1
|
Iwata T, Mizuno N, Nagahara T, Kaneda-Ikeda E, Kajiya M, Kitagawa M, Takeda K, Yoshioka M, Yagi R, Takata T, Kurihara H. Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells. J Periodontal Res 2020; 56:69-82. [PMID: 32797637 DOI: 10.1111/jre.12794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis causes periodontal tissue destruction and results in physiological tooth dysfunction. Therefore, periodontal regeneration is ideal therapy for periodontitis. Mesenchymal stem cells (MSCs) are useful for periodontal regenerative therapy as they can differentiate into periodontal cells; however, the underlying regulatory mechanism is unclear. In this study, we attempted to identify regulatory genes involved in periodontal cell differentiation and clarify the differentiation mechanism for effective periodontal regenerative therapy. BACKGROUND The cementum and periodontal ligament play important roles in physiological tooth function. Therefore, cementum and periodontal ligament regeneration are critical for periodontal regenerative therapy. Mesenchymal stem cell transplantation can be a common periodontal regenerative therapy because these cells have multipotency and self-renewal ability, which induces new cementum or periodontal ligament formation. Moreover, MSCs can differentiate into cementoblasts. Cementoblast- or periodontal ligament cell-specific proteins have been reported; however, it is unclear how these proteins are regulated. MicroRNA (miRNA) can also act as a key regulator of MSC function. Therefore, in this study, we identified regulatory genes involved in cementoblast or periodontal cell differentiation and commitment. METHODS Human MSCs (hMSCs), cementoblasts (HCEM), and periodontal ligament cells (HPL cells) were cultured, and mRNA or miRNA expression was evaluated. Additionally, cementoblast-specific genes were overexpressed or suppressed in hMSCs and their expression levels were investigated. RESULTS HCEM and HPL cells expressed characteristic genes, of which we focused on ets variant 1 (ETV1), miR-628-5p, and miR-383 because ETV1 is a differentiation-related transcription factor, miR-628-5p was the second-highest expressed gene in HCEM and lowest expressed gene in HPL cells, and miR-383 was the highest expressed gene in HCEM. miR-628-5p and miR-383 overexpression in hMSCs regulated ETV1 mRNA expression, and miR-383 overexpression downregulated miR-628-5p expression. Moreover, miR-383 suppression decreased miR-383 expression and enhanced ETV1 mRNA expression, but miR-383 suppression also decreased miR-628-5p. Furthermore, silencing of ETV1 expression in hMSCs regulated miR-628-5p and miR-383 expression. Concerning periodontal cell commitment, miR-628-5p, miR-383, and ETV1 regulated the expression of HCEM- or HPL cell-related genes by adjusting the expression of these miRNAs. CONCLUSION HCEM and HPL cells show characteristic mRNA and miRNA profiles. In particular, these cells have specific miR-383, miR-628-5p, and ETV1 expression patterns, and these genes interact with each other. Therefore, miR-383, miR-628-5p, and ETV1 are key genes involved in cementogenesis or HPL cell differentiation.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryoichi Yagi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
2
|
Nemcovsky CE, Beitlitum I. Combination Therapy for Reconstructive Periodontal Treatment in the Lower Anterior Area: Clinical Evaluation of a Case Series. Dent J (Basel) 2018; 6:dj6040050. [PMID: 30275349 PMCID: PMC6313804 DOI: 10.3390/dj6040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022] Open
Abstract
Clinically, periodontal regeneration may be achieved by the application of barrier membranes, grafts, wound-healing modifiers, and their combinations. Combination therapy refers to the simultaneous application of various periodontal reconstructive treatment alternatives to obtain additive effects. This approach may lead to assemblage of different regenerative principles, such as conductivity and inductivity, space provision and wound stability, matrix development and cell differentiation. The application of autogenous connective tissue grafts during periodontal regenerative treatment with enamel matrix proteins derivative (EMD) has been previously reported. The present case series present a modified approach for treatment of severe periodontally involved lower incisors presenting with thin gingival biotype, gingival recession, minimal attached and keratinized gingiva width and muscle and/or frenum pull. In all cases a combination therapy consisting of a single buccal access flap, root conditioning, EMD application on the denuded root surfaces and a free connective tissue graft was performed. Clinical and radiographic outcomes were consistently satisfactory, leading to probing depth reduction, clinical attachment gain, minimal gingival recession, increased attached and keratinizing gingival width, elimination of frenum and/or muscle pull together with radiographic bone fill of the defects. It may be concluded that the present combination therapy for reconstructive periodontal treatment in the lower anterior area is a valuable alternative for indicated cases.
