1
|
Ivanovski S, Lee RSB, Fernandez‐Medina T, Pinto N, Andrade C, Quirynen M. Impact of autologous platelet concentrates on the osseointegration of dental implants. Periodontol 2000 2025; 97:271-286. [PMID: 38647020 PMCID: PMC11808427 DOI: 10.1111/prd.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/25/2024]
Abstract
Osseointegration is defined as the direct deposition of bone onto biomaterial devices, most commonly composed from titanium, for the purpose of anchoring dental prostheses. The use of autologous platelet concentrates (APC) has the potential to enhance this process by modifying the interface between the host and the surface of the titanium implant. The rationale is to modify the implant surface and implant-bone interface via "biomimicry," a process whereby the deposition of the host's own proteins and extracellular matrix enhances the biocompatibility of the implant and hence accelerates the osteogenic healing process. This review of the available evidence reporting on the effect of APC on osseointegration explores in vitro laboratory studies of the interaction of APC with different implant surfaces, as well as the in vivo and clinical effects of APC on osseointegration in animal and human studies. The inherent variability associated with using autologous products, namely the unique composition of each individual's blood plasma, as well as the great variety in APC protocols, combination of biomaterials, and clinical/therapeutic application, makes it is difficult to make any firm conclusions about the in vivo and clinical effects of APC on osseointegration. The available evidence suggests that the clinical benefits of adding PRP and the liquid form of L-PRF (liquid fibrinogen) to any implant surface appear to be limited. The application of L-PRF membranes in the osteotomy site, however, may produce positive clinical effects at the early stage of healing (up to 6 weeks), by promoting early implant stability and reducing marginal bone loss, although no positive longer term effects were observed. Careful interpretation and cautious conclusions should be drawn from these findings as there were various limitations in methodology. Future studies should focus on better understanding of the influence of APCs on the biomaterial surface and designing controlled preclinical and clinical studies using standardized APC preparation and application protocols.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3)The University of QueenslandBrisbaneAustralia
| | - Ryan S. B. Lee
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3)The University of QueenslandBrisbaneAustralia
| | - Tulio Fernandez‐Medina
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3)The University of QueenslandBrisbaneAustralia
- College of Medicine and DentistryJames Cook UniversityCairnsAustralia
| | - Nelson Pinto
- Department of Periodontology and Implantology, Faculty of DentistryUniversidad de Los AndesSantiagoChile
| | - Catherine Andrade
- Department of Periodontology and Implantology, Faculty of DentistryUniversidad de Los AndesSantiagoChile
| | - Marc Quirynen
- Department of Oral Health Sciences, Katholieke Universiteit Leuven (Periodontology)University Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Wei X, Lei L, Luo L, Zhou Y, Zheng Z, Chen W. Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity. J Mater Chem B 2024; 12:11089-11104. [PMID: 39387541 DOI: 10.1039/d4tb01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective-surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
Collapse
Affiliation(s)
- Xinpeng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linshan Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Jiang X, Wei J, Ding X, Zheng K, Zhou T, Shi J, Lai H, Qian S, Zhang X. From ROS scavenging to boosted osseointegration: cerium-containing mesoporous bioactive glass nanoparticles functionalized implants in diabetes. J Nanobiotechnology 2024; 22:639. [PMID: 39425200 PMCID: PMC11488221 DOI: 10.1186/s12951-024-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
Excessive production of reactive oxygen species (ROS) around titanium implants under diabetic conditions causes persistent inflammation, leading to poor osseointegration and even implant failure. Surface modification is an effective way to promote ROS clearance, alleviate inflammation, and stimulate bone formation. In this study, a multifunctional coating is fabricated by introducing cerium (Ce)-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) onto the titanium surface via an electrophoretic deposition method. The incorporation of Ce-MBGNs remarkably improves surface hydrophilicity by increasing the surface areas. The bioactive ions are appropriately released, thereby promoting mesenchymal stem cell proliferation and differentiation under diabetic conditions. The conversion between Ce(III) and Ce(IV) endows Ce-MBGNs coating with antioxidative nanoenzymes properties to scavenge diabetes-induced ROS, resulting in macrophage polarization towards the anti-inflammatory phenotype. The therapeutic effect of Ce-MBGNs-modified titanium implants is also verified in diabetic rats by inhibiting inflammatory responses and accelerating early osseointegration. Taken together, the findings reveal that the ROS-scavenging and immunomodulation activity of the Ce-MBGNs coating contributes to enhanced osseointegration, and provides a novel implant surface for diabetic patients.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jianxu Wei
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinxin Ding
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Shujiao Qian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Xiaomeng Zhang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; , Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
4
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Involvement of the Notch signaling system in alveolar bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:38-47. [PMID: 36880060 PMCID: PMC9985033 DOI: 10.1016/j.jdsr.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
The Notch pathway is an evolutionarily preserved signaling pathway involved in a variety of vital cell functions. Additionally, it is one of the key regulators of inflammation, and controls the differentiation and function of different cells. Moreover, it was found to be involved in skeletal development and bone remodeling process. This review provides an overview of the involvement of the Notch signaling pathway in the pathogenesis of alveolar bone resorption in different forms of pathological conditions such as apical periodontitis, periodontal disease, and peri-implantitis. In vitro and in vivo evidence have confirmed the involvement of Notch signaling in alveolar bone homeostasis. Nonetheless, Notch signaling system, along with complex network of different biomolecules are involved in pathological process of bone resorption in apical periodontitis, periodontitis, and peri-implantitis. In this regard, there is a substantial interest to control the activity of this pathway in the treatment of disorders associated with its dysregulation. This review provides knowledge on Notch signaling and outlines its functions in alveolar bone homeostasis and alveolar bone resorption. Further investigations are needed to determine whether inhibition of the Notch signaling pathways might be beneficial and safe as a novel approach in the treatment of these pathological conditions.
Collapse
|
6
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Shao H, Ma M, Wang Q, Yan T, Zhao B, Guo S, Tong S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front Bioeng Biotechnol 2022; 10:1000401. [PMID: 36147527 PMCID: PMC9485881 DOI: 10.3389/fbioe.2022.1000401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the rate of implant failure has been increasing. Microbial infection was the primary cause, and the main stages included bacterial adhesion, biofilm formation, and severe inhibition of implant osseointegration. Various biomaterials and their preparation methods have emerged to produce specific implants with antimicrobial or bactericidal properties to reduce implant infection caused by bacterial adhesion and effectively promote bone and implant integration. In this study, we reviewed the research progress of bone integration promotion and antibacterial action of superhydrophilic surfaces based on titanium alloys. First, the adverse reactions caused by bacterial adhesion to the implant surface, including infection and bone integration deficiency, are briefly introduced. Several commonly used antibacterial methods of titanium alloys are introduced. Secondly, we discuss the antibacterial properties of superhydrophilic surfaces based on ultraviolet photo-functionalization and plasma treatment, in contrast to the antibacterial principle of superhydrophobic surface morphology. Thirdly, the osteogenic effects of superhydrophilic surfaces are described, according to the processes of osseointegration: osteogenic immunity, angiogenesis, and osteogenic related cells. Finally, we discuss the challenges and prospects for the development of this superhydrophilic surface in clinical applications, as well as the prominent strategies and directions for future research.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mingchen Ma
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Baohong Zhao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Karazisis D, Omar O, Petronis S, Thomsen P, Rasmusson L. Molecular Response to Nanopatterned Implants in the Human Jaw Bone. ACS Biomater Sci Eng 2021; 7:5878-5889. [PMID: 34851620 PMCID: PMC8672355 DOI: 10.1021/acsbiomaterials.1c00861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Implant surface modification by nanopatterning is an interesting route for enhancing osseointegration in humans. Herein, the molecular response to an intentional, controlled nanotopography pattern superimposed on screw-shaped titanium implants is investigated in human bone. When clinical implants are installed, additional two mini-implants, one with a machined surface (M) and one with a machined surface superimposed with a hemispherical nanopattern (MN), are installed in the posterior maxilla. In the second-stage surgery, after 6-8 weeks, the mini-implants are retrieved by unscrewing, and the implant-adherent cells are subjected to gene expression analysis using quantitative polymerase chain reaction (qPCR). Compared to those adherent to the machined (M) implants, the cells adherent to the nanopatterned (MN) implants demonstrate significant upregulation (1.8- to 2-fold) of bone-related genes (RUNX2, ALP, and OC). No significant differences are observed in the expression of the analyzed inflammatory and remodeling genes. Correlation analysis reveals that older patient age is associated with increased expression of proinflammatory cytokines (TNF-α and MCP-1) on the machined implants and decreased expression of pro-osteogenic factor (BMP-2) on the nanopatterned implants. Controlled nanotopography, in the form of hemispherical 60 nm protrusions, promotes gene expressions related to early osteogenic differentiation and osteoblastic activity in implant-adherent cells in the human jaw bone.
