1
|
Adeoye AO, Hadie SNH, Munajat I, Mohd Zaharri NI, Zawawi MSF, Tuan Sharif SE, Sulaiman AR. Periosteum: Functional Anatomy and Clinical Application. MALAYSIAN JOURNAL OF MEDICINE AND HEALTH SCIENCES 2023; 19:362-374. [DOI: 10.47836/mjmhs.19.3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Periosteum is a connective tissue that envelopes the outer surface of bones and is tightly bound to the underlying bone by Sharpey’s fibers. It is composed of two layers, the outer fibrous layer and the inner cambium layer. The periosteum is densely vascularised and contains an osteoprogenitor niche that serves as a repository for bone-forming cells, which makes it an essential bone-regenerating tissue and has immensely contributed to fracture healing. Due to the high vascularity of inner cambium layer of the periosteum, periosteal transplantation has been widely used in the management of bone defects and fracture by orthopedic surgeons. Nevertheless, the use of periosteal graft in the management of bone defect is limited due to its contracted nature after being harvested. This review summarizes the current state of knowledge about the structure of periosteum, and how periosteal transplantation have been used in clinical practices, with special reference on its expansion.
Collapse
|
2
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Yang Y, Rao J, Liu H, Dong Z, Zhang Z, Bei HP, Wen C, Zhao X. Biomimicking design of artificial periosteum for promoting bone healing. J Orthop Translat 2022; 36:18-32. [PMID: 35891926 PMCID: PMC9283802 DOI: 10.1016/j.jot.2022.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Periosteum is a vascularized tissue membrane covering the bone surface and plays a decisive role in bone reconstruction process after fracture. Various artificial periosteum has been developed to assist the allografts or bionic bone scaffolds in accelerating bone healing. Recently, the biomimicking design of artificial periosteum has attracted increasing attention due to the recapitulation of the natural extracellular microenvironment of the periosteum and has presented unique capacity to modulate the cell fates and ultimately enhance the bone formation and improve neovascularization. Methods A systematic literature search is performed and relevant findings in biomimicking design of artificial periosteum have been reviewed and cited. Results We give a systematical overview of current development of biomimicking design of artificial periosteum. We first summarize the universal strategies for designing biomimicking artificial periosteum including biochemical biomimicry and biophysical biomimicry aspects. We then discuss three types of novel versatile biomimicking artificial periosteum including physical-chemical combined artificial periosteum, heterogeneous structured biomimicking periosteum, and healing phase-targeting biomimicking periosteum. Finally, we comment on the potential implications and prospects in the future design of biomimicking artificial periosteum. Conclusion This review summarizes the preparation strategies of biomimicking artificial periosteum in recent years with a discussion of material selection, animal model adoption, biophysical and biochemical cues to regulate the cell fates as well as three types of latest developed versatile biomimicking artificial periosteum. In future, integration of innervation, osteochondral regeneration, and osteoimmunomodulation, should be taken into consideration when fabricating multifunctional artificial periosteum. The Translational Potential of this Article: This study provides a holistic view on the design strategy and the therapeutic potential of biomimicking artificial periosteum to promote bone healing. It is hoped to open a new avenue of artificial periosteum design with biomimicking considerations and reposition of the current strategy for accelerated bone healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhen Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
4
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
5
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
6
|
Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021; 21:452. [PMID: 33747187 PMCID: PMC7967868 DOI: 10.3892/etm.2021.9882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of cell-based material is a promising approach for the treatment of critical bone defects. However, it is still limited by the lack of suitable scaffold material or abundant seeding cell sources. The present study aimed to establish a novel composite of an adipose-derived stem cell (ADSC) sheet and a synthetic porous β-tricalcium phosphate/collagen-I fiber (β-TCP/COL-I) scaffold to enhance osteogenic activity. ADSCs were isolated from 3-week-old female Sprague Dawley rats and the ADSC sheets were prepared in an osteoinductive medium. The study groups included the ADSC sheets/scaffold, scattered ADSCs/scaffold, ADSC sheet alone and scaffold alone. Scanning electron microscopy and energy-dispersive spectrometry were used to observe cell-scaffold interactions and analyze the relative calcium content on the composites' surface. Alizarin red S staining was used to examine the calcium deposition. ELISA and reverse transcription-quantitative PCR were used to detect the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The results revealed that ADSCs were able to tightly adhere to the β-TCP/COL-I scaffold with no cytotoxicity. The calcifying nodules reaction was positive on ADSC sheets and gradually increased after osteogenic induction. In addition, the β-TCP/COL-I scaffold combined with ADSC sheets was able to significantly enhance the expression levels of ALP, OCN and OPN and increase the superficial relative calcium content compared to scattered ADSCs/scaffold or the ADSC sheet alone (P<0.05). The results indicated that ADSCs possess a strong osteogenic potential, particularly in the cell-sheet form and when compounded with the β-TCP/COL-I scaffold, compared to scattered ADSCs with a β-TCP/COL-I scaffold or an ADSC sheet alone. This novel composite may be a promising candidate for bone engineering.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaojia Song
- Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ning Zhang
- Dental Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liangping Zhang
- Department of Plastic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei Xiao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
7
|
Aghali A, Arman HE. Photoencapsulated-mesenchymal stromal cells in biodegradable thiol-acrylate hydrogels enhance regeneration of craniofacial bone tissue defects. Regen Med 2020; 15:2115-2127. [PMID: 33211632 DOI: 10.2217/rme-2020-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Aim: This study investigated biodegradable thiol-acrylate hydrogels as stem cell carriers to facilitate cranial bone regeneration. Materials & methods: Two formulations of thiol-acrylate hydrogels (5 and 15 wt% Poly[ethylene glycol]-diacrylate [PEGDA] hydrogels) were used as stem cell carriers. Bone marrow mesenchymal stromal cells and dental pulp mesenchymal stromal cells were photoencapsulated and cultured in basal or osteogenic medium 3 days before the surgery. Using New Zealand White Rabbits, four defects (5 mm diameter and 2 mm thickness) were created and hydrogel scaffolds were implanted in each rabbit cranium for 6 weeks. Results & Conclusion: AlamarBlue assay showed increasing metabolic activity levels in 5 wt% PEGDA hydrogels than 15 wt% PEGDA hydrogels. Photoencapsulated-mesenchymal stromal cells in 15 wt% PEGDA hydrogels demonstrated significantly increasing alkaline phosphatase activity levels on day 7 compared with days 1 and 3. Histological diagnosis showed 5 wt% PEGDA hydrogels resulted in lower averaged residual gel areas than 15 wt% PEGDA hydrogel specimens and control groups 6 weeks postimplantation.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| | - Huseyin E Arman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Local Application of Semaphorin 3A Combined with Adipose-Derived Stem Cell Sheet and Anorganic Bovine Bone Granules Enhances Bone Regeneration in Type 2 Diabetes Mellitus Rats. Stem Cells Int 2019; 2019:2506463. [PMID: 31467560 PMCID: PMC6701320 DOI: 10.1155/2019/2506463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Bone tissue regeneration is considered to be the optimal solution for bone loss. However, diabetic patients have a greater risk of poor bone healing or bone grafting failure than nondiabetics. The purpose of this study was to investigate the influence of the complexes of an adipose-derived stem cell sheet (ASC sheet) and Bio-Oss® bone granules on bone healing in type 2 diabetes mellitus (T2DM) rats with the addition of semaphorin 3A (Sema3A). The rat ASC sheets showed stronger osteogenic ability than ASCs in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis-related genes at mRNA level. An ASC sheet combined with Bio-Oss® bone granules promoted bone formation in T2DM rats as indicated by microcomputed tomography (micro-CT) and histological analysis. In addition, Sema3A promoted the osteogenic differentiation of ASC sheets in vitro and local injection of Sema3A promoted T2DM rats' calvarial bone regeneration based on ASC sheet and Bio-Oss® bone granule complex treatment. In conclusion, the local injection of Sema3A and the complexes of ASC sheet and Bio-Oss® bone granules could promote osseous healing and are potentially useful to improve bone healing for T2DM patients.
