1
|
Qiao ZB, Gu MZ, Wang YW, Ma BB, Pang SS. Combination treatment with whole body vibration and simvastatin improves the early osseointegration in aged rats. Bone Rep 2024; 22:101790. [PMID: 39540057 PMCID: PMC11558254 DOI: 10.1016/j.bonr.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Current research has demonstrated that Simvastatin (SIM) and Whole Body Vibration (WBV) actively contributes to the repair of osteoporotic bones. However, there is still limited knowledge regarding the impact of this combined therapy on osseointegration in elderly individuals. Objective: The objective of this study was to verify the influence of WBV and SIM combination treatment on Titanium implants' fixation strength in aged rats. Methods Male Sprague-Dawley rats at 24 months old were utilized for this investigation. Titanium rods were surgically inserted into the distal femoral canal on their left side. Subsequently, all animals were randomly assigned to one of four groups: Control group; WBV group; SIM group; and WBV + SIM group. Each group received Saline, Whole Body Vibration, Simvastatin, or a combination of Whole Body Vibration plus Simvastatin treatment until they reached their natural death after 12 weeks. The bilateral femurs and serum samples from these rats were collected for evaluation purposes. Results Both WBV and SIM treatments exhibited an increase in bone mass, osseointegration, and push-out force compared to the Control group (all, P < 0.05). Additionally, levels of oxidative stress and inflammatory factors decreased with both treatments when compared to the Control group alone (all, P < 0.05). Notably, the WBV + SIM group displayed superior effects on new bone formation, biomechanical strength, BMP2 expression in bone tissue as well as SOD2 expression regulation related to bone repair genes when compared to other groups involved in this study (all, P < 0.05). Conclusion These findings suggest that combining physiotherapy (WBV) with drug therapy (SIM) proves beneficial for enhancing implant fixation in aged rats.
Collapse
Affiliation(s)
- Zheng-Bo Qiao
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Ming-Zhong Gu
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Yu-Wu Wang
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Bin-Bin Ma
- Department of Orthopedics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Shan-Shan Pang
- Department of General Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| |
Collapse
|
2
|
Młynarek-Żak K, Żmudzki J. The effect of porous compliance bushings in a dental implant on the distribution of occlusal loads. Sci Rep 2024; 14:1607. [PMID: 38238380 PMCID: PMC10796672 DOI: 10.1038/s41598-024-51429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/02/2023] [Indexed: 01/22/2024] Open
Abstract
Porous dental implants are clinically used, but the mechanism of load distribution for stepped implant shaft surrounded by compliance bushings is still not known, especially for different bone conditions. The aim of the study was to assess the impact of the design of a dental implant with compliance bushings (CBs) on the occlusal load distribution during primary and secondary stability using finite element simulation (FEA), with a distinction between low and high quality cervical support under primary stability. The FEA of the oblique occlusal load transfer (250 N; 45°) was carried out for implants under variable bone conditions. The stepped shaft in the intermediate part of the dental implant was surrounded by CBs with an increasing modulus of elasticity of 2, 10 and 50 GPa. With a smaller Young's modulus of the bushings the increase of stress in the trabecular bone indicated that more bone tissue can be protected against disuse. The beneficial effect for the trabecular bone derived from the reduction of the stiffness of the bushings in relation to the loss of the implant's load bearing ability can be assessed using the FEM method.
Collapse
Affiliation(s)
- Katarzyna Młynarek-Żak
- Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland
| | - Jarosław Żmudzki
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100, Gliwice, Poland.
