Possible Solutions for the Bottleneck Analysis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:532-544. [PMID: 37029900 DOI: 10.1089/ten.teb.2023.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Guided tissue regeneration (GTR) is an important surgical method for periodontal regeneration. By placing barrier membrane on the root surface of the tooth to guide the adhesion and proliferation of periodontal ligament cells, periodontal tissue regeneration can be achieved. This review intends to analyze the current limitations of GTR membranes and to propose possible solutions for developing new ones. Limitations of current GTR membranes include nonabsorbable membranes and absorbable synthetic polymer membranes exhibit weak biocompatibility; when applying to a large defect wound, the natural collagen membrane with fast degradation rate have limited mechanical strength, and the barrier function may not be maintained well. Although the degradation time can be prolonged after cross-linking, it may cause foreign body reaction and affect tissue integration; The clinical operation of current barrier membranes is inconvenient. In addition, most of the barrier membranes lack bioactivity and will not actively promote periodontal tissue regeneration. Possible solutions include using electrospinning (ELS) techniques, nanofiber scaffolds, or developing functional gradient membranes to improve their biocompatibility; adding Mg, Zn, and/or other metal alloys, or using 3D printing technology to improve their mechanical strength; increasing the concentration of nanoparticles or using directional arrangement of membrane fibers to control the fiber diameter and porosity of the membrane, which can improve their barrier function; mixing natural and synthetic polymers as well as other biomaterials with different degradation rates in proportion to change the degradation rate and maintain barrier function; to improve the convenience of clinical operation, barrier membranes that meets personalized adhesion to the wound defect can be manufactured; developing local controlled release drug delivery systems to improve their bioactivity. Impact statement This review provides an up-to-date summary of commonly commercial periodontal guided tissue regeneration membranes, and analyze their limitations in clinical use. Using studies published recently to explore possible solutions from several perspectives and to raise possible strategies in the future. Several strategies have tested in vivo/in vitro, which will guide the way to propel clinical translation, meeting clinical needs.
Collapse
Affiliation(s)
- Yi-Fei Ma
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| | - Xiang-Zhen Yan
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Shi X, Li X, Tian Y, Qu X, Zhai S, Liu Y, Jia W, Cui Y, Chu S. Physical, mechanical, and biological properties of collagen membranes for guided bone regeneration: a comparative in vitro study. BMC Oral Health 2023; 23:510. [PMID: 37481548 PMCID: PMC10362553 DOI: 10.1186/s12903-023-03223-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND To provide a reference for clinical selection of collagen membranes by analyzing the properties of three kinds of collagen membranes widely used in clinics: Bio-Gide membrane from porcine dermis (PD), Heal-All membrane from bovine dermis (BD), and Lyoplant membrane from bovine pericardium (BP). METHODS The barrier function of three kinds of collagen membranes were evaluated by testing the surface morphology, mechanical properties, hydrophilicity, and degradation rate of collagen membranes in collagenase and artificial saliva. In addition, the bioactivity of each collagen membrane as well as the proliferation and osteogenesis of MC3T3-E1 cells were evaluated. Mass spectrometry was also used to analyze the degradation products. RESULTS The BP membrane had the highest tensile strength and Young's modulus as well as the largest water contact angle. The PD membrane exhibited the highest elongation at break, the smallest water contact angle, and the lowest degradation weight loss. The BD membrane had the highest degradation weight loss, the highest number of proteins in its degradation product, the strongest effect on the proliferation of MC3T3-E1 cells, and the highest expression level of osteogenic genes. CONCLUSIONS The PD membrane is the best choice for shaping and maintenance time, while the BD membrane is good for osteogenesis, and the BP membrane is suitable for spatial maintenance. To meet the clinical requirements of guided bone regeneration, using two different kinds of collagen membranes concurrently to exert their respective advantages is an option worth considering.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xianjing Li
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinyao Qu
- Department of Drug Clinical Trial, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wei Jia
- Yongchang Community Health Service Center of Chaoyang District, Changchun, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Jin X, Park JY, Lee JS, Jung UW, Choi SH, Cha JK. Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study. J Periodontal Implant Sci 2023; 53:207-217. [PMID: 36468485 PMCID: PMC10315255 DOI: 10.5051/jpis.2203260163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. METHODS Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. RESULTS The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. CONCLUSIONS Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
10
|
Abdo VL, Suarez LJ, de Paula LG, Costa RC, Shibli J, Feres M, Barāo VAR, Bertolini M, Souza JGS. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surf B Biointerfaces 2023; 226:113318. [PMID: 37075523 DOI: 10.1016/j.colsurfb.2023.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Lina J Suarez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace St, Pittsburgh, PA 15213, USA
| | - Joāo Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil.
| |
Collapse
|
11
|
Sehgal V, Ruangsawasdi N, Kiattavorncharoen S, Bencharit S, Thanasrisuebwong P. Occlusive and Proliferative Properties of Different Collagen Membranes-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1657. [PMID: 36837285 PMCID: PMC9964610 DOI: 10.3390/ma16041657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Different collagen barrier membranes come in various sources and crosslinking that may affect barrier function and tissue integration. This study investigated barrier function and tissue integration of the three different collagen membranes (Jason®: porcine pericardium, GENOSS: bovine tendon, and BioMend® Extend: cross-linked bovine tendon) with human gingival fibroblasts. The barrier function and tissue integration properties were determined under confocal microscopy. Morphological characteristics were observed using scanning electron microscopy. Our results showed that all collagen membranes allowed a small number of cells to migrate, and the difference in barrier function ability was not significant. The cross-linked characteristics did not improve barrier ability. The native collagen membrane surfaces allowed evenly scattered proliferation of HGF, while the cross-linked collagen membrane induced patchy proliferation. Statistically significant differences in cell proliferation were found between Jason and BioMend Extend membranes (p = 0.04). Scanning electron microscope showed a compact membrane surface at the top, while the bottom surfaces displayed interwoven collagen fibers, which were denser in the crosslinked collagen membranes. Within the limitations of this study, collagen membranes of different origins and physical properties can adequately prevent the invasion of unwanted cells. Native collagen membranes may provide a better surface for gingival cell attachment and proliferation.
Collapse
Affiliation(s)
- Vishal Sehgal
- Master of Science Program in Implant Dentistry, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Nisarat Ruangsawasdi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Sirichai Kiattavorncharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Sompop Bencharit
- Office of Oral Health Innovation, Department of Oral Rehabilitation, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
12
|
Polydioxanone Membrane Compared with Collagen Membrane for Bone Regeneration. Polymers (Basel) 2023; 15:polym15040868. [PMID: 36850154 PMCID: PMC9963858 DOI: 10.3390/polym15040868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Guided bone regeneration (GBR) is an approach that induces osteopromotion through the regenerative membranes. These barriers exhibit bioactive behavior and mechanical function. Polydioxanone is a synthetic option, already used in medicine and dentistry, with good results in bone regeneration. This study aimed to evaluate bone repair in critical defects in rat calvaria using a polydioxanone membrane (Plenum® Guide) compared with a commercially available collagen-based membrane (Bio-Gide®). The bone defects were filled with Plenum® Osshp, a synthetic bone graft, hydroxyapatite:β-tricalcium phosphate, 70:30%, Group PG (Plenum® Guide + Plenum® Osshp), and Group BG (Geistlich Bio-Gide® + Plenum® Osshp). The specimens were submitted to immunohistochemical (RUNX2 and OPN), gene expression (RUNX2, IBSP, and VEGF), histometric, and microtomography analyses after 07, 15, 30, and 60 days postoperative. PG group showed greater immunolabeling area for RUNX2 and OPN, higher gene expression of VEGF (3.15 ± 0.85), and IBSP (24.9 ± 0.59). However, there was no statistical difference between groups in the histometric analysis regarding the percentage of connective tissue PG (0.83 ± 0.45), BG (0.70 ± 0.34), neoformed bone PG (0.60 ± 0.4), BG (0.65 ± 0.51), and remaining biomaterial PG (0.84 ± 0.31), BG (0.91 ± 0.33). In addition, there was no statistical difference between groups by micro-CT analysis. The absorbable-synthetic membrane, Plenum® Guide, is an effective membrane for guided bone regeneration.