Collapse
Affiliation(s)
- Dimitrios Karazisis
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Oral and Maxillofacial Surgery, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Sarunas Petronis
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, 501 15 Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lars Rasmusson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Oral and Maxillofacial Surgery, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.,Maxillofacial Unit, Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
9
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Gousopoulou E, Bakopoulou A, Apatzidou DA, Leyhausen G, Volk J, Staufenbiel I, Geurtsen W, Adam K. Evaluation of stemness properties of cells derived from granulation tissue of peri-implantitis lesions. Clin Exp Dent Res 2021; 7:739-753. [PMID: 33605088 PMCID: PMC8543464 DOI: 10.1002/cre2.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Peri-implantitis (PI) is an inflammatory disease associated with peri-implant bone loss and impaired healing potential. There is limited evidence about the presence of mesenchymal stromal cells (MSCs) and their regenerative properties within the granulation tissue (GT) of infrabony peri-implantitis defects. The aim of the present study was to characterize the cells derived from the GT of infrabony PI lesions (peri-implantitis derived mesenchymal stromal cells-PIMSCs). MATERIAL AND METHODS PIMSC cultures were established from GT harvested from PI lesions with a pocket probing depth ≥6 mm, bleeding on probing/suppuration, and radiographic evidence of an infrabony component from four systemically healthy individuals. Cultures were analyzed for embryonic (SSEA4, NANOG, SOX2, OCT4A), mesenchymal (CD90, CD73, CD105, CD146, STRO1) and hematopoietic (CD34, CD45) stem cell markers using flow cytometry. PIMSC cultures were induced for neurogenic, angiogenic and osteogenic differentiation by respective media. Cultures were analyzed for morphological changes and mineralization potential (Alizarin Red S method). Gene expression of neurogenic (NEFL, NCAM1, TUBB3, ENO2), angiogenic (VEGFR1, VEGFR2, PECAM1) and osteogenic (ALPL, BGLAP, BMP2, RUNX2) markers was determined by quantitative RT-PCR. RESULTS PIMSC cultures demonstrated high expression of embryonic and mesenchymal stem cell markers with inter-individual variability. After exposure to neurogenic, angiogenic and osteogenic conditions, PIMSCs showed pronounced tri-lineage differentiation potential, as evidenced by their morphology and expression of respective markers. High mineralization potential was observed. CONCLUSIONS This study provides evidence that MSC-like populations reside within the GT of PI lesions and exhibit a multilineage differentiation potential. Further studies are needed to specify the biological role of these cells in the healing processes of inflamed PI tissues and to provide indications for their potential use in regenerative therapies.
Collapse
Affiliation(s)
- Evangelia Gousopoulou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Athina Bakopoulou
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
- Department of Prosthodontics, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
| | - Danae Anastasia Apatzidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
| | - Gabriele Leyhausen
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Ingmar Staufenbiel
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Knut Adam
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| |
Collapse
|
11
|
Wheelis SE, Biguetti CC, Natarajan S, Arteaga A, Allami JE, Chandrashekar BL, Garlet G, Rodrigues DC. Cellular and Molecular Dynamics during Early Oral Osseointegration: A Comprehensive Characterization in the Lewis Rat. ACS Biomater Sci Eng 2021; 7:2392-2407. [PMID: 33625829 PMCID: PMC8796703 DOI: 10.1021/acsbiomaterials.0c01420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There is a need to improve the predictability of osseointegration in implant dentistry. Current literature uses a variety of in vivo titanium (Ti) implantation models to investigate failure modes and test new materials and surfaces. However, these models produce a variety of results, making comparison across studies difficult. The purpose of this study is to validate an oral osseointegration in the Lewis rat to provide a reproducible baseline to track the inflammatory response and healing of Ti implants. METHODS Ti screws (0.76 mm Ø × 2 mm length) were implanted into the maxillary diastema of 52 adult male Lewis rats. Peri-implant tissues were evaluated 2, 7, 14, and 30 days after implantation (n = 13). Seven of the 13 samples underwent microtomographic analysis, histology, histomorphometry, and immunohistochemistry to track healing parameters. The remaining six samples underwent quantitative polymerase chain reaction (qPCR) to evaluate gene expression of inflammation and bone remodeling markers over time. RESULTS This model achieved a 78.5% success rate. Successful implants had a bone to implant contact (BIC)% of 68.86 ± 3.15 at 30 days on average. Histologically, healing was similar to other rodent models: hematoma and acute inflammation at 2 days, initial bone formation at 7, advanced bone formation and remodeling at 14, and bone maturation at 30. qPCR indicated the highest expression of bone remodeling and inflammatory markers 2-7 days, before slowly declining to nonsurgery control levels at 14-30 days. CONCLUSION This model combines cost-effectiveness and simplicity of a rodent model, while maximizing BIC, making it an excellent candidate for evaluation of new surfaces.
Collapse
Affiliation(s)
| | | | - Shruti Natarajan
- Department of Biological Sciences, University of Texas at Dallas
- Texas A&M College of Dentistry
| | | | | | | | - Gustavo Garlet
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | | |
Collapse
|
12
|
Osseointegration of Plasma Jet Treated Titanium Implant Surface in an Animal Model. MATERIALS 2021; 14:ma14081942. [PMID: 33924487 PMCID: PMC8070107 DOI: 10.3390/ma14081942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Osseointegration of titanium implant is important for the success of both dental and medical implants. Previous studies have attempted to improve osseointegration by considering the use of plasma jet technology, where information with animal models and parameters related to osseointegration is still lacking. Therefore, this study investigated the effects of non-thermal atmospheric pressure plasma jet (NTAPPJ) treatment on titanium implants in terms of osseointegration in mongrel dogs. A total of 41 implants; 21 NTAPPJ treated and 20 control, were placed in the maxilla and mandible of six mongrel dogs for either 4 or 8 weeks. The bone volume (BV) and bone-to-implant contact (BIC) ratio were determined by region of interest (ROI). Statistical analysis was performed with the Wilcoxon rank-sum test. The NTAPPJ group at 4 weeks showed higher numbers in both BV and BIC (p < 0.05) compared to the control group. However, at 8 weeks there were less significant differences between the control or experimental group as the control group had caught up with the experimental group. Hence, NTAPPJ may be an effective treatment for the initial healing period which is critical to ensure reliable long-term predictability. The BV and BIC have been clinically proven to accelerate in the initial stages with the use of NTAPPJ to aid in the healing and initial stability of implants.