Collapse
Affiliation(s)
- Carlos E Nemcovsky
- Department of Periodontology and Dental Implantology Dental School, Tel-Aviv University, Tel Aviv 6139001, Israel.
| | - Ilan Beitlitum
- Department of Periodontology and Dental Implantology Dental School, Tel-Aviv University, Tel Aviv 6139001, Israel.
| |
Collapse
|
3
|
Romagnoli C, Zonefrati R, Galli G, Aldinucci A, Nuti N, Martelli FS, Tonelli P, Tanini A, Brandi ML. The effect of strontium chloride on human periodontal ligament stem cells. ACTA ACUST UNITED AC 2018; 14:283-293. [PMID: 29354155 DOI: 10.11138/ccmbm/2017.14.3.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complete repair of periodontal structures remains an exciting challenge that prompts researchers to develop new treatments to restore the periodontium. Recent research has suggested strontium ion to be an attractive candidate to improve osteogenic activity. In this study, we have isolated a clonal finite cell line derived from human periodontal ligament (PDL) in order to assess whether and in which way different doses of SrCl2 (from 0.5 to 500 μg/ml) can influence both the proliferation and the mineralization process, for future application in oral diseases. PDL cells were cloned by dilution plating technique and characterized by FACS. Cell proliferation analysis and mineralization were performed by [3H]-thymidine incorporation and spectrofluorometric assay. Results have evidenced that the higher SrCl2 concentrations tested, from 25 to 500 μg/ml, have increased the proliferation activity after only 24 h of treatment. Interestingly, the same higher concentrations have decreased the mineralization, which was conversely increased by the lower ones, from 0.5 to 10 μg/ml. Our findings suggest the possible use of SrCl2 in appropriate delivery systems that release, at different time points, the specific dose, depending on the biological response that we want to induce on periodontal ligament stem cells, providing a more efficient periodontal regeneration.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gianna Galli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Niccolò Nuti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Paolo Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Annalisa Tanini
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Miron RJ, Dard M, Weinreb M. Enamel matrix derivative, inflammation and soft tissue wound healing. J Periodontal Res 2014; 50:555-69. [PMID: 25418917 DOI: 10.1111/jre.12245] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/17/2022]
Abstract
Over 15 years have now passed since enamel matrix derivative (EMD) emerged as an agent capable of periodontal regeneration. Following thorough investigation, evidenced-based clinical application is now established for a multitude of clinical settings to promote regeneration of periodontal hard tissues. Despite the large number of studies and review articles written on this topic, no single review has compiled the influence of EMD on tissue inflammation, an area of research that merits substantial attention in periodontology. The aim of the present review was to gather all studies that deal with the effects of EMD on tissue inflammation with particular interest in the cellular mechanisms involved in inflammation and soft tissue wound healing/resolution. The effects of EMD on monocytes, macrophages, lymphocytes, neutrophils, fibroblasts and endothelial cells were investigated for changes in cell behavior as well as release of inflammatory markers, including interleukins, prostaglandins, tumor necrosis factor-α, matrix metalloproteinases and members of the OPG-RANKL pathway. In summary, studies listed in this review have reported that EMD is able to significantly decrease interleukin-1b and RANKL expression, increase prostaglandin E2 and OPG expression, increase proliferation and migration of T lymphocytes, induce monocyte differentiation, increase bacterial and tissue debris clearance, as well as increase fibroplasias and angiogenesis by inducing endothelial cell proliferation, migration and capillary-like sprout formation. The outcomes from the present review article indicate that EMD is able to affect substantially the inflammatory and healing responses and lay the groundwork for future investigation in the field.
Collapse
Affiliation(s)
- R J Miron
- Department of Periodontology, Department of Oral Surgery, University of Bern, Bern, Switzerland.,Faculty of Dental Medicine, University of Laval, Quebec City, QC, Canada
| | - M Dard
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - M Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Gruber R, Stähli A, Miron RJ, Bosshardt DD, Sculean A. Common target genes of palatal and gingival fibroblasts for EMD: the microarray approach. J Periodontal Res 2014; 50:103-12. [PMID: 24824040 DOI: 10.1111/jre.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.
Collapse
Affiliation(s)
- R Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Riksen EA, Landin MA, Reppe S, Nakamura Y, Lyngstadaas SP, Reseland JE. Enamel matrix derivative promote primary human pulp cell differentiation and mineralization. Int J Mol Sci 2014; 15:7731-49. [PMID: 24857913 PMCID: PMC4057702 DOI: 10.3390/ijms15057731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 11/16/2022] Open
Abstract
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.
Collapse
Affiliation(s)
- Elisabeth Aurstad Riksen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Maria A Landin
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, N-0450 Oslo, Norway.
| | - Yukio Nakamura
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
7
|
Yan XZ, Rathe F, Gilissen C, van der Zande M, Veltman J, Junker R, Yang F, Jansen JA, Walboomers XF. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells. J Tissue Eng Regen Med 2012; 8:463-72. [PMID: 22689476 DOI: 10.1002/term.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/23/2012] [Accepted: 05/03/2012] [Indexed: 11/05/2022]
Abstract
Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.