Collapse
|
13
|
CBCT Evaluation of Sticky Bone in Horizontal Ridge Augmentation with and without Collagen Membrane-A Randomized Parallel Arm Clinical Trial. J Funct Biomater 2022; 13:jfb13040194. [PMID: 36278663 PMCID: PMC9590014 DOI: 10.3390/jfb13040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022] Open
Abstract
Guided bone regeneration (GBR) is a reliable technique used to treat ridge deficiencies prior or during implant placement. Injectable-platelet rich fibrin (i-PRF) laced with a bone substitute (sticky bone) has heralded the way for advancing the outcomes of bone regeneration. This study evaluated the efficacy of sticky bone in horizontal ridge augmentation with and without collagen membrane. A total of 20 partially edentulous patients (Group-I n = 10; Group-II n = 10) that indicated GBR were included, and the surgical procedure was carried out. In Group-I, the sticky bone and collagen membrane were placed in ridge-deficient sites and Group-II received only sticky bone. At the end of 6 months, 20 patients (Group-I (n = 10); Group-II (n = 10)) completed the follow-up period. A CBCT examination was performed to assess changes in the horizontal ridge width (HRW) and vertical bone height (VBH). A statistically significant increase in HRW (p < 0.05) was observed in both groups with mean gains of 1.35 mm, 1.55 mm, and 1.93 mm at three levels (crest, 3 mm, and 6 mm) in Group-I and 2.7 mm, 2.8 mm, and 2.6 mm at three levels in Group-II. The intergroup comparison revealed statistical significance (p < 0.05) with respect to HRW and KTW (Keratinised tissue width) gains of 0.775 at the 6-month follow-up. Sticky-bone (Xenogenic-bone graft + i-PRF) served as a promising biomaterial in achieving better horizontal bone width gain.
Collapse
|
14
|
Kölliker R, Hicklin SP, Hirsiger C, Liu CC, Janett F, Schmidlin PR. In Vitro Evaluation of the Permeability of Different Resorbable Xenogeneic Membranes after Collagenolytic Degradation. MEMBRANES 2022; 12:787. [PMID: 36005702 PMCID: PMC9415831 DOI: 10.3390/membranes12080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this in vitro study, we compare the penetration of cells through different resorbable collagen membranes, which were collagenolytically degraded over different time periods. Three different resorbable collagen membranes were evaluated, including two non-cross-linked (NCL) membranes-namely, a porcine (NCL-P) and an equine (NCL-E) membrane-and an enzymatically cross-linked porcine (ECL-B) membrane. A special two-chamber model was fabricated, allowing for the placement of separating membranes, and a non-porous polyester membrane was used as a negative control (C), in order to verify the impermeability of the experimental chamber device. Round membrane samples with a diameter of 16 mm were fabricated. Eighteen membranes of each type were punched and placed on polyethylene nets as carriers. The membranes were then biodegraded-each on its carrier-in 12-well polystyrene plates: three samples of each membrane type were degraded for 1.5, 3, 6, or 12 h in 2 mL of a buffered collagenase solution, at 37 °C. For control purposes, three samples of each membrane type were not degraded, but only immersed in buffer solution for 1.5, 3, 6, or 12 h, at 37 °C. Another three samples of each type of membrane were degraded until complete dissolution, in order to determine the full hydroxyproline content for comparison. Liquid-preserved boar semen (containing at least 120 million sperm cells per milliliter) was used to test the cell occlusivity of the degraded membranes. At baseline and initial degradation, all tested membranes were tight, and no penetration was observed with up to 30 min of incubation time (results not shown). After 1.5 h, cells were partially capable of penetrating the NCL-E membrane only. One sample showed leakage, with a sperm volume of 1.7 million cells/mL over all samples. No penetration occurred in the test, NCL-P, and ECL-B groups. After a degradation time of 3 h, the NCL-P and ECL-B membranes remained occlusive to cells. All the membranes and measurements indicated leakage in the NCL-E group. After 6 h, four NCL-P measurements showed the first signs of cell penetration, as boar spermatozoa were detectable in the lower chamber (64 million cells/mL). The ECL-B membranes remained completely cell occlusive. After 12 h, four NCL-P measurements were cell penetration positive (14.6 million cells/mL), while the ECL-B group remained tight and showed no cell penetration. As the findings of our study are well in accordance with the results of several previous animal studies, it can be concluded that the surrogate model is capable of performing rapid and cheap screening of cell occlusivity for different collagen membranes in a very standardized manner. In particular, claims of long degradation resistance can be easily proven and compared. As the boar spermatozoa used in the present report had a size of 9 × 5 μm, smaller bacteria are probably also able to penetrate the leaking membranes; in this regard, our proposed study set-up may provide valuable information, although it must be acknowledged that sperm cells show active mobility and do not only translocate by growth.
Collapse
Affiliation(s)
- Ramona Kölliker
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Stefan P. Hicklin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Constanze Hirsiger
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Chun Ching Liu
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 204, 8057 Zurich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| |
Collapse
|
15
|
Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7742687. [PMID: 35872861 PMCID: PMC9303140 DOI: 10.1155/2022/7742687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
This study is aimed at performing a systematic review and a network meta-analysis of the effects of several membranes on vertical bone regeneration and clinical complications in guided bone regeneration (GBR) or guided tissue regeneration (GTR). We compared the effects of the following membranes: high-density polytetrafluoroethylene (d-PTFE), expanded polytetrafluoroethylene (e-PTFE), crosslinked collagen membrane (CCM), noncrosslinked collagen membrane (CM), titanium mesh (TM), titanium mesh plus noncrosslinked (TM + CM), titanium mesh plus crosslinked (TM + CCM), titanium-reinforced d-PTFE, titanium-reinforced e-PTFE, polylactic acid (PLA), polyethylene glycol (PEG), and polylactic acid 910 (PLA910). Using the PICOS principles to help determine inclusion criteria, articles are collected using PubMed, Web of Science, and other databases. Assess the risk of deviation and the quality of evidence using the Cochrane Evaluation Manual, and GRADE. 27 articles were finally included. 19 articles were included in a network meta-analysis with vertical bone increment as an outcome measure. The network meta-analysis includes network diagrams, paired-comparison forest diagrams, funnel diagrams, surface under the cumulative ranking curve (SUCRA) diagrams, and sensitivity analysis diagrams. SUCRA indicated that titanium-reinforced d-PTFE exhibited the highest vertical bone increment effect. Meanwhile, we analyzed the complications of 19 studies and found that soft tissue injury and membrane exposure were the most common complications.
Collapse
|
16
|
Permeability of P. gingivalis or its metabolic products through collagen and dPTFE membranes and their effects on the viability of osteoblast-like cells: an in vitro study. Odontology 2022; 110:710-718. [PMID: 35355145 DOI: 10.1007/s10266-022-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Membrane exposure is a widely reported and relatively common complication in Guided Bone Regeneration (GBR) procedures. The introduction of micro-porous dPTFE barriers, which are impervious to bacterial cells, could reduce the technique sensitivity to membrane exposure, even if there are no studies investigating the potential passage of bacterial metabolites through the barrier. Aim of this study was the in vitro evaluation of the permeability of three different GBR membranes (dPTFE, native and cross-linked collagen membranes) to Porphyromonas gingivalis; in those cases, where bacterial penetration could not be observed, another purpose was the analysis of the viability and differentiation capability of an osteosarcoma (U2OS) cell line in presence of bacteria eluate obtained through membrane percolation. A system leading to the percolation of P. gingivalis broth culture through the experimental membranes was arranged to assess the permeability to bacteria after 24 and 72 h of incubation. The obtained solution was then added to U2OS cell cultures which underwent, after 10 days of incubation, MTT and red alizarin essays. The dPTFE membrane showed resistance to bacterial penetration, while both types of collagen membranes were crossed by P. gingivalis after 24 h. The bacteria eluate filtered through dPTFE membrane didn't show any toxicity on U2OS cells. Results of this study demonstrate that dPTFE membranes can contrast the penetration of both P. gingivalis and its metabolites toxic for osteoblast-like cells. The toxicity analysis was not possible for the collagen membranes, since permeability to bacterial cells was observed within the first period of incubation.
Collapse
|
17
|
Paeng KW, Cha JK, Thoma DS, Jung RE, Jung UW, Benic GI. The effect of collagen membrane and of bone substitute on lateral bone augmentation with titanium mesh: An experimental in vivo study. Clin Oral Implants Res 2022; 33:413-423. [PMID: 35137448 DOI: 10.1111/clr.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
Abstract
AIM The aim of this study was to identify the additional effects of collagen membrane (CM) and of synthetic bone substitute (BS) on lateral bone augmentation of chronic peri-implant defect with titanium mesh (TM). MATERIALS AND METHODS Atrophic alveolar ridge was induced in 6 canine mandibles and 5 peri-implant defects were achieved in each hemi-mandible. Bone augmentation was attempted using the following randomly allocated modalities: 1) Control: no treatment, 2) TM only group: blood clot covered by TM, 3) TM+BS group: BS covered by TM, 4) TM+CM group: blood clot covered by TM and CM, and 5) TM+BS+CM group: BS covered by TM and CM. After 16 weeks of submerged healing, micro-CT and histomorphometric analyses were performed. RESULTS TM exposure occurred in one case in the TM only group, one case in the TM+CM group, and two cases in the TM+BS+CM group. Histologically, pseudo-periosteum was observed along the inner and outer surfaces of TM, and the directions of the collagen fiber within the pseudo-periosteum differed according to the additional use of CM. In general, the TM only group rendered higher values in vertical defect fill and dimension of the augmented hard tissue in comparison to the other treatment groups. CONCLUSIONS Due to the small sample size, this pilot study remains inconclusive. Within the limitations of the study, the use of CM and/or BS did not appear to have an additional benefit on lateral bone augmentation of peri-implant defect with TM.