Collapse
|
9
|
Zhang H, Zhou Y, Yu N, Ma H, Wang K, Liu J, Zhang W, Cai Z, He Y. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater 2019; 91:82-98. [PMID: 30986527 DOI: 10.1016/j.actbio.2019.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
In this study, the potential of vascularized tissue-engineered bone constructed by a double cell-sheet (DCS) complex and polylysine (PLL)-modified coralline hydroxyapatite (CHA) to repair large radius bone defects was investigated in rabbits. Firstly, the DCS complex was obtained after rabbit adipose-derived mesenchymal stem cell (ADSC) culture was induced. Secondly, PLL-CHA composite scaffolds with different concentrations of PLL were prepared by the soaking and vacuum freeze-drying methods, and then the scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, compression performance testing and cytocompatibility evaluation. Thirdly, DCS-PLL-CHA vascularized tissue-engineered bone was constructed in vitro and transplanted into a large radius bone defect model in rabbits. Finally, the potential of the DCS-PLL-CHA vascularized tissue-engineered bone to repair the large bone defect was evaluated through general observations, laser speckle imaging, scanning electron microscopy (SEM), histological staining, radiography observations and RT-PCR. The in vitro experimental results showed that the DCS complex provided a very large cell reserve, which carried a large number of osteoblasts and vascular endothelial cells that were induced in vitro. When the DCS complex was combined with the PLL-CHA scaffold in vitro, the effects of PLL on cell adhesion, proliferation and differentiation led to a situation similar to the chemotaxis of the body, making the combined complex more conducive to graft cellularization than the DCS complex alone. The in vivo experiments showed blood supply on the surface of the callus in each group, and the amount of blood perfusion on the surface of the defect area was almost equal among the groups. At 12 weeks, the surface of the DCS-PLL-CHA group was completely wrapped by bone tissue and osteoids, the cortical bone image was basically continuous, and the medullary cavity was mainly perforated. A large amount of well-arranged lamellar bone was formed, a small amount of undegraded CHA exhibited a linear pattern, and a large amount of bone filling could be seen in the pores. At 12 weeks, the expression levels of BGLAP, SPP1 and VEGF were similar in each group, but PECAM1 expression was higher in the DCS-PLL-CHA group than in the autogenous bone group and CHA group. The results showed that PLL could effectively promote the adhesion, proliferation and differentiation of ADSCs and that DCS-PLL-CHA vascularized tissue-engineered bone has potential for bone regeneration and bone reconstruction and can be used to repair large bone defects. STATEMENT OF SIGNIFICANCE: 1. PLL-CHA composite scaffolds with different concentrations of PLL were prepared by the soaking and vacuum freeze-drying methods. 2. The vascularized tissue-engineered bone was constructed by the double cell sheet (DCS) complex combined with PLL-CHA scaffolds. 3. The DCS-PLL-CHA vascularized tissue-engineered bone has potential for bone regeneration and bone reconstruction and can be used to repair large bone defects.
Collapse
Affiliation(s)
- Hualin Zhang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Yueli Zhou
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Na Yu
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; Yinchuan Stomatology Hospital, Yinchuan 750004, China
| | - Hairong Ma
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Kairong Wang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wen Zhang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuoyan Cai
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Yalan He
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
10
|
Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T, Yu C, Jiang X. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019; 11:17. [PMID: 31110170 PMCID: PMC6527566 DOI: 10.1038/s41368-019-0050-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumour resection, infection and congenital deformities, together with articular cartilage defects and cartilage-subchondral bone complex defects caused by trauma and degenerative diseases, remain great challenges for clinicians. Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed. The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell-cell connections and extracellular matrix and its scaffold-free nature. This review will first introduce several widely used cell sheet preparation systems, including traditional approaches and recent improvements, as well as their advantages and shortcomings. Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone-cartilage complex defects will be reviewed. The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jie Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
11
|
Zhang H, Zhou Y, Zhang W, Wang K, Xu L, Ma H, Deng Y. Construction of vascularized tissue-engineered bone with a double-cell sheet complex. Acta Biomater 2018; 77:212-227. [PMID: 30017924 DOI: 10.1016/j.actbio.2018.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
A double-cell sheet (DCS) complex composed of an osteogenic cell sheet and a vascular endothelial cell sheet with osteogenesis and blood vessel formation potential was developed in this study. The osteogenic and vascular endothelial cell sheets were obtained after induced culture of rabbit adipose-derived mesenchymal stem cells. The osteogenic cell sheet showed positive alizarin red, von Kossa, and alkaline phosphatase (ALP) staining. The vascular endothelial cell sheet exhibited visible W-P bodies in the cells, the expression of CD31 was positive, and a vascular mesh structure was spontaneously formed in a Matrigel matrix. The subcutaneous transplantation results for four groups of DCS and DCS-coral hydroxyapatite (CHA) complexes, and the CHA scaffold group in nude mice revealed mineralization of collagen fibers and vascularization in each group at 12 weeks, but the degrees of mineralization and vascularization showed differences among groups. The pattern involving endothelial cell sheets covered with osteogenic cell sheets, group B, exhibited the best results. In addition, the degree of mineralization of the DCS-CHA complexes was more mature than those of the same group of DCS complexes and the CHA scaffold, and the capillary number was greater than those of the same group of DCS complexes and the CHA scaffold. Therefore, the CHA scaffold strengthened the osteogenesis and blood vessel formation potential of the DCS complexes. Meanwhile, the DCS complexes also promoted the osteogenesis and blood vessel formation potential of the CHA scaffold. This study will provide a basis for building vascularized tissue-engineered bone for bone defect therapy. STATEMENT OF SIGNIFICANCE This study developed a double-cell sheet (DCS) complex composed of an osteogenic cell sheet and a vascular endothelial cell sheet with osteogenesis and blood vessel formation potential. Osteogenic and vascular endothelial cell sheets were obtained after induced culture of rabbit adipose-derived mesenchymal stem cells. The DCS complex and DCS-CHA complex exhibited osteogenic and blood vessel formation potential in vivo. CHA enhanced the osteogenesis and blood vessel formation abilities of the DCS complexes in vivo. Meanwhile, the DCS complexes also promoted the osteogenesis and blood vessel formation potential of the CHA scaffold. Group B of the DCS complexes and DCS-CHA complexes exhibited the best osteogenesis and blood vessel formation abilities.