Collapse
|
13
|
Xiang G, Liu K, Wang T, Hu X, Wang J, Gao Z, Lei W, Feng Y, Tao TH. In Situ Regulation of Macrophage Polarization to Enhance Osseointegration Under Diabetic Conditions Using Injectable Silk/Sitagliptin Gel Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002328. [PMID: 33552858 PMCID: PMC7856907 DOI: 10.1002/advs.202002328] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/13/2020] [Indexed: 05/03/2023]
Abstract
As a chronic inflammatory disease, diabetes mellitus creates a proinflammatory microenvironment around implants, resulting in a high rate of implant loosening or failure in osteological therapies. In this study, macroporous silk gel scaffolds are injected at the bone-implant interface for in situ release of sitagliptin that can regulate macrophage response to create a prohealing microenvironment in diabetes mellitus disease. Notably, it is discovered that sitagliptin induces macrophage polarization to the M2 phenotype and alleviates the impaired behaviors of osteoblasts on titanium (Ti) implants under diabetic conditions in a dose-dependent manner. The silk gel scaffolds loaded with sitagliptin elicite a stronger recruitment of M2 macrophages to the sites of Ti implants and a significant promotion of osteointegration, as compared to oral sitagliptin administration. The results suggest that injectable silk/sitagliptin gel scaffolds can be utilized to modulate the immune responses at the bone-implant interface, thus enhancing bone regeneration required for successful implantation of orthopedic and dental devices in diabetic patients.
Collapse
Affiliation(s)
- Geng Xiang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Keyin Liu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Tianji Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaofan Hu
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Jing Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Zhiheng Gao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Wei Lei
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Yafei Feng
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute of Brain‐Intelligence TechnologyZhangjiang LaboratoryShanghai200031China
- Shanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai200031China
| |
Collapse
|
14
|
Siddiqui HK, Azeem S, Kotsailidi EA, Javed F. Influence of a state of chronic hyperglycemia on guided bone regeneration—A systematic review of studies on animal-models. SURGERY IN PRACTICE AND SCIENCE 2020. [DOI: 10.1016/j.sipas.2020.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Arya G, Kumar V. Evaluation of osseintegration between traditional and modified hydrophilic titanium dental implants - Systematic analysis. Natl J Maxillofac Surg 2020; 11:176-181. [PMID: 33897177 PMCID: PMC8051648 DOI: 10.4103/njms.njms_44_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to conduct a systematic review to access the osseointegration between traditional and modified Hydrophilic Titanium Dental Implants for period of 10 years. PUBMed articles were searched from last ten years up to 15/12/2019 from which 24 studies included in this review. This systematic review compiles the data about osseintegration in hydrophilic titanium implants in human trials. It sheds light on the mechanism of integration of hydrophilic surfaces and numeric data to support the purpose of the review.
Collapse
Affiliation(s)
- Geeta Arya
- Department of Prosthodontics and Oral Implantology, Seema Dental College and Hospital, Rishikesh, Uttarakhand, India
| | - Varun Kumar
- Department of Prosthodontics and Oral Implantology, Seema Dental College and Hospital, Rishikesh, Uttarakhand, India
| |
Collapse
|
16
|
Abuna RPF, Oliveira FS, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway. J Cell Physiol 2020; 235:8293-8303. [PMID: 32239701 DOI: 10.1002/jcp.29674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and β-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/β-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Calciolari E, Donos N. Proteomic and Transcriptomic Approaches for Studying Bone Regeneration in Health and Systemically Compromised Conditions. Proteomics Clin Appl 2020; 14:e1900084. [PMID: 32131137 DOI: 10.1002/prca.201900084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Bone regeneration is a complex biological process, where the molecular mechanisms are only partially understood. In an ageing population, where the prevalence of chronic diseases with an impact on bone metabolism is increasing, it becomes crucial to identify new strategies that would improve regenerative outcomes also in medically compromised patients. In this context, omics are demonstrating a great potential, as they offer new insights on the molecular mechanisms regulating physiologic/pathologic bone healing and, at the same time, allow the identification of new diagnostic and therapeutic targets. This review provides an overview on the current evidence on the use of transcriptomic and proteomic approaches in bone regeneration research, particularly in relation to type 1 diabetes and osteoporosis, and discusses future scenarios and potential benefits and limitations on the integration of multi-omics. It is suggested that future research will leverage the synergy of omics with statistical modeling and bioinformatics to prompt the understanding of the biology underpinning bone formation in health and medically compromised conditions. With an eye toward personalized medicine, new strategies combining the mining of large datasets and bioinformatic data with a detailed characterization of relevant phenotypes will need to be pursued to further the understanding of disease mechanisms.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.,Department of Medicine and Surgery, School of Dental Medicine, University of Parma, via Gramsci 14, Parma, 43126, Italy
| | - Nikolaos Donos
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
18
|
Hamlet SM, Lee RS, Moon H, Alfarsi MA, Ivanovski S. Hydrophilic titanium surface‐induced macrophage modulation promotes pro‐osteogenic signalling. Clin Oral Implants Res 2019; 30:1085-1096. [DOI: 10.1111/clr.13522] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen M. Hamlet
- Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
| | - Ryan S.B. Lee
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
- School of Dentistry The University of Queensland Herston Queensland Australia
| | - Ho‐Jin Moon
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
- Department of Dental Materials, School of Dentistry Kyung Hee University Seoul Republic of Korea Australia
| | | | - Sašo Ivanovski
- School of Dentistry The University of Queensland Herston Queensland Australia
| |
Collapse
|
19
|
Atypical Mesenchymal Stromal Cell Responses to Topographic Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells Int 2019; 2019:5214501. [PMID: 31354840 PMCID: PMC6636474 DOI: 10.1155/2019/5214501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023] Open
Abstract
Titanium (Ti) is widely used as a biomaterial for endosseous implants due to its relatively inert surface oxide layer that enables implanted devices the ability of assembling tissue reparative components that culminate in osseointegration. Topographic modifications in the form of micro- and nanoscaled structures significantly promote osseointegration and enhance the osteogenic differentiation of adult mesenchymal stromal cells (MSCs). While the biological mechanisms central to the differential responses of tissues and cells to Ti surface modifications remain unknown, adhesion and morphological adaptation are amongst the earliest events at the cell-biomaterial interface that are highly influenced by surface topography and profoundly impact the regulation of stem cell fate determination. This study correlated the effects of Ti topographic modifications on adhesion and morphological adaptation of human MSCs with phenotypic change. The results showed that modified Ti topographies precluded the adhesion of a subset of MSCs while incurring distinct morphological constraints on adherent cells. These effects anomalously corresponded with a differential expression of stem cell pluripotency and Wnt signalling-associated markers on both modified surfaces while additionally differing between hydrophobic and hydrophilic surface modifications—though extent of osteogenic differentiation induced by both modified topographies yielded similarly significant higher levels of cellular mineralisation in contrast to polished Ti. These results suggest that in the absence of deposited proteins and soluble factors, both modified topographies incur the selective adhesion of a subpopulation of progenitors with relatively higher cytoskeletal plasticity. While the presence of deposited proteins and soluble factors does not significantly affect adherence of cells, nanotopographic modifications enhance expression of pluripotency markers in proliferative conditions, which are conversely overridden by both modified topographies in osteogenic inductive conditions. Further deciphering the mechanisms underlying cellular selectivity and Ti topographic responsiveness will improve our understanding of stem cell heterogeneity and advance the potential of MSCs in regenerative medicine.