Collapse
Affiliation(s)
- Kyeong-Won Paeng
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Daniel S Thoma
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Goran I Benic
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.,Institute for Research and Education in Dental Medicine, Lugano, Switzerland
| |
Collapse
|
18
|
Sanz-Sánchez I, Sanz-Martín I, Ortiz-Vigón A, Molina A, Sanz M. Complications in bone-grafting procedures: Classification and management. Periodontol 2000 2022; 88:86-102. [PMID: 35103322 DOI: 10.1111/prd.12413] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone-regenerative interventions aiming to restore deficient alveolar ridges, such as the use of block grafts or through the application of guided bone-regeneration principles, have reported positive outcomes in the published scientific literature. These interventions, however, are invasive, and hence, intraoperative and/or postoperative complications may occur. The types of complications and their severity may vary from the exposure of the biomaterial (membrane or graft) to postsurgical infections, neurosensorial disturbances, occurrence of hemorrhage, and pain, etc. The aim of the present narrative review was to search the available scientific evidence concerning the incidence of these complications, their effect on treatment outcomes, their clinical management and, finally, strategies aimed at prevention. Exposure of the barrier membrane or the block graft is the most common complication associated with oral regenerative interventions. To manage these complications, depending on the extent of the exposure and the presence or absence of concomitant infections, therapeutic measures may vary, from the topical application of antiseptics to the removal of the barrier membrane or the block graft. Regardless of their treatment, the occurrence of these complications has been associated with patient selection, with compliant patients (eg, nonsmokers) having a lower reported incidence of complications. Similarly, surgical factors such as correct flap elevation and a tensionless closure are of obvious importance. Finally, to prevent the incidence of complications, it appears prudent to utilize whenever possible less invasive surgical interventions.
Collapse
Affiliation(s)
- Ignacio Sanz-Sánchez
- Section of Graduate Periodontology, University Complutense, Madrid, Spain.,Etiology and Therapy of Periodontal and Peri-Implant Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | | | | | - Ana Molina
- Section of Graduate Periodontology, University Complutense, Madrid, Spain.,Etiology and Therapy of Periodontal and Peri-Implant Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Section of Graduate Periodontology, University Complutense, Madrid, Spain.,Etiology and Therapy of Periodontal and Peri-Implant Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
19
|
Eliezer M, Sculean A, Miron RJ, Nemcovsky C, Bosshardt DD, Fujioka-Kobayashi M, Weinreb M, Moses O. Cross-linked hyaluronic acid slows down collagen membrane resorption in diabetic rats through reducing the number of macrophages. Clin Oral Investig 2021; 26:2401-2411. [PMID: 34608575 DOI: 10.1007/s00784-021-04206-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We previously showed that accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated here its effect on the number of macrophages and endothelial cells (ECs) within the CM as a possible mechanism for inhibition of CM resorption. MATERIALS AND METHODS Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS, and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and transglutaminase II, respectively. RESULTS Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and fourfold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p < 0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. CONCLUSIONS Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals. CLINICAL RELEVANCE The combination of CLHA and CM may represent a valuable approach when guided tissue regeneration or guided bone regeneration procedures are performed in diabetic patients.
Collapse
Affiliation(s)
- Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Comparative In Vivo Analysis of the Integration Behavior and Immune Response of Collagen-Based Dental Barrier Membranes for Guided Bone Regeneration (GBR). MEMBRANES 2021; 11:membranes11090712. [PMID: 34564529 PMCID: PMC8467533 DOI: 10.3390/membranes11090712] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Collagen-based resorbable barrier membranes have been increasingly utilized for Guided Bone Regeneration (GBR), as an alternative to non-resorbable synthetic membranes that require a second surgical intervention for removal. One of the most important characteristics of a resorbable barrier membrane is its mechanical integrity that is required for space maintenance and its tissue integration that plays a crucial role in wound healing and bone augmentation. This study compares a commercially available porcine-derived sugar-crosslinked collagen membrane with two non-crosslinked collagen barrier membranes. The material analysis provides an insight into the influence of manufacturing on the microstructure. In vivo subcutaneous implantation model provides further information on the host tissue reaction of the barrier membranes, as well as their tissue integration patterns that involve cellular infiltration, vascularization, and degradation. The obtained histochemical and immunohistochemical results over three time points (10, 30, and 60 days) showed that the tissue response to the sugar crosslinked collagen membrane involves inflammatory macrophages in a comparable manner to the macrophages observed in the surrounding tissue of the control collagen-based membranes, which were proven as biocompatible. The tissue reactions to the barrier membranes were additionally compared to wounds from a sham operation. Results suggest wound healing properties of all the investigated barrier membranes. However, the sugar-crosslinked membrane lacked in cellular infiltration and transmembraneous vascularization, providing an exclusive barrier function in GBR. Moreover, this membrane maintained a similar swelling ratio over examined timepoints, which suggests a very slow degradation pattern and supports its barrier function. Based on the study results, which showed biocompatibility of the sugar crosslinked membrane and its stability up to 60 days post-implantation, it can be concluded that this membrane may be suitable for application in GBR as a biomaterial with exclusive barrier functionality, similar to non-resorbable options.
Collapse
|
21
|
Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers (Basel) 2021; 13:polym13173007. [PMID: 34503047 PMCID: PMC8433692 DOI: 10.3390/polym13173007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 01/28/2023] Open
Abstract
Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.
Collapse
Affiliation(s)
- Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| |
Collapse
|
22
|
Dowlatshahi S, Chen CY, Zigdon-Giladi H, Horwitz J, Ahn C, Kim DM, Machtei EE. Volumetric assessment of changes in the alveolar ridge dimension following GBR using a combination FDBA with collagen membrane or novel resorbable scaffold: A prospective two-center clinical trial. J Periodontol 2021; 93:343-353. [PMID: 34245016 DOI: 10.1002/jper.21-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of this study was to examine osseous changes following lateral bone augmentation using a novel Ossix Volumax (OV) scaffold alone and compare it to combination therapy using freeze-dried bone allograft (FDBA) and resorbable collagen membrane (FDBA/CM). METHODS Thirty patients completed this 9-months prospective two-center cohort clinical trial. Before surgery and 9-months re-entry, linear measurements were performed, and impressions taken. Cone-beam computed tomography (CBCT) were done at baseline and 9 months. DICOM slice data were converted into volumetric images using 3D Slicer. Following 3D volumetric image construction, pre- and post-op Standard Triangle Language files were superimposed and volumetric data were extracted for a 10-mm region of interest. Linear measurements were compared similarly. RESULTS Baseline clinical parameters were similar in both groups (4.22 and 4.53 mm for OV and FDBA/CM at -2 mm, respectively). Following treatment, vertical distance from the stent had changed minimally (-0.36 and -0.12 mm, respectively). Similarly, lateral bone gain ranged from 0 to 0.4 mm, for both groups. To the contrary, the CBCT measurements showed a significantly greater increase in horizontal width in the control at -2 mm (0.95 ± 0.2 mm) compared with -0.62 mm for the OV (P = 0.000). Similar changes were observed at -5 mm (0.63 and -0.41 mm, respectively, P = 0.01). Sites volume had increased from 266 ± 149 mm3 to 360 ± 138 mm3 (P = 0.001) for FDBA/CM with negligible changes for OV (from 334 to 335 mm3 , P = 0.952). these between-group changes being statistically significant (P = 0.023). CONCLUSION FDBA/CM yielded better albeit moderate increase in the volume of the edentulous ridge, while OV scaffolds failed to produce similar results.