Collapse
|
12
|
Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 2018; 106:2552-2562. [PMID: 29689623 DOI: 10.1002/jbm.a.36433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Depending on the duration of healing process, 5-10% of bone fractures may result in either nonunion or delayed union. Because nonunions remain a clinically important problem, there is interest in the utilization of tissue engineering strategies to augment bone fracture repair. Three basic biologic elements that are required for bone regeneration include cells, extracellular matrix scaffolds and biological adjuvants for growth, differentiation and angiogenesis. Mesenchymal stem cells (MSCs) are capable to differentiate into various types of the cells including chondrocytes, myoblasts, osteoblasts, and adipocytes. Due to their potential for multilineage differentiation, MSCs are considered important contributors in bone tissue engineering research. In this review we highlight the progress in the application of biomaterials, stem cells and tissue engineering in promoting nonunion bone fracture healing. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2551-2561, 2018.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Behravan
- Exceptionally Talented Students Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Lin J, Shao J, Juan L, Yu W, Song X, Liu P, Weng W, Xu J, Mehl C. Enhancing bone regeneration by combining mesenchymal stem cell sheets with β-TCP/COL-I scaffolds. J Biomed Mater Res B Appl Biomater 2017; 106:2037-2045. [PMID: 29098765 DOI: 10.1002/jbm.b.34003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jun Lin
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Jiaqi Shao
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Li Juan
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Wenke Yu
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Xiaojia Song
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Pengruofeng Liu
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Wenjian Weng
- School of Materials Science and Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jinghong Xu
- Department of Plastic Surgery; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Christian Mehl
- Department of Prosthodontics, Propaedeutics and Dental Materials; Christian-Albrechts University at Kiel; 2415 Kiel Germany
| |
Collapse
|
14
|
Wang Q, Xu J, Jin H, Zheng W, Zhang X, Huang Y, Qian Z. Artificial periosteum in bone defect repair—A review. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Human Mesenchymal Stromal Cell Sheet Enhances Allograft Repair in a Mouse Model. Sci Rep 2017; 7:7982. [PMID: 28801687 PMCID: PMC5554246 DOI: 10.1038/s41598-017-08804-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
To determine whether cell sheets generated with long-term passaged (P10) aging human mesenchymal stromal cells (MSCs) could be used for bone tissue regeneration as tissue engineered periosteum in a femoral allograft mouse model similar to fresh passaged (P3) young MSCs. At 3 weeks after transplantation of MSC sheets, results showed more bony callus formed between allograft and host bone ends in both young P3 MSC and aged P10 MSC sheet-wrapped groups when compared to allograft alone. At 6 weeks, while both MSC sheet-wrapped allografts showed more bony callus formation when compared to allograft alone groups, the bony callus size in aged P10 MSC sheet groups was significantly less than young P3 MSC sheet groups. Biomechanical testing confirmed that P3 MSC sheet-grafted femurs had the highest biomechanical strength in the three groups. Histology sections showed that the area of the chondriod callus in the aged P10 MSC sheet groups was significantly larger than in P3 MSC sheet groups. Finally, a significant increase of chondro-osteoclast activity was observed in the P3 MSC sheet-grafted femur. Our data demonstrates that extensive long-term culture-induced MSC aging impaired their osteogenic ability and subsequent bony callus formation, and could be used to induce cartilaginous callus formation.