Collapse
|
20
|
Zhang Z, Zhang S, Li Z, Li S, Liu J, Zhang C. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: A pilot in vivo study. Clin Oral Implants Res 2019; 30:637-648. [PMID: 31034662 DOI: 10.1111/clr.13449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To investigate the promoting effects of biomimetic intrafibrillarly mineralized collagen (IMC) bone scaffold material on the osseointegration of a titanium implant simultaneously grafted into a critical-sized bone defect as well as the underlying mechanisms involved. MATERIALS AND METHODS A critical-sized bone defect was created in the rat femur, and a titanium (Ti) implant surrounded by IMC or extrafibrillarly mineralized collagen (EMC) bone scaffold material was placed in the defect. A blank group and a natural bone group were included as controls. Osseointegration was assessed by micro-computed tomographic, histological, and biochemical evaluations at 12 weeks postoperatively. Microarray technology was applied for transcriptional profile analysis at days 7 and 14 postoperatively. RESULTS Significant bone regeneration and osseointegration were observed in the IMC and EMC groups according to μ-CT and histological analyses. The bone volume (BV)/total volume (TV) fraction, bone-to-implant contact percentage, and bone area percentage as well as ultimate shear strength and maximal pull-out force were all significantly higher in the IMC group than in the EMC group (all p < 0.05). Transcriptional analysis revealed overexpression of genes mainly associated with cell proliferation, immuno-inflammatory response, skeletogenesis, angiogenesis, neurogenesis, and skeletogenesis-related pathways during the early process of osseointegration in the IMC group. CONCLUSION Our data suggest that IMC placed simultaneously with a Ti implant may be a promising strategy in jawbone defect reconstruction. Several candidate genes that were found to be differentially expressed in the IMC group may be responsible for the superior osseointegration effects in this model.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Shijian Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Zheyi Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.,Institute for Clinical Research and Application of Sunny Dental, Beijing, China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiannan Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
21
|
Zhang W, Lu X, Yuan Z, Shen M, Song Y, Liu H, Deng J, Zhong X, Zhang X. Establishing an osteoimmunomodulatory coating loaded with aspirin on the surface of titanium primed with phase-transited lysozyme. Int J Nanomedicine 2019; 14:977-991. [PMID: 30787611 PMCID: PMC6368129 DOI: 10.2147/ijn.s190766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To improve osseointegration and enhance the success rate of implanted biomaterials, the surface modification technology of bone implants has developed rapidly. Intensive research on osteoimmunomodulation has shown that the surfaces of implants should possess favorable osteoimmunomodulation to facilitate osteogenesis. METHODS A novel, green and efficient phase-transited lysozyme (PTL) technique was used to prime titanium discs with a positive charge. In addition, sodium hyaluronate (HA) and self-assembled type I collagen containing aspirin (ASA) nanoparticles were decorated on PTL-primed Ti discs via electrostatic interaction. RESULTS The behaviors of bone marrow stromal cells (BMSCs) on the Ti disc surfaces containing ASA were analyzed in different conditioned media (CM) generated by macrophages. Additionally, the secretion of inflammation-related cytokines of macrophages on the surfaces of different Ti discs was investigated in in vitro experiments, which showed that the Ti surface containing ASA not only supported the migration, proliferation and differentiation of BMSCs but also reduced the inflammatory response of macrophages compared with Ti discs without surface modification. After implantation in vivo, the ASA-modified implant can significantly contribute to bone formation around the implant, which mirrors the evaluation in vitro. CONCLUSION This study highlights the significant effects of appropriate surface characteristics on the regulation of osteogenesis and osteoimmunomodulation around an implant. Implant modification with ASA potentially provides superior strategies for the surface modification of biomaterials.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xin Lu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Minjuan Shen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Huanhuan Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Jingjing Deng
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xu Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| |
Collapse
|
22
|
Bencharit S, Morelli T, Barros S, Seagroves JT, Kim S, Yu N, Byrd K, Brenes C, Offenbacher S. Comparing Initial Wound Healing and Osteogenesis of Porous Tantalum Trabecular Metal and Titanium Alloy Materials. J ORAL IMPLANTOL 2019; 45:173-180. [PMID: 30663941 DOI: 10.1563/aaid-joi-d-17-00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porous tantalum trabecular metal (PTTM) has long been used in orthopedics to enhance neovascularization, wound healing, and osteogenesis; recently, it has been incorporated into titanium alloy dental implants. However, little is known about the biological responses to PTTM in the human oral cavity. We have hypothesized that, compared with conventional titanium alloy, PTTM has a greater expression of genes specific to neovascularization, wound healing, and osteogenesis during the initial healing period. Twelve subjects requiring at least 4 implants in the mandible were enrolled. Four 3 × 5mm devices, including 2 titanium alloy tapered screws and 2 PTTM cylinders, were placed in the edentulous mandibular areas using a split-mouth design. One device in each group was trephined for analysis at 2 and 4 weeks after placement. RNA microarray analysis and ingenuity pathway analysis were used to analyze osteogenesis gene expression and relevant signaling pathways. Compared to titanium alloy, PTTM samples exhibited significantly higher expressions of genes specific to cell neovascularization, wound healing, and osteogenesis. Several genes-including bone morphogenic proteins, collagens, and growth factors-were upregulated in the PTTM group compared to the titanium alloy control. PTTM materials may enhance the initial healing of dental implants by modifying gene expression profiles.
Collapse
Affiliation(s)
- Sompop Bencharit
- 1 Departments of General Practice and Oral and Maxillofacial Surgery, School of Dentistry and Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Va
| | - Thiago Morelli
- 2 Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Silvana Barros
- 2 Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Jackson T Seagroves
- 3 Department of Prosthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Steven Kim
- 4 Curriculum in Oral Biology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Ning Yu
- 4 Curriculum in Oral Biology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Kevin Byrd
- 4 Curriculum in Oral Biology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Christian Brenes
- 5 Department of General Dentistry, Dental College of Georgia, Augusta University, Augusta, Ga
| | - Steven Offenbacher
- 2 Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
23
|
Zhang Z, Wang P, Li X, Wang Y, Qin Z, Zhang C, Li J. Reconstruction of mandibular bone defects using biphasic calcium phosphate bone substitutes with simultaneous implant placement in mini‐swine: A pilot
in vivo
study. J Biomed Mater Res B Appl Biomater 2018; 107:2071-2079. [PMID: 30576059 DOI: 10.1002/jbm.b.34299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral & Maxillofacial‐Head & Neck OncologyShanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of Stomatology Shanghai China
| | - Peng Wang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yu Wang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Zhifan Qin
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Chenping Zhang
- Department of Oral & Maxillofacial‐Head & Neck OncologyShanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of Stomatology Shanghai China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
24
|
Dereka X, Calciolari E, Donos N, Mardas N. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J Periodontal Res 2018; 53:933-940. [PMID: 29845622 DOI: 10.1111/jre.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis is one of the most common skeletal disorders affecting a significant percentage of people worldwide. Research data suggested that systemic diseases such as osteoporosis could act as risk factors for osseointegration, jeopardizing the healing process and thus the predictability of dental implant success on compromised patients. It is well accepted that preclinical studies in animal models reproducing the osteoporotic condition are one of the most important stages in the research of new biomaterials and therapeutic modalities. The aim of this systematic review was to investigate whether osteoporosis compromises dental implant osseointegration in experimental osteoporotic-like conditions. A 3-stage systematic literature research was conducted in MEDLINE via OVID and EMBASE up to and including March 2017. Experimental studies reporting on dental implant osseointegration on different osteoporotic animal models were assessed. The studies had to report on the percentage of bone-to-implant contact (%BIC) as the primary outcome. ARRIVE guidelines for reporting on animal research were applied to evaluate the methodological quality and risk of bias of the studies. Fifty-seven studies met the inclusion criteria and were assessed qualitatively. The most adopted animal model was the rat. A variability of %BIC values was observed, ranging from 30% to 99% and from 26% to 94% for the healthy and osteoporotic group, respectively. The great majority (47) of the included studies concluded that estrogen deficiency significantly affects BIC values, 9 studies stated that it was not possible to observe statistical differences in BIC between ovariectomized and healthy groups and 1 study did not provide a comparison between the healthy and osteoporotic group. Owing to the great heterogeneity in implant surface, study design, observation time-points, site of implant placement and reported outcomes, a meta-analysis could not be performed. An overall high risk of bias was observed, owing to the limited information on animal housing and husbandry, baseline characteristics and health status, ethical statement and allocation to the experimental groups provided. Although the available studies seem to suggest a lower osseointegration in osteoporotic-like conditions, no robust conclusions can be drawn due to the great heterogeneity and overall low quality of the available studies. Future studies with emphasis on minimizing the possible sources of bias and evaluating osseointegration of dental implants placed into jawbones instead of long bones are warranted.