| |
Collapse
|
3
|
Keshari R, Chand P, Singh BP, Jurel SK, Singh R, Singh PK. Comparison of Crestal Bone Loss and Osteocalcin Release Kinetics in Immediately and Delayed Loaded Implants: A Randomised Controlled Trial. J Prosthodont 2022; 31:579-584. [PMID: 35150170 DOI: 10.1111/jopr.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To compare concentration and release kinetics of osteocalcin and crestal bone loss under immediate and delayed loading conditions during osseointegration. MATERIALS AND METHODS Forty-one patients who were indicated for rehabilitation with dental implants randomly received either implant with placement of permanent prosthesis after 3 months (delayed loading) or implant with placement of permanent prosthesis within 7 days (immediate loading). Radiographic assessment of crestal bone loss at the mesial and distal surface was done at 3, 6 and 12 months after implant placement. Peri-implant sulcular fluid was collected immediately from the buccal surface at two sites after implant insertion and also, at 7, 15, 30 and 90 days after surgery. The level of osteocalcin was evaluated using ELISA and data were compared using two sample t-test. Differences between two groups were analyzed by unpaired Student's t test. Intragroup comparison was done by repeated measures ANOVA. RESULTS Mean crestal bone loss was lower in the immediate loading group compared to the delayed loading group at 3, 6 and 12 months (P < 0.001). Intragroup comparison revealed a statistically significant increase in osteocalcin levels in both group I (F = 26712.2) and group II (F = 10497.2) at the predetermined time intervals CONCLUSIONS: Lesser crestal bone loss and early release of osteocalcin was found in the immediately loaded condition than in the delayed loaded condition. The study substantiates that immediately loaded implants shows less crestal bone as well as early release of osteocalcin facilitating upregulation of bone metabolism, improving long term health of bone and prognosis of implants. Immediately loaded implants can be a better treatment protocol provided there is adequate bone and primary stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rishabh Keshari
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Pooran Chand
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Balendra P Singh
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Sunit K Jurel
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Ranjana Singh
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Punit Kumar Singh
- Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| |
Collapse
|
4
|
Xu Y, Zhang L, Xu J, Li J, Wang H, He F. Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: A preclinical vivo experimental study. Clin Oral Implants Res 2021; 32:1366-1383. [PMID: 34416034 DOI: 10.1111/clr.13837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of the current study was to explore effects of strontium-incorporated titanium implant surfaces by hydrothermal treatment on osseointegration in diabetic rats. MATERIALS AND METHODS The surface characteristics of SLA and SLA-Sr surfaces were detected by related instruments. Thirty-six male Sprague-Dawley rats were induced into diabetes, and thirty-six rats were normal. SLA and SLA-Sr implants were, respectively, inserted into bilateral tibial metaphysis of each rat. Percentage of bone-to-implant contact (BIC%) and percentage of bone area (BA%) were analyzed at 4 and 8 weeks after implantation. Immunohistochemistry of osteoprotegerin (OPG) and Wnt5a were conducted at 1 and 4 weeks. Gene expression levels of inflammatory cytokines and related signaling molecules in peri-implant bone tissue were detected at 3 and 7 days. RESULTS Strontium was uniformly distributed on SLA-Sr surfaces, and it was released in an effective concentration range. SLA-Sr surfaces showed significantly higher BIC% in diabetic rats at 4 (p < .05) and 8 weeks (p < .05). Besides, it displayed higher BIC% at 4 weeks (p < .05) in normal rats. Also, SLA-Sr surfaces upregulated expression of OPG at 4 weeks (p < .05) in diabetic rats. What's more, SLA-Sr surfaces downregulated inflammation (TNF-α, IL-1β, and IL-6; p < .01) in diabetic rats at 3 days. In addition, expression of Wnt5a and ROR2 was upregulated (p < .05) at 7 days after implantation under diabetes. CONCLUSION It is suggested that strontium-incorporated titanium implant surfaces by hydrothermal treatment could enhance implant osseointegration as compared with SLA implant surfaces in diabetic rats.