Collapse
Affiliation(s)
- Sahar Dowlatshahi
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus and Faculty of Medicine, Technion (Israel Institute of Technology), Haifa, Israel
| | - Jacob Horwitz
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus and Faculty of Medicine, Technion (Israel Institute of Technology), Haifa, Israel
| | - Chiho Ahn
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Eli E Machtei
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus and Faculty of Medicine, Technion (Israel Institute of Technology), Haifa, Israel
| |
Collapse
|
23
|
Gueldenpfennig T, Houshmand A, Najman S, Stojanovic S, Korzinskas T, Smeets R, Gosau M, Pissarek J, Emmert S, Jung O, Barbeck M. The Condensation of Collagen Leads to an Extended Standing Time and a Decreased Pro-inflammatory Tissue Response to a Newly Developed Pericardium-based Barrier Membrane for Guided Bone Regeneration. In Vivo 2021; 34:985-1000. [PMID: 32354884 DOI: 10.21873/invivo.11867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM A new manufacturing process has been established for the condensation of collagen derived from porcine pericardium to develop a new dental barrier membrane (CPM) that can provide a long barrier functionality. A native collagen membrane (PM) was used as control. MATERIALS AND METHODS Established in vitro procedures using L929 and MC3T3 cells were used for cytocompatibility analyses. For the in vivo study, subcutaneous implantation of both membrane types in 40 BALB/c mice and established histological, immuno histochemical and histomorphometrical methods were conducted. RESULTS Both the in vitro and in vivo results revealed that the CPM has a biocompatibility profile comparable to that of the control membrane. The new CPM induced a tissue reaction including more M2-macrophages. CONCLUSION The CPM is fully biocompatible and seems to support the early healing process. Moreover, the new biomaterial seems to prevent cell ingrowth for a longer period of time, making it ideally suited for GBR procedures.
Collapse
Affiliation(s)
- Tristan Gueldenpfennig
- University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Werner Forßmann Hospital Eberswalde, Eberswalde, Germany
| | | | - Stevo Najman
- Department for Cell and Tissue Engineering Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | | | - Ralf Smeets
- University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Ole Jung
- University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Mike Barbeck
- University Hospital Hamburg-Eppendorf, Hamburg, Germany .,BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
24
|
Neto AMD, Sartoretto SC, Duarte IM, Resende RFDB, Neves Novellino Alves AT, Mourão CFDAB, Calasans-Maia J, Montemezzi P, Tristão GC, Calasans-Maia MD. In Vivo Comparative Evaluation of Biocompatibility and Biodegradation of Bovine and Porcine Collagen Membranes. MEMBRANES 2020; 10:membranes10120423. [PMID: 33333940 PMCID: PMC7765348 DOI: 10.3390/membranes10120423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanical barriers prevent the invasion of the surrounding soft tissues within the bone defects. This concept is known as Guided Bone Regeneration (GBR). The knowledge about the local tissue reaction and the time of degradation of absorbable membranes favors the correct clinical indication. This study aimed to evaluate the biocompatibility and biodegradation of a bovine collagen membrane (Lyostypt®, São Gonçalo, Brazil) and compare it to a porcine collagen membrane (Bio-Gide®) implanted in the subcutaneous tissue of mice, following ISO 10993-6:2016. Thirty Balb-C mice were randomly divided into three experimental groups, LT (Lyostypt®), BG (Bio-Gide®), and Sham (without implantation), and subdivided according to the experimental periods (7, 21, and 63 days). The BG was considered non-irritant at seven days and slight and moderate irritant at 21 and 63 days, respectively. The LT presented a small irritant reaction at seven days, a mild reaction after 21, and a reduction in the inflammatory response at 63 days. The biodegradation of the LT occurred more rapidly compared to the BG after 63 days. This study concluded that both membranes were considered biocompatible since their tissue reactions were compatible with the physiological inflammatory process; however, the Bio-Gide® was less degraded during the experimental periods, favoring the guided bone regeneration process.
Collapse
Affiliation(s)
- Abdu Mansur Dacache Neto
- Graduate Program, Dentistry School, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil;
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Dentistry School, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, RJ, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, RJ, Brazil;
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
| | - Isabelle Martins Duarte
- Post-Graduation Program in Dentistry, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, RJ, Brazil;
| | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, RJ, Brazil;
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
| | | | | | - Jose Calasans-Maia
- Orthodontics Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil;
| | | | | | - Mônica Diuana Calasans-Maia
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
- Correspondence: ; Tel.: +55-21-98153-5884
| |
Collapse
|
25
|
Guided Bone Regeneration with Ammoniomethacrylate-Based Barrier Membranes in a Radial Defect Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5905740. [PMID: 33150177 PMCID: PMC7603551 DOI: 10.1155/2020/5905740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Large bone defects pose an unsolved challenge for orthopedic surgeons. Our group has previously reported the construction of a barrier membrane made of ammoniomethacrylate copolymer USP (AMCA), which supports the adhesion, proliferation, and osteoblastic differentiation of human mesenchymal stem cells (hMSCs). In this study, we report the use of AMCA membranes to seclude critical segmental defect (~1.0 cm) created in the middle third of rabbit radius and test the efficiency of bone regeneration. Bone regeneration was assessed by radiography, biweekly for 8 weeks. The results were verified by histology and micro-CT at the end of the follow-up. The AMCA membranes were found superior to no treatment in terms of new bone formation in the defect, bone volume, callus surface area normalized to total volume, and the number of bone trabeculae, after eight weeks. Additional factors were then assessed, and these included the addition of simvastatin to the membrane, coating the membrane with human MSC, and a combination of those. The addition of simvastatin to the membranes demonstrated a stronger effect at a similar radiological follow-up. We conclude that AMCA barrier membranes per se and simvastatin delivered in a controlled manner improve bone regeneration outcome.
Collapse
|
26
|
Alain H, Christophe RB, Héléne LH, Fabienne W, Bénédicte E, Pierre L. Healing Process with the use of a New Resorbable Synthetic Membrane. Open Dent J 2020. [DOI: 10.2174/1874210602014010450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Currently, absorbable membranes tend to be used most frequently for guided bone regeneration. They have many advantages and the most commonly reported complication is early exposure.
Objective:
This retrospective study reports the healing process of soft tissues over a four-week period using synthetic absorbable membranes.
Study Design:
One-hundred and ten cases were included. Soft tissue healing was assessed from anonymized photographs, in accordance with the criteria of the Early Healing Index (EHI) (Watchel et al., 2003). Cohen's Kappa (K) test was used to estimate the reliability of the measures and the variability between the examiners. Chi-squared test and Fisher’s exact test were used to assess the combination of healing outcomes with respect to the type of surgical intervention.
Results:
At 1-week, 81% of the cases showed a Primary Closure (PC) when the membrane was not initially exposed. The score increased to 98% at 4-weeks. Healing at 1-week varied significantly according to the type of intervention, with 73% of primary closure for bone augmentation during implantation, versus 60% for bone augmentation before implantation and 46% for alveolar preservation (Chi-square test, p = 0.049). No statistically significant differences in the healing process were observed between the smoking and non-smoking groups.
Conclusion:
This clinical study shows that the safety and exposure rates of this new synthetic membrane are comparable to the data gathered in the literature concerning non-cross-linked collagenous membranes.
Collapse
|
27
|
Eliezer M, Sculean A, Miron RJ, Nemcovsky C, Weinberg E, Weinreb M, Zoabi H, Bosshardt DD, Fujioka‐Kobayashi M, Moses O. Hyaluronic acid slows down collagen membrane degradation in uncontrolled diabetic rats. J Periodontal Res 2019; 54:644-652. [DOI: 10.1111/jre.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Meizi Eliezer
- Department of Periodontology School of Dental Medicine University of Bern Bern Switzerland
| | - Anton Sculean
- Department of Periodontology School of Dental Medicine University of Bern Bern Switzerland
| | - Richard J. Miron
- Department of Periodontology School of Dental Medicine University of Bern Bern Switzerland
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Evegeny Weinberg
- Department of Periodontology and Dental Implantology The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Miron Weinreb
- Department of Oral Biology The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Hasan Zoabi
- Department of Oral Biology The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Dieter D. Bosshardt
- Department of Periodontology School of Dental Medicine University of Bern Bern Switzerland
- Robert K. Schenk Laboratory of Oral Histology School of Dental Medicine University of Bern Bern Switzerland
| | - Masako Fujioka‐Kobayashi
- Department of Cranio‐Maxillofacial Surgery, Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Ofer Moses
- Department of Periodontology and Dental Implantology The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
28
|
Chaushu L, Chaushu G, Kolerman R, Vered M, Naishlos S, Nissan J. Anterior atrophic mandible restoration using cancellous bone block allograft. Clin Implant Dent Relat Res 2019; 21:903-909. [PMID: 30859715 DOI: 10.1111/cid.12744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Bone block grafting may be required to restore the alveolar process prior to implant placement in Kennedy Class IV partial edentulism of the anterior mandible. PURPOSE Evaluate the application of allograft cancellous bone blocks for the augmentation of the anterior atrophic mandible. MATERIALS AND METHODS Fourteen consecutive patients underwent augmentation with cancellous bone block allografts in the anterior mandible. A bony deficiency of at least 3 mm horizontally and up to 3 mm vertically according to computerized tomography para-axial reconstruction served as inclusion criteria. Following 6 months, 26 implants were placed and a cylindrical sample core was collected. All specimens were prepared for histological and histomorphometrical examination. The rehabilitation scheme was two dental implants, placed in the lateral incisor area, supporting a 4-unit implant-supported prosthesis. RESULTS Twenty-four blocks were placed in 14 patients. Mean follow-up was 26 ± 17 months. Mean bone gain was 5 ± 0.5 mm horizontally, and 2 ± 0.5 mm vertically. Twenty-six implants were used. Marginal bone loss at last follow up did not extend beyond the first thread. Block and implant survival rates were 91.6% and 100%, respectively. All patients but one received a fixed implant-supported prosthesis. Histomorphometrically, the mean fraction of the newly formed bone was 42%, that of the residual cancellous block-allograft 17%, and of the marrow and connective tissue 41%. CONCLUSIONS The potential of cancellous bone block allografts for reconstruction of Kennedy Class IV partial edentulism in the anterior mandible seems promising but still has to be evaluated scientifically in long-term observations.