Collapse
Affiliation(s)
- X Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - E Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Donos
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Mardas
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
25
|
Hefni EK, Bencharit S, Kim SJ, Byrd KM, Moreli T, Nociti FH, Offenbacher S, Barros SP. Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients. BDJ Open 2018; 4:17042. [PMID: 30479835 PMCID: PMC6251902 DOI: 10.1038/s41405-018-0004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES The long-term success of dental implants is established by literature. Although clinically well defined, the complex genetic pathways underlying osseointegration have not yet been fully elucidated. Furthermore, patients with osteopenia/osteoporosis are considered to present as higher risk for implant failure. Porous tantalum trabecular metal (PTTM), an open-cell porous biomaterial, is suggested to present enhanced biocompatibility and osteoconductivity. The goal of this study was to evaluate the expression patterns of a panel of genes closely associated with osteogenesis and wound healing in osteopenic patients receiving either traditional titanium (Ti) or PTTM cylinders to assess the pathway of genes activation in the early phases of osseointegration. MATERIAL AND METHODS Implant cylinders made of Ti and PTTM were placed in osteopenic volunteers. At 2- and 4 weeks of healing, one Ti and one PTTM cylinder were removed from each subject for RT-PCR analysis using osteogenesis PCR array. RESULTS Compared to Ti, PTTM-associated bone displayed upregulation of bone matrix proteins, BMP/TGF tisuperfamily, soluble ligand and integrin receptors, growth factors, and collagen genes at one or both time points. Histologically, PTTM implants displayed more robust osteogenesis deposition and maturity when compared to Ti implants from the same patient. CONCLUSIONS Our results indicate that PTTM properties could induce an earlier activation of genes associated with osteogenesis in osteopenic patients suggesting that PTTM implants may attenuate the relative risk of placing dental implants in this population.
Collapse
Affiliation(s)
- E. K. Hefni
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. Bencharit
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA USA
| | - S. J. Kim
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - K. M. Byrd
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - T. Moreli
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - F. H. Nociti
- Department of Periodontology, School of Dentistry, State University of Campinas, Campinas, Brazil
| | - S. Offenbacher
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. P. Barros
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
26
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
27
|
Sayardoust S, Omar O, Norderyd O, Thomsen P. Implant-associated gene expression in the jaw bone of smokers and nonsmokers: A human study using quantitative qPCR. Clin Oral Implants Res 2018; 29:937-953. [DOI: 10.1111/clr.13351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Shariel Sayardoust
- Department of Biomaterials; Institute of Clinical Sciences; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Department of Periodontology; Institute for Postgraduate Dental Education; Jönköping Sweden
| | - Omar Omar
- Department of Biomaterials; Institute of Clinical Sciences; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Ola Norderyd
- Department of Periodontology; Institute for Postgraduate Dental Education; Jönköping Sweden
| | - Peter Thomsen
- Department of Biomaterials; Institute of Clinical Sciences; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
28
|
Jiang N, Chen L, Ma Q, Ruan J. Nanostructured Ti surfaces and retinoic acid/dexamethasone present a spatial framework for the maturation and amelogenesis of LS-8 cells. Int J Nanomedicine 2018; 13:3949-3964. [PMID: 30022819 PMCID: PMC6042561 DOI: 10.2147/ijn.s167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the amelogenesis-inductive effects of surface structures at the nanoscale. For this purpose, variable nanostructured titanium dioxide (TiO2) surfaces were used as a framework to regulate the amelogenic behaviors of ameloblasts with the administration of retinoic acid (RA)/dexamethasone (DEX). MATERIALS AND METHODS TiO2 nanotubular (NT) surfaces were fabricated via anodization. Mouse ameloblast-like LS-8 cells were seeded and cultured on NT surfaces in the presence or absence of RA/DEX for 48 h. The amelogenic behaviors and extracellular matrix (ECM) mineralization of LS-8 cells on nanostructured Ti surfaces were characterized using field emission scanning electron microscope, laser scanning confocal microscope, quantitative polymerase chain reaction, MTT assay, and flow cytometry. RESULTS TiO2 NT surfaces (tube size ~30 and ~80 nm) were constructed via anodization at 5 or 20 V and denoted as NT5 and NT20, respectively. LS-8 cells exhibited significantly increased spread and proliferation, and lower rates of apoptosis and necrosis on NT surfaces. The amelogenic gene expression and ECM mineralization differed significantly on the NT20 and the NT5 and polished Ti sample surfaces in standard medium. The amelogenic behaviors of LS-8 cells were further changed by RA/DEX pretreatment, which directly drove maturation of LS-8 cells. CONCLUSION Controlling the amelogenic behaviors of ameloblast-like LS-8 cells by manipulating the nanostructure of biomaterials surfaces represents an effective tool for the establishment of a systemic framework for supporting enamel regeneration. The administration of RA/DEX is an effective approach for driving the amelogenesis and maturation of ameloblasts.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Lu Chen
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Qianli Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, People's Republic of China,
- Department of Prosthodontics, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Jianping Ruan
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| |
Collapse
|
29
|
Calciolari E, Hamlet S, Ivanovski S, Donos N. Pro-osteogenic properties of hydrophilic and hydrophobic titanium surfaces: Crosstalk between signalling pathways in in vivo models. J Periodontal Res 2018; 53:598-609. [DOI: 10.1111/jre.12550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Affiliation(s)
- E. Calciolari
- Centre for Oral Immunobiology and Regenerative Medicine; Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London (QMUL); London UK
- Centre for Oral Clinical Research; Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London (QMUL); London UK
| | - S. Hamlet
- School of Dentistry and Oral Health; Gold Coast Campus; Griffith University; Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - S. Ivanovski
- School of Dentistry; University of Queensland; Brisbane QLD Australia
| | - N. Donos
- Centre for Oral Immunobiology and Regenerative Medicine; Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London (QMUL); London UK
- Centre for Oral Clinical Research; Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London (QMUL); London UK
| |
Collapse
|
30
|
Gulati K, Hamlet SM, Ivanovski S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 2018; 6:2677-2689. [PMID: 32254221 DOI: 10.1039/c8tb00450a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its biocompatibility and corrosion resistance, titanium is one of the most commonly used implantable biomaterials. Numerous in vitro and in vivo investigations have established that titanium surfaces with a nanoscale topography outperform conventional smooth or micro-rough surfaces in terms of achieving desirable bonding with bone (i.e. enhanced bioactivity). Among these nanoscale topographical modifications, ordered nanostructures fabricated via electrochemical anodization, especially titania nanotubes (TNTs), are particularly attractive. This is due to their ability to augment bioactivity, deliver drugs and the potential for easy/cost-effective translation into the current implant market. However, the potential of TNT-modified implants to modulate the host immune-inflammatory response, which is critical for achieving timely osseointegration, remains relatively unexplored. Such immunomodulatory effects may be achieved by modifying the physical and chemical properties of the TNTs. Furthermore, therapeutic/bioactive enhancements performed on these nano-engineered implants (such as antibacterial or osteogenic functions) are likely to illicit an immune response which needs to be appropriately controlled. The lack of sufficient in-depth studies with respect to immune cell responses to TNTs has created research gaps that must be addressed in order to facilitate the design of the next generation of immuno-modulatory titanium implants. This review article focuses on the chemical, topographical and mechanical features of TNT-modified implants that can be manipulated in order to achieve immuno-modulation, as well as providing an insight into how modulating the immune response can augment implant performance.