Collapse
Affiliation(s)
- Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liefen Zhang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangang Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fuming He
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Ye X, Gu Y, Bai Y, Xia S, Zhang Y, Lou Y, Zhu Y, Dai Y, Tsoi JKH, Wang S. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies. Front Bioeng Biotechnol 2021; 9:626892. [PMID: 33987172 PMCID: PMC8111077 DOI: 10.3389/fbioe.2021.626892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Being as a non-pharmacological medical intervention, low-magnitude high-frequency vibration (LMHFV) has shown a positive effect on bone induction and remodeling for various muscle diseases in animal studies, among which dental implants osteointegration were reported to be improved as well. However, whether LMHFV can be clinically used in dental implant is still unknown. In this study, efficacy, parameters and side effects of LMHFV were analyzed via data before 15th July 2020, collecting from MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened 1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included. SYRCLE's tool was performed to assess the possible risk of bias for each study. The GRADE approach was applied to evaluate the quality of evidence. Random effects meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P = 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active role on BIC and BV/TV data according to the GRADE analysis results (medium and low quality of evidence). This might illustrate LMHFV to be a worthy way in improving osseointegration clinically, especially for osteoporosis. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: NCT02612389
Collapse
Affiliation(s)
- Xinjian Ye
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Gu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yijing Bai
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Xia
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Lou
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Dai
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - James Kit-Hon Tsoi
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuhua Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China.,Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Shobara K, Ogawa T, Shibamoto A, Miyashita M, Ito A, Sitalaksmi RM. Osteogenic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study. Clin Oral Implants Res 2021; 32:641-650. [PMID: 33711168 DOI: 10.1111/clr.13738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aims of this study were (i) to compare the osteogenic impact of low-intensity pulsed ultrasound (LIPUS) and low-magnitude high-frequency (LMHF) loading achieved with whole-body vibration (WBV) on peri-implant bone healing and implant osseointegration in rat tibiae, and (ii) to examine their combined effect on these processes. MATERIAL AND METHODS Titanium implants were inserted in the bilateral tibiae of 28 Wistar rats. Rats were randomly divided into four groups: LIPUS + WBV, LIPUS, WBV, and control. LIPUS was applied to the implant placement site for 20 min/day on 5 days/week (1.5 MHz and 30 mW/cm2 ). WBV was applied for 15 min/day on 5 days/week (50 Hz and 0.5 g). In the LIPUS + WBV group, both stimuli were applied under the same stimulation conditions as in the LIPUS and WBV groups. After 4 weeks of treatment, peri-implant bone healing and implant osseointegration were assessed using removal torque (RT) tests, micro-CT analyses of relative gray (RG) value, and histomorphometrical analyses of bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV). RESULTS The LIPUS + WBV group had significantly greater BIC than the WBV and control groups. Although there were no significant intergroup differences in RT, RG value, and BV/TV, these variables tended to be greater in the LIPUS + WBV group than the other groups. CONCLUSIONS The combination of LIPUS and LMHF loading may promote osteogenic activity around the implant. However, further study of the stimulation conditions of LIPUS and LMHF loading is necessary to better understand the osteogenic effects and the relationship between the two stimuli.
Collapse
Affiliation(s)
- Kenta Shobara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiyo Ito
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ratri M Sitalaksmi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Department of Prosthodontics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Zhou C, Chen Y, Zhu Y, Lin G, Zhang L, Liu X, He F. Antiadipogenesis and Osseointegration of Strontium-Doped Implant Surfaces. J Dent Res 2019; 98:795-802. [PMID: 31136719 DOI: 10.1177/0022034519850574] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The decreased bone density and increased marrow adiposity that occur with aging may influence the outcome of dental implants. Strontium (Sr), an anabolic agent for the treatment of osteoporosis, has an inhibitory effect on adipogenesis but favors osteogenesis of bone marrow–derived mesenchymal stem cells (BMSCs). However, little is known about the effects and mechanisms of local Sr release on adipogenesis during bone formation in aged bone. In this study, a potential dental implant material, Sr-doped titanium, was developed via a sandblasted, large-grit, and acid-etched (SLA) method combined with a hydrothermal process. The effects of Sr-SLA on initial adhesion, proliferation, intracellular redox state, and adipogenic differentiation of senescent BMSCs were investigated. The in vitro results showed that Sr-SLA promoted spreading of senescent BMSCs via upregulation of the gene and protein expression of integrin β1. In addition, it was revealed that Sr-SLA could reduce intracellular oxidative stress by decreasing the levels of reactive oxygen species and oxygen radicals and increasing the content of glutathione peroxidase. More important, Sr-SLA suppressed lipid droplet production and adipokines expression via downregulation of transcription peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 1, thus inhibiting adipogenesis. Finally, the Sr-SLA implants were implanted in tibiae of aged (18-mo-old) Sprague-Dawley rats for 2 and 8 wk. Histomorphometric analysis demonstrated that Sr-SLA implants significantly enhanced osseointegration, and the inhibition effect on marrow adipose tissue formation was moderate. All these results suggest that due to the multiple functions produced by Sr, antiadipogenesis capability and rapid osseointegration were enhanced by the Sr-SLA coatings, which have potential application in dental implantation in the aged population.