Collapse
|
16
|
Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Res Ther 2017; 8:134. [PMID: 28583167 PMCID: PMC5460346 DOI: 10.1186/s13287-017-0592-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
Background There is a critical need for the management of large bone defects. The purpose of this study was to engineer a biomimetic periosteum and to combine this with a macroporous β-tricalcium phosphate (β-TCP) scaffold for bone tissue regeneration. Methods Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were harvested and cultured in different culture media to form undifferentiated rBMSC sheets (undifferentiated medium (UM)) and osteogenic cell sheets (osteogenic medium (OM)). Simultaneously, rBMSCs were differentiated to induced endothelial-like cells (iECs), and the iECs were further cultured on a UM to form a vascularized cell sheet. At the same time, flow cytometry was used to detect the conversion rates of rBMSCs to iECs. The pre-vascularized cell sheet (iECs/UM) and the osteogenic cell sheet (OM) were stacked together to form a biomimetic periosteum with two distinct layers, which mimicked the fibrous layer and cambium layer of native periosteum. The biomimetic periostea were wrapped onto porous β-TCP scaffolds (BP/β-TCP) and implanted in the calvarial bone defects of rats. As controls, autologous periostea with β-TCP (AP/β-TCP) and β-TCP alone were implanted in the calvarial defects of rats, with a no implantation group as another control. At 2, 4, and 8 weeks post-surgery, implants were retrieved and X-ray, microcomputed tomography (micro-CT), histology, and immunohistochemistry staining analyses were performed. Results Flow cytometry results showed that rBMSCs were partially differentiated into iECs with a 35.1% conversion rate in terms of CD31. There were still 20.97% rBMSCs expressing CD90. Scanning electron microscopy (SEM) results indicated that cells from the wrapped cell sheet on the β-TCP scaffold apparently migrated into the pores of the β-TCP scaffold. The histology and immunohistochemistry staining results from in vivo implantation indicated that the BP/β-TCP and AP/β-TCP groups promoted the formation of blood vessels and new bone tissues in the bone defects more than the other two control groups. In addition, micro-CT showed that more new bone tissue formed in the BP/β-TCP and AP/β-TCP groups than the other groups. Conclusions Inducing rBMSCs to iECs could be a good strategy to obtain an endothelial cell source for prevascularization. Our findings indicate that the biomimetic periosteum with porous β-TCP scaffold has a similar ability to promote osteogenesis and angiogenesis in vivo compared to the autologous periosteum. This function could result from the double layers of biomimetic periosteum. The prevascularized cell sheet served a mimetic fibrous layer and the osteogenic cell sheet served a cambium layer of native periosteum. The biomimetic periosteum with a porous ceramic scaffold provides a new promising method for bone healing.
Collapse
|
17
|
Ueyama Y, Yagyuu T, Maeda M, Imada M, Akahane M, Kawate K, Tanaka Y, Kirita T. Maxillofacial bone regeneration with osteogenic matrix cell sheets: An experimental study in rats. Arch Oral Biol 2016; 72:138-145. [DOI: 10.1016/j.archoralbio.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
|
18
|
Prefabrication of axially vascularized bone by combining β-tricalciumphosphate, arteriovenous loop, and cell sheet technique. Tissue Eng Regen Med 2016; 13:579-584. [PMID: 30603439 DOI: 10.1007/s13770-016-9095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 10/20/2022] Open
Abstract
The repair of bone defects poses a great challenge for reconstructive surgeons. Although the development of tißsue engineering has exhibited promise in replacing damaged bone, the fabrication of large constructs with functional blood veßsels remains an obstacle. From the orthopedic surgeon's point of view, the generation of axially vascularized bone, which can anastomose with the recipient vessel, might be a solution to this medical problem. In this study, we aimed to prefabricate an axially vascularized bone by combining a ß-TCP scaffold, arteriovenous loop (AVL), and cell sheet in a bioreactor in vivo. Twelve rabbits were randomly allocated into two groups: the experimental group (presence of AVL) and the control group (absence of AVL). The constructs were explanted at 8 weeks postoperatively. The histomorphometric results showed 42.8±5.9% of the bone area in the AVL group and 26.6±3.5% in the control group. Similarly, vessel analysis revealed the average vessel density in the AVL group (12.5±3.3) was significantly more than that in the control group (6.1±1.5, p<0.05). Our research indicated that the combination of a ß-TCP scaffold, AVL and cell sheet might engineer vascularized bone. This prefabrication strategy might facilitate clinical translation of bone tissue engineering in reconstructing large bone defects.