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | | | | |
Collapse
|
31
|
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2018; 73:22-40. [PMID: 28000277 DOI: 10.1111/prd.12179] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone loss and should therefore be monitored and studied in greater detail.
Collapse
|
32
|
Calciolari E, Mardas N, Dereka X, Anagnostopoulos AK, Tsangaris GT, Donos N. Protein expression during early stages of bone regeneration under hydrophobic and hydrophilic titanium domes. A pilot study. J Periodontal Res 2017; 53:174-187. [PMID: 29063586 DOI: 10.1111/jre.12498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES There is significant evidence that, during the early stages of osseointegration, moderately rough hydrophilic (SLActive) surfaces can accelerate osteogenesis and increase bone-to-implant contact in comparison to hydrophobic (SLA) surfaces. However, very little is known regarding the molecular mechanisms behind the influence that surface chemistry modifications to increase hydrophilicity determine on bone healing. The aim of this study was to describe for the first time the proteins and related signalling pathways expressed during early osseous healing stages under SLA and SLActive titanium domes for guided bone regeneration. MATERIAL AND METHODS One SLA and 1 SLActive dome with an internal diameter of 5.0 mm and a height of 3.0 mm were secured to the parietal bones of nine 6-month-old male New Zealand rabbits. Three animals were randomly euthanized at 4, 7 and 14 days and the newly formed tissues retrieved under the domes were analysed with liquid chromatography-mass spectrometry/mass spectrometry. STRING and KEGG databases were applied for Gene Ontology and pathway analyses. RESULTS A different modulation of several pathways was detected between the 2 groups at all healing times. The main differences in the osseous healing response associated to the 2 surfaces were related to pathways involved in regulating the inflammatory response, differentiation of osteoblast precursors and skeletogenesis. At day 7, the highest number of proteins and the highest cellular activity were observed in both groups, although a more complex and articulated proteome in terms of cellular metabolism and signal transduction was observed in SLActive samples. CONCLUSION This is the first study describing the proteome expressed during early healing stages of guided bone regeneration and osseointegration. A combination of enhanced early osteogenic response and reduced inflammatory response were suggested for the hydrophilic group. Future studies are needed to corroborate these findings and explore the molecular effects of different titanium surfaces on the cascade of events taking place during bone formation.
Collapse
Affiliation(s)
- E Calciolari
- Centre for Clinical Oral Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| | - N Mardas
- Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| | - X Dereka
- Department of Periodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - A K Anagnostopoulos
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - G T Tsangaris
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - N Donos
- Centre for Clinical Oral Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| |
Collapse
|
33
|
Donos N, Horvath A, Mezzomo LA, Dedi D, Calciolari E, Mardas N. The role of immediate provisional restorations on implants with a hydrophilic surface: A randomised, single-blind controlled clinical trial. Clin Oral Implants Res 2017; 29:55-66. [PMID: 28833613 DOI: 10.1111/clr.13038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To compare the radiographic bone changes, clinical parameters and aesthetic outcomes of immediately provisionalised and conventionally restored implants at 12- and 24-months post-implant placement. MATERIAL AND METHODS In 24 patients, 24 bone level implants with a hydrophilic (SLActive) surface were placed in healed sites and they were either immediately provisionalised with a non-occluding temporary crown (test group) or left without a crown (control group). In both groups, the definitive restoration was placed 16 weeks after implant placement. Clinical and radiographic parameters were calculated at 12- and 24-months post-implant placement, together with implant success/survival rates according to three different sets of criteria. The aesthetic outcome was evaluated through the Papilla Fill Index and the Pink Aesthetic Score. RESULTS The mean marginal bone loss at 1 year was -0.73 mm (SD 0.83 mm) in the test group and -0.22 mm (SD 0.46 mm) in the control group (p > .05). Whilst 100% survival rate and positive aesthetic outcomes were recorded in both groups, three patients of the test group did not fulfil all success criteria. CONCLUSIONS Immediate provisionalisation may represent a viable option for the replacement of single missing teeth, with radiographic, clinical and aesthetic results comparable to those of conventionally loaded implants at 2 years of follow-up.
Collapse
Affiliation(s)
- Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - Attila Horvath
- Department of Periodontology, Semmelweis University, Budapest, Hungary
| | - Luis André Mezzomo
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Dina Dedi
- Continuing Professional Development, UCL Eastman Dental Institute, London, UK
| | - Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - Nikos Mardas
- Centre for Adult Oral Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
34
|
Sayardoust S, Omar O, Norderyd O, Thomsen P. Clinical, radiological, and gene expression analyses in smokers and non-smokers, Part 2: RCT on the late healing phase of osseointegration. Clin Implant Dent Relat Res 2017; 19:901-915. [PMID: 28744993 DOI: 10.1111/cid.12514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mechanisms behind the impact of smoking on osseointegration are not fully understood. PURPOSE To investigate the initial clinical and molecular course of osseointegration of different implants in smokers and non-smokers in a randomized controlled trial (RCT). MATERIALS AND METHODS Smoking (n = 16) and non-smoking (n = 16) patients received 3 implant types: machined, oxidized, and laser-modified surfaces. Baseline bone biopsies were retrieved from the implant sites. After 60 and 90 days, the pain score, implant stability quotient (ISQ), and peri-implant crevicular fluid (PICF) gene expression were analyzed. Furthermore, radiological and clinical assessments were made at 90 days. RESULTS At 90 days, no pain was reported, irrespective of smoking habit. A higher ISQ was found in smokers compared with non-smokers. Marginal bone loss (MBL) was greater in smokers than in non-smokers. The comparison of implant surfaces revealed greater MBL exclusively at the machined implants in smokers. At 90 days in smokers, the PICF around machined implants revealed a higher expression of the proinflammatory cytokine, interleukin-6 (IL-6), and a lower expression of the osteogenic gene, osteocalcin (OC), compared with the PICF around modified implants. Furthermore, OC expression was lower at machined implants in smokers compared with machined implants in non-smokers. After adjustment for age and implant location (maxilla/mandible), multivariate regression revealed the following predictors of MBL: smoking, bleeding on probing at 90 days, hypoxia-inducible factor 1 alpha (HIF-1α) expression at baseline and IL-6 expression in PICF at 90 days. CONCLUSIONS During the early phase of osseointegration, non-smokers and smokers present a similar, high implant survival. In contrast, smokers present a greater MBL, particularly at machined implants. HIF-1α baseline expression in the recipient bone and IL-6 expression in PICF cells are important molecular determinants for MBL after 90 days. It is concluded that smoking has an early effect on osseointegration, which is dependent on the implant surface properties and the local host response.