Collapse
Affiliation(s)
- C. Zhou
- Department of Prothodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y.Q. Chen
- Department of Prothodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y.H. Zhu
- Department of Prothodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - G.F. Lin
- Department of General Dentistry, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L.F. Zhang
- Department of Prothodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - X.C. Liu
- Department of Prothodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - F.M. He
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Wang S, Ogawa T, Zheng S, Miyashita M, Tenkumo T, Gu Z, Lian W, Sasaki K. The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in Beagle dogs. J Prosthodont Res 2018; 62:497-502. [PMID: 30139715 DOI: 10.1016/j.jpor.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/04/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Low-magnitude, high-frequency (LMHF) loading plays an important role in bone healing. The present study aimed to evaluate the effect of LMHF loading applied directly to titanium dental implants on peri-implant bone healing and implant osseointegration. METHODS The mandibular premolars and molars were extracted from six male Beagle dogs. Three months post-extraction, each of the six dogs had three titanium implants (Aadva Standard Implant Narrow, Φ3.3×8mm) inserted into the mandibular premolar and molar area (three implants per side). In each animal, one side was randomly selected to undergo daily LMHF loading (treatment group), while the other side had no further intervention (control). The loading was applied directly to the implant abutment using an individual jig and a custom-made loading device (8μm, 100Hz). The implant stability quotient (ISQ) was tested every week. Three dogs were euthanized after 2 weeks, and three were euthanized after 8 weeks. Tissue samples were fixed and stained for micro-computed tomography (micro-CT) and histomorphometric analyses. Data were analyzed statistically, with significance set at p<0.05. RESULTS The treatment group had significantly increased peri-implant bone volume relative to tissue volume in region of interest 2 (100-500μm) compared with the control group after 2 weeks of loading (p<0.05); however, there was no significant difference between groups after 8 weeks. The ISQ value and the micro-CT results did not differ between groups during the study period. CONCLUSIONS LMHF loading positively influenced peri-implant bone healing in the early healing period.
Collapse
Affiliation(s)
- Shuhua Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Sheng Zheng
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Zhiyuan Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenhai Lian
- School of Stomatology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Enhanced bone healing in porous Ti implanted rabbit combining bioactive modification and mechanical stimulation. J Mech Behav Biomed Mater 2018; 86:336-344. [PMID: 30007182 DOI: 10.1016/j.jmbbm.2018.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
To improve the bone healing efficiency of porous titanium implants, desired biological properties of implants are mandatory, involving bioactivity, osteoconductivity, osteoinductivity and a stable environment. In this study, bare porous titanium (abbr. pTi) with the porosity of 70% was fabricated by vacuum diffusion bonding of titanium meshes. Hydroxyapatite-coated pTi (abbr. Hap-pTi) was obtained by successively subjecting pTi to alkali heat treatment, pre-calcification and simulated body fluid. Both pTi and Hap-pTi were respectively implanted into the tibia defect model (ϕ10 mm × 6 mm) in New Zealand white rabbits, then subjected to non-invasively axial compressive loads at high-magnitude low-frequency (HMLF), which were denoted as F-pTi and F-Hap-pTi, respectively. Bone repairing efficiencies were analyzed by postoperative X-ray examination, optical observation and HE staining after 14 and 30 days of implantation. ALP and OCN contents in serum were also examined at 30 days. Results showed that the sham group and sham group with mechanical stimulation (abbr. F-sham) preferably caused bone fractures. Qualitatively, Hap-pTi reduced the risk of bone fractures and enhanced bone healing slightly more effectively compared to bared pTi. However, both Hap-pTi combined with mechanical stimulation and F-pTi in the case of bioactive modification could result in a higher bone healing efficiency (F-Hap-pTi). The molecular signaling investigation of ALP and OCN contents in serum further revealed a probable synergistic effect of Hap coating coupling with HMLF compression on improving bone repairing efficiency. It provides a candidate of clinically applicable therapy for osseous defects.