Collapse
Affiliation(s)
- Liat Chaushu
- Department of Pediatric Dentistry, School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gavriel Chaushu
- Department of Oral & Maxillofacial Surgery, School of Dental Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Roni Kolerman
- Department of Pediatric Dentistry, School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, School of Dental Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sarit Naishlos
- Department of Pediatric Dentistry, School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joseph Nissan
- Department of Oral Rehabilitation, School of Dental Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
29
|
Elangovan S. Dental Implants Placed in Alveolar Ridge Augmented Using Guided Bone Regeneration Procedure Performed Using Resorbable Collagen Membranes and Particulate Bone Grafts Using Simultaneous or Staged Approach Exhibit a High Survival Rate. J Evid Based Dent Pract 2018; 18:173-175. [PMID: 29747802 DOI: 10.1016/j.jebdp.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION Guided bone regeneration with collagen membranes and particulate graft materials: A systematic review and meta-analysis. Wessing B, Lettner S, Zechner W. Int J Oral Maxillofac Implants 2018;33(1):87-100. SOURCE OF FUNDING Did not receive any funding support TYPE OF STUDY/DESIGN: Systematic review with meta-analysis of data.
Collapse
|
30
|
He Y, Jin Y, Wang X, Yao S, Li Y, Wu Q, Ma G, Cui F, Liu H. An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. NANOMATERIALS 2018; 8:nano8050327. [PMID: 29758001 PMCID: PMC5977341 DOI: 10.3390/nano8050327] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Guided bone regeneration (GBR) technique is widely used in the treatment of bone defects caused by peri-implantitis, periodontal disease, etc. However, the GBR membranes commonly used in clinical treatments currently have no antibacterial activity. Therefore, in this study, sequential layer-by-layer electrospinning and electrospraying techniques were utilized to prepare a gelatin (Gln) and chitosan (CS) composite GBR membrane containing hydroxyapatite nanoparticles (nHAp) and antimicrobial peptide (Pac-525)-loaded PLGA microspheres (AMP@PLGA-MS), which was supposed to have osteogenic and antibacterial activities. The scanning electron microscope (SEM) observation showed that the morphology of the nanofibers and microspheres could be successfully produced. The diameters of the electrospun fibers with and without nHAp were 359 ± 174 nm and 409 ± 197 nm, respectively, and the mechanical properties of the membrane were measured according to the tensile stress-strain curve. Both the involvement of nHAp and the chemical crosslinking were able to enhance their tensile strength. In vitro cell culture of rat bone marrow mesenchymal stem cells (rBMSCs) indicated that the Gln/CS composite membrane had an ideal biocompatibility with good cell adhesion, spreading, and proliferation. In addition, the Gln/CS membrane containing nHAp could promote osteogenic differentiation of rBMSCs. Furthermore, according to the in vitro drug release assay and antibacterial experiments, the composite GBR membrane containing AMP@PLGA-MS exhibited a long-term sustained release of Pac-525, which had bactericidal activity within one week and antibacterial activity for up to one month against two kinds of bacteria, S. aureus and E. coli. Our results suggest that the antimicrobial peptide-loaded Gln/CS composite membrane (AMP@PLGA-MS@Gln/CS/nHAp) has a great promise in bone generation-related applications for the unique functions of guiding bone regeneration and inhibiting bacterial infection as well.
Collapse
Affiliation(s)
- Yuzhu He
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yahui Jin
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310018, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuanyuan Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Huiying Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
31
|
Castro AG, Diba M, Kersten M, Jansen JA, van den Beucken JJ, Yang F. Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:154-161. [DOI: 10.1016/j.msec.2017.12.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/27/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
32
|
Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, Kostomitsopoulos N, Donos N. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res 2018; 53:430-439. [PMID: 29446096 DOI: 10.1111/jre.12530] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Although collagen membranes have been clinically applied for guided tissue/bone regeneration for more than 30 years, their in vivo degradation pattern has never been fully clarified. A better understanding of the different stages of in vivo degradation of collagen membranes is extremely important, considering that the biology of bone regeneration requires the presence of a stable and cell/tissue-occlusive barrier during the healing stages in order to ensure a predictable result. Therefore, the aim of this study was to investigate the degradation pattern of a porcine non-cross-linked collagen membrane in an in vivo model of guided bone regeneration (GBR). MATERIAL AND METHODS Decalcified and paraffin-embedded specimens from calvarial defects of 18, 10-month-old Wistar rats were used. The defects were treated with a double layer of collagen membrane and a deproteinized bovine bone mineral particulate graft. At 7, 14 and 30 days of healing, qualitative evaluation with scanning electron microscopy and atomic force microscopy, and histomorphometric measurements were performed. Markers of collagenase activity and bone formation were investigated using an immunofluorescence technique. RESULTS A significant reduction of membrane thickness was observed from 7 to 30 days of healing, which was associated with progressive loss of collagen alignment, increased collagen remodeling and progressive invasion of woven bone inside the membranes. A limited inflammatory infiltrate was observed at all time points of healing. CONCLUSION The collagen membrane investigated was biocompatible and able to promote bone regeneration. However, pronounced signs of degradation were observed starting from day 30. Since successful regeneration is obtained only when cell occlusion and space maintenance exist for the healing time needed by the bone progenitor cells to repopulate the defect, the suitability of collagen membranes in cases where long-lasting barriers are needed needs to be further reviewed.
Collapse
Affiliation(s)
- E Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK
| | - F Ravanetti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - A Strange
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - N Mardas
- Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK
| | - L Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - A Cacchioli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - N Kostomitsopoulos
- Laboratory Animal Facilities, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - N Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
33
|
Garcia J, Dodge A, Luepke P, Wang HL, Kapila Y, Lin GH. Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis. Clin Oral Implants Res 2018; 29:328-338. [PMID: 29368353 DOI: 10.1111/clr.13121] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
AIMS This review aimed at investigating the effect of membrane exposure on guided bone regeneration (GBR) outcomes at peri-implant sites and edentulous ridges. MATERIAL AND METHODS Electronic and manual literature searches were conducted by two independent reviewers using four databases, including MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials, for articles up to February 2017. Articles were included if they were human clinical trials or case series reporting outcomes of GBR procedures with and without membrane exposure. A random-effects meta-analysis was conducted, and the weighted mean difference (WMD) between the two groups and 95% confidence interval (CI) were reported. RESULTS Overall, eight articles were included in the quantitative analysis. The WMD of the horizontal bone gain at edentulous ridges was -76.24% (95% CI = -137.52% to -14.97%, p = .01) between sites with membrane exposure and without exposure. In addition, the WMD of the dehiscence reduction at peri-implant sites was -27.27% (95% CI of -45.87% to -8.68%, p = .004). Both analyses showed significantly favorable outcomes at the sites without membrane exposure. CONCLUSION Based on the findings of this study, membrane exposure after GBR procedures has a significant detrimental influence on the outcome of bone augmentation. For the edentulous ridges, the sites without membrane exposure achieved 74% more horizontal bone gain than the sites with exposure. For peri-implant dehiscence defects, the sites without membrane exposure had 27% more defect reduction than the sites with exposure.