Collapse
Affiliation(s)
- X Z Yan
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Grandin HM, Gemperli AC, Dard M. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:181-202. [PMID: 22070552 DOI: 10.1089/ten.teb.2011.0365] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enamel matrix derivative (EMD), the active component of Emdogain®, is a viable option in the treatment of periodontal disease owing to its ability to regenerate lost tissue. It is believed to mimic odontogenesis, though the details of its functioning remain the focus of current research. OBJECTIVE The aim of this article is to review all relevant literature reporting on the composition/characterization of EMD as well as the effects of EMD, and its components amelogenin and ameloblastin, on the behavior of various cell types in vitro. In this way, insight into the underlying mechanism of regeneration will be garnered and utilized to propose a model for the molecular arrangement and functioning of EMD. METHODS A review of in vitro studies of EMD, or components of EMD, was performed using key words "enamel matrix proteins" OR "EMD" OR "Emdogain" OR "amelogenin" OR "ameloblastin" OR "sheath proteins" AND "cells." Results of this analysis, together with current knowledge on the molecular composition of EMD and the structure and regulation of its components, are then used to present a model of EMD functioning. RESULTS Characterization of the molecular composition of EMD confirmed that amelogenin proteins, including their enzymatically cleaved and alternatively spliced fragments, dominate the protein complex (>90%). A small presence of ameloblastin has also been reported. Analysis of the effects of EMD indicated that gene expression, protein production, proliferation, and differentiation of various cell types are affected and often enhanced by EMD, particularly for periodontal ligament and osteoblastic cell types. EMD also stimulated angiogenesis. In contrast, EMD had a cytostatic effect on epithelial cells. Full-length amelogenin elicited similar effects to EMD, though to a lesser extent. Both the leucine-rich amelogenin peptide and the ameloblastin peptides demonstrated osteogenic effects. A model for molecular structure and functioning of EMD involving nanosphere formation, aggregation, and dissolution is presented. CONCLUSIONS EMD elicits a regenerative response in periodontal tissues that is only partly replicated by amelogenin or ameloblastin components. A synergistic effect among the various proteins and with the cells, as well as a temporal effect, may prove important aspects of the EMD response in vivo.
Collapse
|
9
|
Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation. Clin Oral Investig 2011; 16:867-78. [PMID: 21584694 DOI: 10.1007/s00784-011-0558-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/18/2011] [Indexed: 12/25/2022]
Abstract
Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared not to induce ectopic bone formation, longer-term studies are required to determine whether it promotes the final stages of osteoblast formation and mineralization at gene and protein levels. While used in clinical applications, whether Emdogain and other commercial preparations of EMPs truly possess the capacity to induce the regeneration of bone or other components of the periodontium remains to be established.
Collapse
|
10
|
Almqvist S, Werthén M, Johansson A, Agren MS, Thomsen P, Lyngstadaas SP. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:947-954. [PMID: 20012165 DOI: 10.1007/s10856-009-3952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100 and 1000 microg/ml increased binding of NHDF via several integrins, including alphavbeta3, alphavbeta5 and alpha5beta1. Further, both surface interaction and cellular uptake of amelogenin by NHDF was observed using scanning and transmission electron microscopy. Gene microarray studies showed >8-fold up or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix.
Collapse
Affiliation(s)
- Sofia Almqvist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Box 412, 405 30, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | |
Collapse
|
12
|
Bosshardt DD. Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 2008; 35:87-105. [DOI: 10.1111/j.1600-051x.2008.01264.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Stimulation of cytokines in osteoblasts cultured on enamel matrix derivative. ACTA ACUST UNITED AC 2008; 106:133-8. [PMID: 18585627 DOI: 10.1016/j.tripleo.2008.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 01/24/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the influence of enamel matrix derivative (EMD) on the release of transforming growth factor beta 1 (TGF-beta1), interleukin-6 (IL-6), insulin-like growth factor I (IGF-I), bone morphogenetic protein 2 (BMP-2), and osteoprotegerin (OPG) in human and mouse osteoblasts. STUDY DESIGN Human MG-63 and mouse MC3T3-E1 cells were seeded onto 6-well culture plates at an initial density of 5,000/cm(2) and grown in Dulbecco's eagle medium (DMEM) with 10% fetal bovine serum for 24 h. Then cells were cultured either with 100 microg/mL EMD added to DMEM or with DMEM only. After 2, 5, and 9 days' incubation the culture medium was collected and analyzed by enzyme-linked immunosorbent analysis. Data were analyzed using Student t test. RESULTS The EMD treatment significantly increased the production of IL-6 and TGF-beta1 (P < .05) at all time points. The release of OPG was also increased in mouse osteoblasts (P < .05). IGF-I and BMP-2 were not detected in both control and EMD-treated groups. CONCLUSION This study suggests that the stimulatory effects of EMD on tissue regeneration are mediated by the up-regulation of local mediators released by osteoblasts.
Collapse
|