Collapse
|
11
|
Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci 2018. [PMID: 29531334 PMCID: PMC5944597 DOI: 10.1038/s41368-018-0009-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to examine the effect of low-magnitude, high-frequency (LMHF) loading, and anti-osteoporosis medications such as parathyroid hormone (PTH) and bisphosphonates on peri-implant bone healing in an osteoporosis model, and to assess their combined effects on these processes. Thirteen-week-old ovariectomized rats (n = 44) were divided into three groups: PTH, alendronate, and saline. After 3 weeks of drug administration, titanium implants were inserted into the tibiae. Each group was subdivided into two groups: with or without LMHF loading via whole-body vibration (50 Hz at 0.5 g, 15 min per day, 5 days per week). Rats were killed 4 weeks following implantation. Removal torque test, micro-CT analyses (relative gray (RG) value, water = 0, and implant = 100), and histomorphometric analyses (bone-to-implant contact (BIC) and peri-implant bone formation (bone volume/tissue volume (BV/TV))) were performed. Removal torque values and BIC were significantly differed by loading and drug administration (ANOVA). Post hoc analysis showed that PTH-treated groups were significantly higher than the other drug-treated groups. BV/TV was significantly enhanced by PTH administration. In cortical bone, RG values were significantly increased by loading. In trabecular bone, however, RG values were significantly increased by PTH administration. These findings suggest that LMHF loading and PTH can act locally and additively on the bone healing process, improving the condition of implant osseointegration. Whole-body vibration and administration of a hormone used to treat osteoporosis can enhance bone healing at the site of a titanium implant. Toru Ogawa of Tohoku University Graduate School of Dentistry in Sendai, Japan, and colleagues gave anti-osteoporosis medications, either parathyroid hormone or the bisphosphonate drug alendronate, to female rat models of osteoporosis. After three weeks of drug administration or a saline control, the researchers inserted titanium implants into the rats’ leg bones. Half the rats were then exposed to whole-body vibration, which applies low-magnitude, high-frequency mechanical forces. A multitude of tests showed that parathyroid hormone improved bone healing at the implant more than alendronate or saline did. The vibrational stimulus further increased the healing. The findings suggest that these treatments could aid in oral bone healing for patients receiving dental implants.
Collapse
Affiliation(s)
- Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Joke Duyck
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ignace Naert
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
12
|
Cardoso MV, de Rycker J, Chaudhari A, Coutinho E, Yoshida Y, Van Meerbeek B, Mesquita MF, da Silva WJ, Yoshihara K, Vandamme K, Duyck J. Titanium implant functionalization with phosphate-containing polymers may favour in vivo osseointegration. J Clin Periodontol 2017; 44:950-960. [DOI: 10.1111/jcpe.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Marcio V. Cardoso
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| | - Judith de Rycker
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| | - Amol Chaudhari
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| | - Eduardo Coutinho
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
- School of Dentistry; Fluminense Federal University; Nova Friburgo Brazil
| | - Yasuhiro Yoshida
- Department of Biomaterials; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Bart Van Meerbeek
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| | - Marcelo F. Mesquita
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
- Department of Prosthodontics and Periodontology; Piracicaba Dental School; State University of Campinas; Piracicaba Brazil
| | - Wander J. da Silva
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
- Department of Prosthodontics and Periodontology; Piracicaba Dental School; State University of Campinas; Piracicaba Brazil
| | - Kumiko Yoshihara
- Center for Innovative Clinical Medicine; Okayama University Hospital; Okayama Japan
| | - Katleen Vandamme
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| | - Joke Duyck
- Department of Oral Health Sciences & Dental Clinic; Biomaterials - Biomat & Restorative Dentistry; KU Leuven & University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
13
|
Chen B, Lin T, Yang X, Li Y, Xie D, Zheng W, Cui H, Deng W, Tan X. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Int J Mol Med 2016; 38:1531-1540. [PMID: 28026000 DOI: 10.3892/ijmm.2016.2757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
The positive effect of low-magnitude, high‑frequency (LMHF) vibration on implant osseointegration has been demonstrated; however, the underlying cellular and molecular mechanisms remain unknown. The aim of this study was to explore the effect of LMHF vibration on the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) cultured on hydroxyapatite (HA)-coated surfaces in an in vitro model as well as to elucidate the molecular mechanism responsible for the effects of LMHF vibration on osteogenesis. LMHF vibration resulted in the increased expression of fibronectin, which was measured by immunostaining and RT-qPCR. Stimulation of BMSCs by LMHF vibration resulted in the rearrangement of the actin cytoskeleton with more prominent F-actin. Moreover, the expression of β1 integrin, vinculin and paxillin was notably increased following LMHF stimulation. Scanning electron microscope observations revealed that there were higher cell numbers and more extracellular matrix attached to the HA-coated surface in the LMHF group. Alkaline phosphatase activity as well as the expression of osteogenic-specific genes, namely Runx2, osterix, collagen I and osteocalcin, were significantly elevated in the LMHF group. In addition, the protein expression of Wnt10B, β-catenin, Runx2 and osterix was increased following exposure to LMHF vibration. Taken together, the findings of this study indicate that LMHF vibration promotes the adhesion and the osteogenic differentiation of BMSCs on HA-coated surfaces in vitro, and LMHF vibration may directly induce osteogenesis by activating the Wnt/β‑catenin signaling pathway. These data suggest that LMHF vibration enhances the osseointegration of bone to a HA-coated implant, and provide a scientific foundation for improving bone-implant osseointegration through the application of LMHF vibration.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, Guangdong 510630, P.R. China
| | - Wenhui Zheng
- Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weimin Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| | - Xin Tan
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
14
|
Hu Z, Welch I, Yuan X, Pollmann SI, Nikolov HN, Holdsworth DW. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging. Phys Med Biol 2015; 60:6423-39. [DOI: 10.1088/0031-9155/60/16/6423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 2015; 71:17-24. [PMID: 25304090 DOI: 10.1016/j.bone.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Tie Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Guoli Yang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China.