Collapse
Affiliation(s)
- Jeffrey Garcia
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Austin Dodge
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Paul Luepke
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Hom-Lay Wang
- Graduate Periodontics, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Guo-Hao Lin
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA.,Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
AN YZ, KIM YK, LIM SM, HEO YK, KWON MK, CHA JK, LEE JS, JUNG UW, CHOI SH. Physiochemical properties and resorption progress of porcine skin-derived collagen membranes: In vitro and in vivo analysis. Dent Mater J 2018; 37:332-340. [DOI: 10.4012/dmj.2017-065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yin-Zhe AN
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| | - You-Kyoung KIM
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| | - Su-Min LIM
- Biomaterials part, Research and Development Center, Neobiotech Co., Ltd
| | - Yeong-Ku HEO
- Global Academy of Osseointegration, Local Clinic
| | - Mi-Kyung KWON
- Biomaterials part, Research and Development Center, Neobiotech Co., Ltd
| | - Jae-Kook CHA
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| | - Jung-Seok LEE
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| | - Ui-Won JUNG
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| | - Seong-Ho CHOI
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University
| |
Collapse
|
35
|
Dehydrothermally Cross-Linked Collagen Membrane with a Bone Graft Improves Bone Regeneration in a Rat Calvarial Defect Model. MATERIALS 2017; 10:ma10080927. [PMID: 28796152 PMCID: PMC5578293 DOI: 10.3390/ma10080927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/29/2017] [Accepted: 08/05/2017] [Indexed: 11/17/2022]
Abstract
In this study, the bone regeneration efficacy of dehydrothermally (DHT) cross-linked collagen membrane with or without a bone graft (BG) material was evaluated in a critical-sized rat model. An 8-mm-diameter defect was created in the calvaria of 40 rats, which were randomized into four groups: (1) control; (2) DHT; (3) BG; and, (4) DHT + BG. Evaluations were made at 2 and 8 weeks after surgery using micro-computed tomographic (micro-CT), histological, and histomorphometric analyses. Micro-CT analysis showed an increase in the new bone volume (NBV) of the BG and DHT + BG groups at 2 weeks after surgery, representing a significant difference (p < 0.05). At 8 weeks after surgery, the NBV increased in all four groups. However, larger NBVs were observed in the BG and DHT + BG groups, and a significant difference was no longer observed between the two groups. Histologic analysis demonstrated that the graft materials sustained the center of the defect in the BG and DHT + BG groups, which was shown in histomorphometric analysis as well. These results suggest that DHT membrane is a safe biomaterial with adequate tissue integration, and has a positive effect on new bone formation. Moreover, the best effects were achieved when DHT was used in conjunction with BG materials.
Collapse
|
36
|
Krishnakumar GS, Gostynska N, Campodoni E, Dapporto M, Montesi M, Panseri S, Tampieri A, Kon E, Marcacci M, Sprio S, Sandri M. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:594-605. [DOI: 10.1016/j.msec.2017.03.255] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 01/27/2023]
|
37
|
Eskan MA, Girouard ME, Morton D, Greenwell H. The effect of membrane exposure on lateral ridge augmentation: a case-controlled study. Int J Implant Dent 2017. [PMID: 28643223 PMCID: PMC5481288 DOI: 10.1186/s40729-017-0089-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of membrane exposure on guided bone regeneration (GBR) for lateral ridge augmentation has been poorly addressed. This case-controlled study aimed to investigate potential effect of membrane exposure lateral ridge augmentation and subsequent implant placement. METHODS A total of 14 patients that did receive lateral ridge augmentation procedure using allogeneic cancellous graft particulate in combination with an alloplastic bioresorbable matrix barrier were retrospectively selected for this study. Bone width was measured at the crest with a digital caliper before bone augmentation and at the reopening for implant placement 4 months later for all patients. Cases where primary flap closure was achieved and the barrier did not expose throughout the time until implant placement were assigned to the control group (n = 7). Cases where primary closure could not be achieved or a barrier exposure happened within the first week following the initial surgery were assigned to the test group. RESULTS The measured alveolar ridge width before surgery as well as after GBR procedure were not statistically significant different between the two groups (p > 0.05). Both groups showed a significant (p < 0.05) increase in their mean alveolar ridge width 4 months after later augmentation procedure, from 3.4 ± 1.2 to 6.0 ± 1.1 mm in the control group and from 3.6 ± 1.0 to 5.0 ± 1.4 mm in the test group. However, the mean alveolar ridge gain was significantly greater in the control group than in the test group (p < 0.05). Consequently, the reduction of the augmented alveolar ridge was significantly higher in the test group averaging to 4.7 mm than for the control group showing a loss of 3.1 mm after 4 months, respectively. However, in all 14 cases, successful implant placement was achieved after 4 months. CONCLUSIONS Within the limit of this study, it can be concluded that early exposure of a bioresorbable matrix barrier during lateral ridge augmentation may compromise the results of the GBR procedure but may still result in a favorable alveolar ridge width gain that allows for the placement of dental implants.
Collapse
Affiliation(s)
- Mehmet A Eskan
- , Sisli, Istanbul, Turkey. .,Clinic Eska, Terrace Fulya, Tesvikiye Mah., Hakki Yeten Cad, Sisli, Istanbul, Turkey.
| | | | - Dean Morton
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Henry Greenwell
- Department of Oral Health and Rehabilitation, Division of Periodontics, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| |
Collapse
|
38
|
Jiménez Garcia J, Berghezan S, Caramês JMM, Dard MM, Marques DNS. Effect of cross-linked vs non-cross-linked collagen membranes on bone: A systematic review. J Periodontal Res 2017; 52:955-964. [PMID: 28617950 DOI: 10.1111/jre.12470] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 12/29/2022]
Abstract
The aim of this study was to conduct a systematic review to compare the clinical outcomes of two different resorbable collagen membranes in terms of regenerated bone volume, postoperative complications and membrane degradation during bone regeneration procedures. Randomized controlled trials (RCT) or controlled trials (CT) that compared both techniques were reviewed on four electronic databases up to December 2015, a manual search was performed on the bibliography of the collected articles and the authors were contacted for additional references if undetected on the electronic and manual search. Membrane exposure was evaluated as a dichotomous outcome and the statistical unit was the membrane. The results were presented as relative risk (RR) with a 95% confidence interval. Eight RCTs and one CT were included in this study. The majority of the studies depicted a bone augmentation area, which ranged from 46.15% to 94.6% for the non-cross-link membranes and from 44% to 92.6% for the cross-link membranes at the 4-6 month re-entry surgery. From a total of 289 patients, a forest plot concerning the membrane exposure was constructed using the obtained RR of the included studies. The overall RR was 1.43 (95% CI: 0.85-2.39) with no statistically significant differences between the two groups, although with a marginal tendency towards higher exposure in the cross-link membrane group. This systematic review suggests the different membranes present themselves as appropriate for bone regeneration procedures, although cross-link membranes present higher rates of postoperative complications. However, more RCT with higher sample sizes are needed to evaluate the different membranes. The suggested lack of clinical differences between the compared membranes suggest that further cost-benefit ratio, tissue integration and postoperative complication oriented studies should be performed so that clinicians can take a patient-centred, evidence-based decision.
Collapse
Affiliation(s)
- J Jiménez Garcia
- Implant Department, Universidad Europea de Madrid, Madrid, Spain.,Periodontology and Implant Dentistry Department, New York University College of Dentistry, New York, NY, USA.,CIRO, Madrid, Spain
| | - S Berghezan
- Máster Universitário en Implantología Oral, Universidad Europea de Madrid, Madrid, Spain
| | - J M M Caramês
- Periodontology and Implant Dentistry Department, New York University College of Dentistry, New York, NY, USA.,Oral Surgery and Implant Department, LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal.,Implantology Institute, Lisbon, Portugal
| | - M M Dard
- Periodontology and Implant Dentistry Department, New York University College of Dentistry, New York, NY, USA.,Institut Straumann AG, Basel, Switzerland
| | - D N S Marques
- Máster Universitário en Implantología Oral, Universidad Europea de Madrid, Madrid, Spain.,Implantology Institute, Lisbon, Portugal.,Centro de Estudos de Medicina Dentária Baseada na Evidência and LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Wessing B, Urban I, Montero E, Zechner W, Hof M, Alández Chamorro J, Alández Martin N, Polizzi G, Meloni S, Sanz M. A multicenter randomized controlled clinical trial using a new resorbable non-cross-linked collagen membrane for guided bone regeneration at dehisced single implant sites: interim results of a bone augmentation procedure. Clin Oral Implants Res 2016; 28:e218-e226. [PMID: 27990692 PMCID: PMC5697637 DOI: 10.1111/clr.12995] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/02/2022]
Abstract
Objective To compare clinical performance of a new resorbable non‐cross‐linked collagen membrane, creos xenoprotect (CXP), with a reference membrane (BG) for guided bone regeneration at dehisced implant sites. Materials and methods This randomized controlled clinical trial enrolled patients with expected dehiscence defects following implant placement to restore single teeth in the maxillary and mandibular esthetic zone and premolar area. Implants were placed using a two‐stage surgical protocol with delayed loading. Bone augmentation material placed at the implant surface was immobilized with CXP or BG membrane. Soft tissue health was followed during the healing period, and the defect size was measured at reentry and 6 months after implant placement. Results Of the 49 included patients, 24 were treated with CXP and 25 with BG. Patient characteristics did not differ between the two arms. In the CXP arm, the defect height at implant insertion was (mean ± SD) 5.1 ± 2.1 mm (n = 24) and reduced at reentry by 81% to 1.0 ± 1.3 mm (n = 23). In the BG arm, the defect height at implant insertion was 4.9 ± 1.9 mm (n = 25) and reduced at reentry by 62% to 1.7 ± 2.1 mm (n = 24). Assuming a margin of non‐inferiority of 1 mm, CXP was non‐inferior to BG. Membrane exposure rate was highest at week 3 in both arms, reaching 16.7% for BG and 8.7% for CXP. Conclusions The new resorbable non‐cross‐linked collagen membrane facilitates bone gain to support implant placement in expected dehiscence defects. The observed trend toward higher mean bone gain and lower exposure rate with CXP compared to BG should be further investigated.