Collapse
|
19
|
Costello BJ, Kumta P, Sfeir CS. Regenerative Technologies for Craniomaxillofacial Surgery. J Oral Maxillofac Surg 2015; 73:S116-25. [DOI: 10.1016/j.joms.2015.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 10/22/2022]
|
20
|
Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 2015; 62:128-37. [PMID: 26048479 DOI: 10.1016/j.biomaterials.2015.05.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 01/18/2023]
Abstract
Augmentation of regenerative osteogenesis represents a premier clinical need, as hundreds of thousands of patients are left with insufficient healing of bony defects related to a host of insults ranging from congenital abnormalities to traumatic injury to surgically-induced deficits. A synthetic material that closely mimics the composition and structure of the human osteogenic niche represents great potential to successfully address this high demand. In this study, a magnesium-doped hydroxyapatite/type I collagen scaffold was fabricated through a biologically-inspired mineralization process and designed to mimic human trabecular bone. The composition of the scaffold was fully characterized by XRD, FTIR, ICP and TGA, and compared to human bone. Also, the scaffold microstructure was evaluated by SEM, while its nano-structure and nano-mechanical properties were evaluated by AFM. Human bone marrow-derived mesenchymal stem cells were used to test the in vitro capability of the scaffold to promote osteogenic differentiation. The cell/scaffold constructs were cultured up to 7 days and the adhesion, organization and proliferation of the cells were evaluated. The ability of the scaffold to induce osteogenic differentiation of the cells was assessed over 3 weeks and the correlate gene expression for classic genes of osteogenesis was assessed. Finally, when tested in an ectopic model in rabbit, the scaffold produced a large volume of trabecular bone in only two weeks, that subsequently underwent maturation over time as expected, with increased mature cortical bone formation, supporting its ability to promote bone regeneration in clinically-relevant scenarios. Altogether, these results confirm a high level of structural mimicry by the scaffold to the composition and structure of human osteogenic niche that translated to faster and more efficient osteoinduction in vivo--features that suggest such a biomaterial may have great utility in future clinical applications where bone regeneration is required.
Collapse
|
21
|
Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials 2015; 52:426-40. [PMID: 25818449 DOI: 10.1016/j.biomaterials.2015.02.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/01/2023]
Abstract
Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogenous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration.
Collapse
|
22
|
El Backly RM, Chiapale D, Muraglia A, Tromba G, Ottonello C, Santolini F, Cancedda R, Mastrogiacomo M. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study. Front Bioeng Biotechnol 2015; 2:80. [PMID: 25610828 PMCID: PMC4285175 DOI: 10.3389/fbioe.2014.00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX®) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX®) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.
Collapse
Affiliation(s)
- Rania M El Backly
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy ; Faculty of Dentistry, Alexandria University , Alexandria , Egypt
| | - Danilo Chiapale
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | | | | | | | - Federico Santolini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Ranieri Cancedda
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Maddalena Mastrogiacomo
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| |
Collapse
|
23
|
Ren L, Kang Y, Browne C, Bishop J, Yang Y. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone 2014; 64:173-182. [PMID: 24747351 PMCID: PMC4180017 DOI: 10.1016/j.bone.2014.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/19/2023]
Abstract
The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated that the undifferentiated hMSC cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSC sheet. After subcutaneous implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection.
Collapse
Affiliation(s)
- Liling Ren
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunqing Kang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Christopher Browne
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Julius Bishop
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Yunzhi Yang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- Department of Materials Science and Engineering, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- Corresponding author: Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive Edwards R155 Stanford, CA 94305 Tel: 650-723-0772 Fax: 650-724-5401
| |
Collapse
|
24
|
Kang Y, Ren L, Yang Y. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9622-9633. [PMID: 24858072 PMCID: PMC4075998 DOI: 10.1021/am502056q] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/23/2014] [Indexed: 05/29/2023]
Abstract
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
| | - Liling Ren
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- School
of Stomatology, Lanzhou University 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunzhi Yang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- Department
of Materials Science and Engineering, Stanford
University, 300 Pasteur
Drive, Stanford, California 94305, United States
| |
Collapse
|
25
|
Syed-Picard FN, Shah GA, Costello BJ, Sfeir C. Regeneration of Periosteum by Human Bone Marrow Stromal Cell Sheets. J Oral Maxillofac Surg 2014; 72:1078-83. [DOI: 10.1016/j.joms.2014.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 11/29/2022]