Collapse
Affiliation(s)
- Shariel Sayardoust
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.,Department of Periodontology, Institute for Postgraduate Dental Education, Jönköping, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Ola Norderyd
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.,Department of Periodontology, Institute for Postgraduate Dental Education, Jönköping, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
35
|
Salvi GE, Bosshardt DD, Lang NP, Abrahamsson I, Berglundh T, Lindhe J, Ivanovski S, Donos N. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 2000 2017; 68:135-52. [PMID: 25867984 DOI: 10.1111/prd.12054] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.
Collapse
|
36
|
Implant Surface Modifications and Osseointegration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Gulati K, Ivanovski S. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Deliv 2016; 14:1009-1024. [PMID: 27892717 DOI: 10.1080/17425247.2017.1266332] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.
Collapse
Affiliation(s)
- Karan Gulati
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - Sašo Ivanovski
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
38
|
Lee RSB, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: a pilot study. Clin Oral Implants Res 2016; 28:e159-e168. [DOI: 10.1111/clr.12979] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Ryan S. B. Lee
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Stephen M. Hamlet
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| |
Collapse
|
39
|
Du Z, Xiao Y, Hashimi S, Hamlet SM, Ivanovski S. The effects of implant topography on osseointegration under estrogen deficiency induced osteoporotic conditions: Histomorphometric, transcriptional and ultrastructural analysis. Acta Biomater 2016; 42:351-363. [PMID: 27375286 DOI: 10.1016/j.actbio.2016.06.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED Compromised bone quality and/or healing in osteoporosis are recognised risk factors for impaired dental implant osseointegration. This study examined the effects of (1) experimentally induced osteoporosis on titanium implant osseointegration and (2) the effect of modified implant surface topography on osseointegration under osteoporosis-like conditions. Machined and micro-roughened surface implants were placed into the maxillary first molar root socket of 64 ovariectomised and sham-operated Sprague-Dawley rats. Subsequent histological and SEM observations showed tissue maturation on the micro-rough surfaced implants in ovariectomised animals as early as 3days post-implantation. The degree of osseointegration was also significantly higher around the micro-rough implants in ovariectomised animals after 14days of healing although by day 28, similar levels of osseointegration were found for all test groups. The micro-rough implants significantly increased the early (day 3) gene expression of alkaline phosphatase, osteocalcin, receptor activator of nuclear factor kappa-B ligand and dentin matrix protein 1 in implant adherent cells. By day 7, the expression of inflammatory genes decreased while the expression of the osteogenic markers increased further although there were few statistically significant differences between the micro-rough and machined surfaces. Osteocyte morphology was also affected by estrogen deficiency with the size of the cells being reduced in trabecular bone. In conclusion, estrogen deficiency induced osteoporotic conditions negatively influenced the early osseointegration of machined implants while micro-rough implants compensated for these deleterious effects by enhancing osteogenic cell differentiation on the implant surface. STATEMENT OF SIGNIFICANCE Lower bone density, poor bone quality and osseous microstructural changes are all features characteristic of osteoporosis that may impair the osseointegration of dental implants. Using a clinically relevant trabecular bone model in the rat maxilla, we demonstrated histologically that the negative effects of surgically-induced osteoporosis on osseointegration could be ameliorated by the biomaterial's surface topography. Furthermore, gene expression analysis suggests this may be a result of enhanced osteogenic cell differentiation on the implant surface.
Collapse
|
40
|
Abstract
Several systemic diseases (and relative medications) have been reported to impair or in some cases complicate dental implant surgery. In broader terms, when dealing with patients suffering from systemic diseases, the monitoring of the medical condition and of the related post-operative complications is of great importance in order to avoid risks which could jeopardise the health of the patient. In this review, the available evidence on implant survival/success, as well as relevant surgical recommendations in patients affected by systemic diseases, are evaluated and when possible, practical suggestions for the clinician are provided.
Collapse
|
41
|
Al-Kattan R, Retzepi M, Calciolari E, Donos N. Microarray gene expression during early healing of GBR-treated calvarial critical size defects. Clin Oral Implants Res 2016; 28:1248-1257. [PMID: 27616585 DOI: 10.1111/clr.12949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the gene expression and molecular pathways implicated in the regulation of the osseous healing process following guided bone regeneration (GBR). MATERIAL AND METHODS Six 6-month-old Wistar male rats were used. Standardized 5-mm critical size defects were created in the parietal bones of each animal and treated with an extracranial and intracranial ePTFE membrane, according to the GBR principle. Three animals were randomly sacrificed after 7 and 15 days of healing. Total RNA was extracted from each sample and prepared for gene expression analysis. RNA quality and quantity were assessed, followed by hybridization of the cRNA to Affymetrix GeneChip Rat Genome 230 2.0 Arrays. The Affymetrix data were processed, and first-order analysis, quality control and statistical analysis were performed. Biological interpretation was performed via pathway and Gene Ontology (GO) analysis. RESULTS Between the 7- and 15-day samples, 538 genes were differently regulated. At day 7, inflammatory and immune responses were clearly upregulated. In addition, GO terms related to angiogenesis and cell cycle regulation were overexpressed. At day 15, a more complex cellular activity and cell metabolism were evident. The bone formation processes were significantly overexpressed, with several genes encoding growth factors, enzyme activity, and extracellular matrix formation found as upregulated. Remarkably, a negative regulation of Wnt signalling pathway was observed at 15 days. DISCUSSION The gene expression profile of the cells participating in osseous formation varied depending on the healing stage. A number of candidate genes that seem differentially expressed during early stages of intramembranous bone regeneration was suggested.
Collapse
Affiliation(s)
- R Al-Kattan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - E Calciolari
- Department of Periodontology, UCL Eastman Dental Institute, London, UK.,Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
42
|
Bartold PM, Ivanovski S, Darby I. Implants for the aged patient: biological, clinical and sociological considerations. Periodontol 2000 2016; 72:120-34. [DOI: 10.1111/prd.12133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2015] [Indexed: 02/06/2023]
|
43
|
Suleimenova D, Hashimi SM, Li M, Ivanovski S, Mattheos N. Gene expression profiles in guided bone regeneration using combinations of different biomaterials: a pilot animal study. Clin Oral Implants Res 2016; 28:713-720. [PMID: 27238458 DOI: 10.1111/clr.12868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the gene expression profile related to guided bone regeneration (GBR) at the early healing stage while using combinations of different biomaterials. MATERIALS AND METHODS Cranial defects in 4 New Zealand rabbits were filled with A) biphasic calcium phosphate/experimental pericardium-derived collagen membrane, B) Bio-Oss® /Bio-Gide® , C) biphasic calcium phosphate/strontium hydroxyapatite-containing collagen membrane and D) Bio-Oss® /strontium hydroxyapatite-containing collagen membrane. Seven days after surgery, one animal was subjected to histological observation and histomorphometric analysis, and three animals to real-time quantitative reverse transcription polymerase chain reaction (PCR). An RT2 Profiler PCR Array (PANZ-026Z, QIAGEN, QIAGEN Sciences, Germantown, MD, USA) was conducted to observe the gene expression profile of groups A, C and D as compared with the control group B. RESULTS The analysis showed 9 of the 84 genes on the array to be significantly different in the three experimental groups (six genes in group D, four in group C and one in group A). Group D demonstrated the most changes in gene expression profile at day 7. Genes that were significantly down-regulated (AHSG, EGF) or up-regulated (CDH11, MMP13, GLI1 and MCSF) are responsible for early-stage bone formation, bone remodeling and pre-osteoclast development. The gene expression profile of this group correlated with the histological findings, as this group showed the higher formation of osteoid as compared with the other groups. CONCLUSION Gene expression patterns at early-stage healing of GBR-treated defects appear to be related to the biomaterial used. The combination of Bio-Oss® and strontium hydroxyapatite-containing collagen membrane showed the most pro-osteogenic gene regulation profile (group D), implying the stimulation of key transcriptional factors, which appeared to translate into the up-regulation of the osteogenic process and earlier bone formation.