| |
Collapse
|
16
|
Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 2015; 26:303-13. [PMID: 25236876 DOI: 10.1007/s00198-014-2857-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/13/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED Mechanical loading at high frequency affects bone. Whether this also applies to osteoporotic bone, combined or not with bisphosphonate therapy, was investigated in this animal study through imaging. An anabolic effect of high-frequency loading on osteoporotic bone, however non-synergistic with bisphosphonates, was found, thereby revealing its potential for treatment of osteoporosis. INTRODUCTION In an effort to elucidate the effect of high-frequency (HF) loading on bone and to optimize its potential for treatment osteoporosis, this study aimed to investigate the effect of HF loading via whole body vibration (WBV), alone or in association with bisphosphonate treatment (alendronate--ALN), on the micro-architecture of ovariectomy (OVX)-induced compromised bone. METHODS Eighty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX). OVX animals were treated either with ALN (3 days/week at a dose of 2 mg/kg) or with saline solution. Each group (shOVX, OVX, ALN) was further divided into subgroups relative to the loading status (sham-WBV versus WBV) and the duration of experimental period (4 days versus 14 days). (Sham)WBV loading was applied for 10 min/day using 10 consecutive steps of HF loading (130, 135, 140, 145, 150, 130, 135, 140, 145, 150 Hz). Tibial bone structural responses to WBV and/or ALN treatment were analyzed using ex vivo micro-computed tomography. RESULTS The animal's hormonal status displayed a major impact on the trabecular and cortical bone structural parameters. Furthermore, mechanical treatment with HF WBV increased the cortical thickness and reduced the medullar area in OVX rats. However, OVX trabecular bone was not affected by HF stimuli. Finally, ALN prevented OVX-associated bone loss, but the association of ALN with WBV did not lead to a synergistic bone response in OVX bone. CONCLUSIONS HF WBV mechanical stimulation displayed an anabolic effect on osteoporotic cortical bone, confirming its therapeutic properties for enhancing compromised bone. Additionally, its association with bisphosphonates' administration did not produce any additive effect on the bone micro-architecture in the present study.
Collapse
Affiliation(s)
- K Hatori
- Department of Oral Health Sciences, BIOMAT Research Group, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Chatterjee M, Hatori K, Duyck J, Sasaki K, Naert I, Vandamme K. High-frequency loading positively impacts titanium implant osseointegration in impaired bone. Osteoporos Int 2015; 26:281-90. [PMID: 25164696 DOI: 10.1007/s00198-014-2824-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED High-frequency loading via whole body vibration promotes bone formation and increases bone strength. Whether this translates to positive titanium implant osseointegration in osteoporotic bone was explored in this animal study. An anabolic effect of not only bisphosphonate treatment but also high-frequency loading on implant osseointegration in osteoporotic bone was observed. INTRODUCTION The present study investigated the impact of high-frequency (HF) loading, applied via whole body vibration (WBV), on titanium implant osseointegration in healthy versus ovariectomy-induced compromised versus pharmacologically treated compromised bone. METHODS A custom-made Ti implant was inserted into the metaphyseal tibia of 59 rats and left to heal for either 4 or 14 days. Rats were divided into six groups according to their hormonal and mechanical status. WBV, consisting of 10 consecutive frequency steps at an acceleration of 0.3 g, was applied daily for either 4 or 14 days. Tissue samples were processed for quantitative histology at the tibial cortical and medullar level. Data were analyzed by three-way ANOVA and by post hoc pairwise comparisons. RESULTS The bone healing response at the interface and surrounding titanium implants was negatively influenced by osteoporotic bone conditions, mainly at the trabecular bone level. Furthermore, the administration of bisphosphonates for preventing the ovariectomy-induced impaired peri-implant response was successful. Finally, the effect of HF WBV loading on the peri-implant bone healing was dependent on the bone condition and was anabolic solely in untreated osteoporotic trabecular bone when applied for an extended period of time. CONCLUSIONS The bone healing response to implant installation is compromised in osteoporotic bone conditions, in particular at the trabecular bone compartment. Meanwhile, not only pharmacological treatment but also mechanical loading via HF WBV can exert a positive effect on implant osseointegration in this specific bone micro-environment. The peri-implant cortical bone, however, seems to be less sensitive to HF WBV loading influences.