Collapse
Affiliation(s)
| | - Istvan Urban
- Graduate Implant Dentistry, Loma Linda, CA, USA.,Urban Regeneration Institute, Budapest, Hungary
| | - Eduardo Montero
- Section of Graduate Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Werner Zechner
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Markus Hof
- Division of Dental Student Training and Patient Care, Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Silvio Meloni
- Dentistry Unit, Department of Surgical, Microsurgical, and Medical Sciences, University Hospital of Sassari, Sassari, Italy
| | - Mariano Sanz
- Section of Graduate Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
40
|
Knöfler W, Barth T, Graul R, Krampe D. Retrospective analysis of 10,000 implants from insertion up to 20 years-analysis of implantations using augmentative procedures. Int J Implant Dent 2016; 2:25. [PMID: 27915417 PMCID: PMC5136376 DOI: 10.1186/s40729-016-0061-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A sufficient amount of bone is essential to ensure long-term stability of dental implants. To support the bone regeneration process, different techniques and materials are available. It has been questioned whether these techniques and materials may compromise implant survival compared to pristine bone. To properly answer this question, long-term stability up to 20.2 years after insertion of implants placed in augmented or non-augmented sites was retrospectively analysed. METHODS Retrospective analysis included 10,158 implants from 3095 patients in three private practices who underwent implant therapy with or without bone augmentation procedures. Different graft materials and membranes were used for augmentation. If necessary, the graft was stabilised using a titanium mesh. Implant survival was evaluated analysing explantation rates and Kaplan-Meier survival curves in augmented or non-augmented sites. In additional subgroup analyses, augmentation procedures, graft materials and membranes were compared applying descriptive statistics. RESULTS The observation period varied from the day of implantation up to 20.2 years after implant insertion. The overall implant survival was 95.5% (augmented sites 96.33%; native sites 94.27%). Comparison of Kaplan-Meier survival curves revealed significantly better survival of implants in augmented sites (p = 0.0025). When comparing different augmentation procedures, the best results were found for bone condensing followed by lateral augmentation. Graft materials were used in 58.2%, membranes in 36.6% of all implant sites. The most often used graft materials were a deproteinized bovine bone mineral (53.0%) and autogenous bone particles (32.5%). Both provided the best results and showed a significantly better implant survival compared to no graft material using the Kaplan-Meier method (p = 0.0104 and p < 0.0001). A native collagen membrane was used most often (74.0% of the membrane sites) and provided the best results regarding implant survival in the log-rank test. CONCLUSIONS The retrospective analysis shows that implants inserted in augmented or native bone demonstrate similar implant survival under the conditions of private practice compared to prospective studies. To establish a broad base of support, further well-designed clinical trials are necessary.
Collapse
Affiliation(s)
- Wolfram Knöfler
- Praxis für Mund-, Kiefer-, Gesichtschirurgie und Implantologie, Rietschelstr. 27, 04177, Leipzig, Germany.
| | - Thomas Barth
- Dentale - Zahnärztliches Kompetenzzentrum GmbH, Prager Strasse 4, 04103, Leipzig, Germany
| | - Reinhard Graul
- Gemeinschaftspraxis für Mund-/Kiefer-/Gesichtschirurgie & Zahnheilkunde, Biedermannstr. 9-13, 04277, Leipzig, Germany
| | - Dietmar Krampe
- DENTSPLY Implants, Steinzeugstraße 50, 68229, Mannheim, Germany
| |
Collapse
|
41
|
von Wilmowsky C, Schlegel KA, Baran C, Nkenke E, Neukam FW, Moest T. Peri-implant defect regeneration in the diabetic pig: A preclinical study. J Craniomaxillofac Surg 2016; 44:827-34. [PMID: 27209350 DOI: 10.1016/j.jcms.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The study aims to establish a peri-implant dehiscence-type bone defect in a diabetic animal model of human bone repair and to quantify the influence of diabetes on peri-implant bone regeneration. MATERIAL AND METHODS Experimental diabetes was induced in three domestic pigs by streptozotocin. Three animals served as healthy controls. After 12 months four standardized peri-implant dehiscence bone defects were surgically created in the ramus mandibulae. The animals were sacrificed after 90 days. Samples were histologically analyzed to quantify new bone height (NBH), bone-to-implant-contact (BIC), area of newly formed bone (NFB), bone-density (BD), and bone mineralization (BM) in the prepared defect (-D) and in a local control region (-L). RESULTS After 90 days, diabetic animals revealed a significantly lower BIC (p = 0.037) and BD (p = 0.041) in the defect area (-D). NBH and BM-D differences within the groups were not significant (p > 0.05). Significant more NFB was measured in the healthy control group (p = 0.046). In the region of local bone BIC-L was significant less in the diabetic group (p = 0.028). In the local control region BD-L and BM-L was lower in the diabetic group compared to the healthy control animals (p > 0.05). CONCLUSION Histological evidence indicates impaired peri-implant defect regeneration in a diabetic animal model.
Collapse
Affiliation(s)
- Cornelius von Wilmowsky
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstrasse 11, 91054 Erlangen, Germany
| | - Karl Andreas Schlegel
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstrasse 11, 91054 Erlangen, Germany
| | - Christoph Baran
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstrasse 11, 91054 Erlangen, Germany
| | - Emeka Nkenke
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Friedrich Wilhelm Neukam
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstrasse 11, 91054 Erlangen, Germany
| | - Tobias Moest
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstrasse 11, 91054 Erlangen, Germany.
| |
Collapse
|
42
|
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2016; 8:E115. [PMID: 30979206 PMCID: PMC6431950 DOI: 10.3390/polym8040115] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this review, various commercially available membranes are described. Much attention is paid to the recent development of biodegradable polymers applied in GTR and GBR, and the important issues of biodegradable polymeric membranes, including their classification, latest experimental research and clinical applications, as well as their main challenges are addressed. Herein, natural polymers, synthetic polymers and their blends are all introduced. Pure polymer membranes are biodegradable and biocompatible, but they lack special properties such as antibacterial properties, osteoconductivity, and thus polymer membranes loaded with functional materials such as antibacterial agents and growth factors show many more advantages and have also been introduced in this review. Despite there still being complaints about polymer membranes, such as their low mechanical properties, uncontrollable degradation speed and some other drawbacks, these problems will undoubtedly be conquered and biodegradable polymers will have more applications in GTR and GBR.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lina Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- College of Science, Nanchang Institute of Technology, Nanchang 330029, China.
| | - Ziyu Zhou
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Hanjian Lai
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pan Xu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
43
|
Accelerated degradation of collagen membranes in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Clin Oral Investig 2015; 20:1589-96. [PMID: 26546123 DOI: 10.1007/s00784-015-1635-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Increased collagenolytic activity in diabetes may compromise collagen membrane (CM) survival. Tetracycline (TTC) possesses anti-collagenolytic properties and delays CM degradation. This study evaluated macrophage and capillary infiltration within CMs in diabetic rats. MATERIALS AND METHODS Diabetes was induced in 20 Wistar rats by streptozotocin and 20 served as controls. Biotin-labeled CM discs were immersed in either TTC (50 mg/ml) or PBS. In each animal, 2 discs (TTC and control) were implanted under the parietal periosteum and rats were sacrificed at 2 or 4 weeks post-implantation. The area and thickness of the residual disc collagen were measured following staining with streptavidin, and the number of macrophages and blood vessels within the membranes was determined using specific antibodies (to CD68 and transglutaminase II, respectively). RESULTS Diabetes significantly reduced the area and thickness of the CMs, while TTC increased CM thickness significantly in both groups of rats at 2 and 4 weeks. Diabetes increased the number of macrophages (∼eightfold at 2 weeks and ∼fourfold at 4 weeks), but TTC had no significant effect. Finally, diabetes increased the number of blood vessels within the discs (∼threefold at 2 weeks and ∼twofold at 4 weeks), while TTC had no effect. CONCLUSIONS Diabetes increases degradation of native CMs and the number of blood vessels and macrophages within them. TTC immersion delays CM degradation without an apparent effect on macrophage and blood vessel penetration. CLINICAL RELEVANCE Enhanced CM degradation in diabetic conditions which impair guided regenerative procedure outcome is apparently related to increased blood vessel formation and macrophage infiltration.