Collapse
Affiliation(s)
- Dina Suleimenova
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Saeed M Hashimi
- School of Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia
| | - Ma Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Saso Ivanovski
- School of Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia
| | - Nikos Mattheos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Moschouris P, Retzepi M, Petrie A, Donos N. Effect of Wnt3a delivery on early healing events during guided bone regeneration. Clin Oral Implants Res 2016; 28:283-290. [DOI: 10.1111/clr.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- P Moschouris
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - M Retzepi
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - A Petrie
- Biostatistics Unit; UCL Eastman Dental Institute; London UK
| | - N Donos
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
- Centre for Oral Clinical Research; Institute of Dentistry; Barts & The London School of Medicine & Dentistry; London UK
| |
Collapse
|
45
|
Kim EC, Leesungbok R, Lee SW, Hong JY, Ko EJ, Ahn SJ. Effects of static magnetic fields on bone regeneration of implants in the rabbit: micro-CT, histologic, microarray, and real-time PCR analyses. Clin Oral Implants Res 2016; 28:396-405. [PMID: 26972335 DOI: 10.1111/clr.12812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of static magnetic fields (SMFs) on bone regeneration around titanium implants by μCT, histologic analysis, microarrays, and quantitative real-time PCR (qRT-PCR). MATERIALS AND METHODS Neodymium magnets provided the source of SMFs, the specimens were grade 5 titanium implants, and the animals were twenty-seven adult male New Zealand white rabbits. These implants were divided into six groups according to the presence of a magnet and predetermined healing period (1, 4, and 8 weeks). Each group comprised six specimens for μCT (n = 6) and histologic examination, and three specimens (n = 3) for microarrays and qRT-PCR, yielding a total of 54 specimens. RESULTS The μCT data showed that SMFs increased bone volume fraction (bone volume/total volume, BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th). Histologic observation indicated that SMFs promoted new bone formation and direct bony contact with implants. Microarray analysis identified 293 genes upregulated (>twofold) in response to SMFs. The upregulated genes included extracellular matrix (ECM)-related genes (COL10A1, COL9A1, and COL12A1) and growth factor (GF)-related genes (CTGF and PDGFD), and the upregulation was confirmed by qRT-PCR. Gene Ontology (GO) and pathway analysis revealed the involvement of the mitogen-activated protein kinase (MAPK), Wnt, and PPAR-gamma signaling pathways in implant healing. CONCLUSIONS μCT, histology, microarrays, and real-time PCR indicate that SMFs could be an effective approach to improving bone regeneration around dental implants.
Collapse
Affiliation(s)
- Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics, School of Dentistry, Kyung Hee University, Gangdong, Korea
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics, School of Dentistry, Kyung Hee University, Gangdong, Korea
| | - Ji-Youn Hong
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Eun-Jin Ko
- Department of Biomaterials & Prosthodontics, School of Dentistry, Kyung Hee University, Gangdong, Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, School of Dentistry, Kyung Hee University, Gangdong, Korea
| |
Collapse
|
46
|
Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. INTERNATIONAL ORTHOPAEDICS 2015. [DOI: 10.1007/s00264-015-2926-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Abstract
OBJECTIVES The aim of this study is to investigate the effect of macroscopic grooves on bone formation in vivo and differentiation of human mesenchymal stem cells (hMSCs) in vitro. MATERIALS AND METHODS The effects of macroscopic grooves on titanium alloy implants and disks were tested in rabbit tibiae and cultured hMSCs. The bone-to-implant contact (BIC) and bone area were evaluated in rabbit tibiae at 6 and 24 weeks after implant insertion. Osteoblastic differentiation was assessed by alkaline phosphatase (ALP) activity and real-time reverse-transcription polymerase chain reaction (RT-PCR) on days 7, 14, and 21. All values were statically analyzed. RESULTS BIC and bone area inside the grooves were significantly higher than those of control implants (P < 0.05). ALP activity was significantly higher for titanium disks with macroscopic grooves than without grooves on day 14 (P < 0.05). Real-time RT-PCR showed that the expression of osteogenic genes was significantly higher for disks with grooves on day 7 (P < 0.01). CONCLUSIONS Macroscopic grooves accelerate osteoblastic differentiation in vitro and stimulate direct bone growth and deposition within the grooves in vivo.
Collapse
|
48
|
Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 2000 2015; 68:99-121. [DOI: 10.1111/prd.12077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
|
49
|
Shanbhag S, Shanbhag V, Stavropoulos A. Genomic analyses of early peri-implant bone healing in humans: a systematic review. Int J Implant Dent 2015; 1:5. [PMID: 27747627 PMCID: PMC5005705 DOI: 10.1186/s40729-015-0006-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/27/2015] [Indexed: 01/22/2023] Open
Abstract
Objective The objective of the study was to systematically review the literature for studies reporting gene expression analyses (GEA) of the biological processes involved in early human peri-implant bone healing. Methods Electronic databases (MEDLINE, EMBASE) were searched in duplicate. Controlled and uncontrolled studies reporting GEA of human peri-implant tissues - including ≥5 patients and ≥2 time points - during the first 4 weeks of healing were eligible for inclusion. Methodological quality and risk of bias were also assessed. Results Four exploratory studies were included in reporting GEA of either tissues attached to SLA or SLActive implants after 4 to 14 days or cells attached to TiOBlast or Osseospeed implants after 3 to 7 days. A total of 111 implants from 43 patients were analyzed using validated array methods; however, considerable heterogeneity and risk of bias were detected. A consistent overall pattern of gene expression was observed; genes representing an immuno-inflammatory response were overexpressed at days 3 to 4, followed by genes representing osteogenic processes at day 7. Genes representing bone remodeling, angiogenesis, and neurogenesis were expressed concomitantly with osteogenesis. Several regulators of these processes, such as cytokines, growth factors, transcription factors, and signaling pathways, were identified. Implant surface properties seemed to influence the healing processes at various stages via differential gene expression. Conclusion Limited evidence from gene expression studies in humans indicates that osteogenic processes commence within the first post-operative week and they appear influenced at various stages by implant surface properties.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.,Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Vivek Shanbhag
- Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.
| |
Collapse
|
50
|
Cellular responses evoked by different surface characteristics of intraosseous titanium implants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:171945. [PMID: 25767803 PMCID: PMC4341860 DOI: 10.1155/2015/171945] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.
Collapse
|