|
26
|
Akiyama M. Identification of UACA, EXOSC9, and ΤΜX2 in bovine periosteal cells by mass spectrometry and immunohistochemistry. Anal Bioanal Chem 2014; 406:5805-13. [PMID: 24696107 DOI: 10.1007/s00216-014-7673-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/07/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Inspection of patient-derived cells used in transplantation is non-invasive. Therefore, proteomics analysis using supernatants of cells cultured before transplantation is informative. In order to investigate the cell niche of bovine periosteal cells, supernatants of these cultured cells were subjected to 2-D electrophoresis followed by mass spectrometry, which identified type 1 collagen and the C-terminus of type 3 collagen. Only the C-terminal peptide from type 3 collagen was found in supernatants. It is known that type 3 collagen may be expressed intra- or extra-cellularly. Paraffin sections of the cultured cells were next examined by immunohistochemistry, which revealed that type 3 collagen regions besides the C-terminal peptide were present around the bovine periosteal cells but were not found in supernatants. Full-length type 3 collagen was closely associated with the cells, and only the C-terminal peptide was detectable in culture supernatants. Mass spectrometry analysis of partial peptide data combined with immunohistochemistry also indicated that uveal autoantigen with coiled coil domains and ankyrin repeats (UACA), exosome complex component RRP45 (EXOSC9), and thioredoxin-related transmembrane protein 2 (TMX2) were expressed in bovine periosteal cells. Results of this study indicate that analysis of culture supernatants before cell transplantation can provide useful biomarkers indicating the niche of cells used for transplantation.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Biomaterials, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka, 573-1121, Japan,
| |
Collapse
|
27
|
Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Br J Oral Maxillofac Surg 2013; 52:134-9. [PMID: 24210781 DOI: 10.1016/j.bjoms.2013.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/11/2013] [Indexed: 01/27/2023]
Abstract
The reconstruction of large bony defects remains a clinical challenge, and angiogenesis and neovascularisation are being given more attention in bone tissue engineering. In this study we cocultured peripheral blood CD34+ cells (PB-CD34+ cells), an endothelial progenitor cell/haematopoietic stem cell-enriched population, with bone marrow-derived mesenchymal stem cells (MSC) to investigate their potential for bony regeneration. Cocultured cells showed better osteogenic differentiation than MSC alone in vitro. The cocultured cells and MSC sheets were also composited with hydroxyapatite and implanted in calvarial critical-size defects in rabbits. The rabbits were killed before microcomputed tomographic (MicroCT) and histological analysis. The results showed that cocultured cell composites had promoted bony regeneration more efficiently by 8 weeks after implantation. Our results indicate that the coculture of PB-CD34+ cells and MSC increases bony regeneration in calvarial critical-size defects in rabbits, and provide a new promising therapeutic strategy to aid skeletal healing.
Collapse
|
28
|
The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 2013; 34:8887-98. [PMID: 23958029 DOI: 10.1016/j.biomaterials.2013.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 12/18/2022]
Abstract
Allografts remain the clinical "gold standard" for treatment of critical sized bone defects despite minimal engraftment and ∼60% long-term failure rates. Therefore, the development of strategies to improve allograft healing and integration are necessary. The periosteum and its associated stem cell population, which are lacking in allografts, coordinate autograft healing. Herein we utilized hydrolytically degradable hydrogels to transplant and localize mesenchymal stem cells (MSCs) to allograft surfaces, creating a periosteum mimetic, termed a 'tissue engineered periosteum'. Our results demonstrated that this tissue engineering approach resulted in increased graft vascularization (∼2.4-fold), endochondral bone formation (∼2.8-fold), and biomechanical strength (1.8-fold), as compared to untreated allografts, over 16 weeks of healing. Despite this enhancement in healing, the process of endochondral ossification was delayed compared to autografts, requiring further modifications for this approach to be clinically acceptable. However, this bottom-up biomaterials approach, the engineered periosteum, can be augmented with alternative cell types, matrix cues, growth factors, and/or other small molecule drugs to expedite the process of ossification.
Collapse
|
29
|
Evaluation of the presence of VEGF, BMP2 and CBFA1 proteins in autogenous bone graft: histometric and immunohistochemical analysis. J Craniomaxillofac Surg 2013; 42:333-9. [PMID: 23932545 DOI: 10.1016/j.jcms.2013.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/20/2022] Open
Abstract
AIMS The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. MATERIALS AND METHODS 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. RESULTS Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. CONCLUSION It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process.
Collapse
|
30
|
Evans SF, Chang H, Knothe Tate ML. Elucidating multiscale periosteal mechanobiology: a key to unlocking the smart properties and regenerative capacity of the periosteum? TISSUE ENGINEERING PART B-REVIEWS 2013. [PMID: 23189933 DOI: 10.1089/ten.teb.2012.0216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure-function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials.