Collapse
|
44
|
Tal H, Weinreb M, Shely A, Nemcovsky CE, Moses O. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats. Clin Oral Investig 2015; 20:1237-42. [PMID: 26445855 DOI: 10.1007/s00784-015-1615-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. MATERIALS AND METHODS Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. RESULTS Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. CONCLUSIONS Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. CLINICAL RELEVANCE Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.
Collapse
Affiliation(s)
- Haim Tal
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel.
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Shely
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
45
|
Park JY, Jung IH, Kim YK, Lim HC, Lee JS, Jung UW, Choi SH. Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects. Biomater Res 2015; 19:15. [PMID: 26331084 PMCID: PMC4552459 DOI: 10.1186/s40824-015-0038-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 12/05/2022] Open
Abstract
Background In-vitro and animal studies using EDC cross-linked membranes have shown great resistance to enzymatic digestion as well as low cytotoxicity, and indicated its potential expediency as a barrier membrane for guided bone regeneration (GBR). The purpose of this study was to evaluate the efficacy, biocompatibility and degradation kinetics of a novel 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type I collagen membrane for regeneration of rabbit calvarial defects. EDC cross-linked type I collagen membrane and macroporous biphasic calcium phosphate (MBCP) consisting of 60 % hydroxyapatite and 40 % β-tricalcium phosphate were used in this study. Four circular defects (ø = 8 mm) were created in each calvarium of 12 male white rabbits. The experimental groups randomly allocated to the defects were as follows – (1) sham control, (2) EDC-cross-linked collagen membrane (EDC membrane), (3) bone graft (BG), and (4) bone graft with collagen membrane (B-EDC membrane). Specimens were harvested at 2 weeks (n = 6) and 8 weeks (n = 6) postoperatively for observational histology and histometrical analysis. Result The histologic observation showed close adaptation of the EDC membrane to the defect perimeters along with vascularization of the membrane at 2 weeks. Direct apposition of new bone on to the collagen matrix could be observed displaying adequate tissue integration. Collapsing of the central portion of the membrane could be seen in the EDC membrane group, and both BG and B-EDC membrane groups showed greater total augmented area and new bone area than the EDC membrane group. The membrane was largely unresorbed at 2 weeks; and at 8 weeks the overall shape of the membrane was still maintained suggesting sustained barrier function at 8 weeks. Conclusion Within the limits of this study, it may be concluded that EDC-cross-linked collagen membrane is a safe biomaterial with adequate tissue integration and resorption kinetics to support bone regeneration when used in conjunction with bone filler.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Im-Hee Jung
- Department of Dental hygiene, College of Health Sciences, Eulji University, Seong-nam, Republic of Korea
| | - You-Kyoung Kim
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Hyun-Chang Lim
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jung-Seok Lee
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Ui-Won Jung
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Seong-Ho Choi
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
46
|
Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:298-313. [PMID: 25517923 DOI: 10.1089/ten.teb.2014.0290] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling.
Collapse
Affiliation(s)
- Luis M Delgado
- 1Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Yves Bayon
- 2Covidien - Sofradim Production, Trévoux, France
| | - Abhay Pandit
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
47
|
Chou J, Komuro M, Hao J, Kuroda S, Hattori Y, Ben-Nissan B, Milthorpe B, Otsuka M. Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration. Clin Oral Implants Res 2014; 27:354-60. [PMID: 25363210 DOI: 10.1111/clr.12520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the bone regenerative properties of a heat treated cross-linked GBR membrane with zinc hydroxyapatite powders in the rat calvarial defect model over a 6-week period. MATERIAL AND METHODS In vitro physio-chemical characterization involved X-ray diffraction analysis, surface topology by scanning electron microscopy, and zinc release studies in physiological buffers. Bilateral rat calvarial defects were used to compare the Zn-HAp membranes against the commercially available collagen membranes and the unfilled defect group through radiological and histological evaluation. RESULTS The synthesized Zn-MEM (100 μm thick) showed no zinc ions released in the phosphate buffer solution (PBS) buffer, but zinc was observed under acidic conditions. At 6 weeks, both the micro-CT and histological analyses revealed that the Zn-MEM group yielded significantly greater bone formation with 80 ± 2% of bone filled, as compared with 60 ± 5% in the collagen membrane and 40 ± 2% in the unfilled control group. CONCLUSION This study demonstrated the use of heat treatment as an alternative method to cross-linking the Zn-MEM to be applied as a GBR membrane. Its synthesis and production are relatively simple to fabricate, and the membrane had rough surface features on one side, which might be beneficial for cellular activities. In a rat calvarial defect model, it was shown that new bone formation was accelerated in comparison with the collagen membrane and the unfilled defect groups. These results would suggest that Zn-MEM has the potential for further development in dental applications.
Collapse
Affiliation(s)
- Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, Faculty of Science, P.O.Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Maki Komuro
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Jia Hao
- Oral Implantology and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Oral Implantology and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Hattori
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Besim Ben-Nissan
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bruce Milthorpe
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Makoto Otsuka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| |
Collapse
|
48
|
Bavariya AJ, Andrew Norowski P, Mark Anderson K, Adatrow PC, Garcia-Godoy F, Stein SH, Bumgardner JD. Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin. J Biomed Mater Res B Appl Biomater 2013; 102:1084-92. [PMID: 24323703 DOI: 10.1002/jbm.b.33090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/17/2013] [Accepted: 11/16/2013] [Indexed: 11/08/2022]
Abstract
Chitosan, a natural polysaccharide, has demonstrated potential as a degradable biocompatible guided bone regeneration membrane. This study aimed to evaluate the in vivo biocompatibility and degradation of chitosan nanofiber membranes, with and without genipin crosslinking as compared with a commercial collagen membrane in rat model. Chitosan nanofiber membranes, with and without genipin crosslinking, and collagen membrane (control) were implanted subcutaneously in the backs of 30 rats. The membranes were analyzed histologically at 2, 4, 8, 12, 16, and 20 weeks. Sections were viewed and graded by a blinded pathologist using a 4-point scoring system (0 = absent, 1 = mild, 2 = moderate, and 3 = severe) to determine the tissue reaction to the membranes and to observe membrane degradation. There was no statistically significant difference in histological scores among chitosan and collagen membranes at different time points. Absence or minimal inflammation was observed in 57-74% of the membranes across all groups. Most chitosan membranes persisted for 16-20 weeks, whereas most collagen membranes disappeared by resorption at 12-16 weeks. The general tissue response to chitosan nanofiber membranes with and without genipin crosslinking, was similar to that of control commercial collagen membrane. However, the chitosan membranes exhibited slower degradation rates than collagen membranes.
Collapse
Affiliation(s)
- Ankit J Bavariya
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, Tennessee
| | | | | | | | | | | | | |
Collapse
|
49
|
Bozkurt A, Apel C, Sellhaus B, van Neerven S, Wessing B, Hilgers RD, Pallua N. Differences in degradation behavior of two non-cross-linked collagen barrier membranes: anin vitroandin vivostudy. Clin Oral Implants Res 2013; 25:1403-11. [DOI: 10.1111/clr.12284] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmet Bozkurt
- Department of Plastic Surgery, Reconstructive and Hand Surgery; Medical Faculty; Burn Center; RWTH Aachen University; Aachen Germany
| | - Christian Apel
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry; RWTH Aachen University; Aachen Germany
| | - Bernd Sellhaus
- Institute of Neuropathology; RWTH Aachen University; Aachen Germany
| | - Sabien van Neerven
- Department of Plastic Surgery, Reconstructive and Hand Surgery; Medical Faculty; Burn Center; RWTH Aachen University; Aachen Germany
| | | | | | - Norbert Pallua
- Department of Plastic Surgery, Reconstructive and Hand Surgery; Medical Faculty; Burn Center; RWTH Aachen University; Aachen Germany
| |
Collapse
|
50
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|