Collapse
Affiliation(s)
- Sarah F Evans
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
31
|
Evans SF, Chang H, Knothe Tate ML. Elucidating multiscale periosteal mechanobiology: a key to unlocking the smart properties and regenerative capacity of the periosteum? TISSUE ENGINEERING PART B-REVIEWS 2013. [PMID: 23189933 DOI: 10.1089/ten] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure-function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials.
Collapse
Affiliation(s)
- Sarah F Evans
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
32
|
El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, Canciani B, Chiapale D, Santolini F, Cancedda R, Mastrogiacomo M. A Platelet-Rich Plasma-Based Membrane as a Periosteal Substitute with Enhanced Osteogenic and Angiogenic Properties: A New Concept for Bone Repair. Tissue Eng Part A 2013; 19:152-65. [DOI: 10.1089/ten.tea.2012.0357] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rania M. El Backly
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
- Faculty of dentistry, Alexandria University, Alexandria, Egypt
| | - Samer H. Zaky
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | | | - Laura Tonachini
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Francesco Brun
- Department of Industrial Engineering and Information Technology, University of Trieste, Trieste, Italy
- Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Barbara Canciani
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Danilo Chiapale
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Federico Santolini
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine, University of Genova, Genova, Italy
- A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| |
Collapse
|
33
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med 2012. [PMID: 23197852 DOI: 10.5966/sctm.2011-0056] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elucidation of the periosteum and its regenerative potential has become a hot topic in orthopedics. Yet few review articles address the unique features of periosteum-derived cells, particularly in light of translational therapies and engineering solutions inspired by the periosteum's remarkable regenerative capacity. This review strives to define periosteum-derived cells in light of cumulative research in the field; in addition, it addresses clinical translation of current insights, hurdles to advancement, and open questions in the field. First, we examine the periosteal niche and its inhabitant cells and the key characteristics of these cells in the context of mesenchymal stem cells and their relevance for clinical translation. We compare periosteum-derived cells with those derived from the marrow niche in in vivo studies, addressing commonalities as well as features unique to periosteum cells that make them potentially ideal candidates for clinical application. Thereafter, we review the differentiation and tissue-building properties of periosteum cells in vitro, evaluating their efficacy in comparison with marrow-derived cells. Finally, we address a new concept of banking periosteum and periosteum-derived cells as a novel alternative to currently available autogenic umbilical blood and perinatal tissue sources of stem cells for today's population of aging adults who were "born too early" to bank their own perinatal tissues. Elucidating similarities and differences inherent to multipotent cells from distinct tissue niches and their differentiation and tissue regeneration capacities will facilitate the use of such cells and their translation to regenerative medicine.
Collapse
Affiliation(s)
- Hana Chang
- Departments of Biomedical Engineering and Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
35
|
Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, Soo C, James AW. Brief review of models of ectopic bone formation. Stem Cells Dev 2012; 21:655-67. [PMID: 22085228 DOI: 10.1089/scd.2011.0517] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ectopic bone formation is a unique biologic entity--distinct from other areas of skeletal biology. Animal research models of ectopic bone formation most often employ rodent models and have unique advantages over orthotopic (bone) environments, including a relative lack of bone cytokine stimulation and cell-to-cell interaction with endogenous (host) bone-forming cells. This allows for relatively controlled in vivo experimental bone formation. A wide variety of ectopic locations have been used for experimentation, including subcutaneous, intramuscular, and kidney capsule transplantation. The method, benefits and detractions of each method are summarized in the following review. Briefly, subcutaneous implantation is the simplest method. However, the most pertinent concern is the relative paucity of bone formation in comparison to other models. Intramuscular implantation is also widely used and relatively simple, however intramuscular implants are exposed to skeletal muscle satellite progenitor cells. Thus, distinguishing host from donor osteogenesis becomes challenging without cell-tracking studies. The kidney capsule (perirenal or renal capsule) method is less widely used and more technically challenging. It allows for supraphysiologic blood and nutrient resource, promoting robust bone growth. In summary, ectopic bone models are extremely useful in the evaluation of bone-forming stem cells, new osteoinductive biomaterials, and growth factors; an appropriate choice of model, however, will greatly increase experimental success.
Collapse
Affiliation(s)
- Michelle A Scott
- Orthodontics and Dentofacial Orthopedics, Roseman University of Health Sciences, Henderson, Nevada, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li D, Wang W, Guo R, Qi Y, Gou Z, Gao C. Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4914-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|