Collapse
Affiliation(s)
- M Chatterjee
- Department of Oral Health Sciences & Dental Clinic, BIOMAT Research Group, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7 blok a, box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Ogawa T, Vandamme K, Zhang X, Naert I, Possemiers T, Chaudhari A, Sasaki K, Duyck J. Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration. Calcif Tissue Int 2014; 95:467-75. [PMID: 25209971 DOI: 10.1007/s00223-014-9896-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Low-magnitude high-frequency loading, applied by means of whole body vibration (WBV), affects the bone. Deconstructing a WBV loading stimulus into its constituent elements and investigating the effects of frequency and acceleration individually on bone tissue kinetics around titanium implants were aimed for in this study. A titanium implant was inserted in the tibia of 120 rats. The rats were divided into 1 control group (no loading) and 5 test groups with low (L), medium (M) or high (H) frequency ranges and accelerations [12-30 Hz at 0.3×g (F(L)A(H)); 70-90 Hz at 0.075×g (F(M)A(M)); 70-90 Hz at 0.3×g (F(M)A(H)); 130-150 Hz at 0.043×g (F(H)A(L)); 130-150 Hz at 0.3×g (F H A H)]. WBV was applied for 1 or 4 weeks. Implant osseointegration was evaluated by quantitative histology (bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV)). A 2-way ANOVA (duration of experimental period; loading mode) with α = 0.05 was performed. BIC significantly increased over time and under load (p < 0.0001). The highest BICs were found for loading regimes at high acceleration with medium or high frequency (F(M)A(H) and F(H)A(H)), and significantly differing from F(L)A(H) and F(M)A(M) (p < 0.02 and p < 0.005 respectively). BV/TV significantly decreased over time (p < 0.0001). Loading led to a site-specific BV/TV increase (p < 0.001). The highest BV/TV responses were found for F(M)A(H) and F(H)A(H), significantly differing from F(M)A(M) (p < 0.005). The findings reveal the potential of high-frequency vibration loading to accelerate and enhance implant osseointegration, in particular when applied at high acceleration. Such mechanical signals hold great, though untapped, potential to be used as non-pharmacologic treatment for improving implant osseointegration in compromised bone.
Collapse
Affiliation(s)
- Toru Ogawa
- BIOMAT KU Leuven, Department of Oral Health Sciences & Dental Clinic, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7, P.O. Box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang YQ, Qi MC, Xu J, Xu J, Liu HW, Dong W, Li JY, Hu M. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep 2014; 10:2835-42. [PMID: 25270245 PMCID: PMC4227418 DOI: 10.3892/mmr.2014.2597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/04/2014] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats.
Collapse
Affiliation(s)
- Yong-Qiang Liang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Meng-Chun Qi
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jiang Xu
- Department of Stomatology, Tongchuan City People's Hospital, Tongchuan, Shaanxi 727100, P.R. China
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua-Wei Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wei Dong
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jin-Yuan Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Min Hu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
20
|
Wang S, Liu Y, Tang Y, Zhao W, Li J, Yang Y, Du W, Yu H. Direct Radial LMHF Microvibration Induced Bone Formation and Promoted Implant Osseointegration. Clin Implant Dent Relat Res 2014; 18:401-9. [PMID: 24852608 DOI: 10.1111/cid.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mechanical loading is known to play an important role in bone remodeling. PURPOSE This study aimed to evaluate the effect of direct low-magnitude high-frequency (LMHF) microvibration on dental implant bone formation and osseointegration. MATERIALS AND METHODS Titanium implants were installed in rabbit tibiae. The implants in the left legs were loaded with mechanical vibration (15 μm) at 10, 20, 30, and 40 Hz (10, 20, 30, and 40 Hz groups, respectively) for 30 minutes every day. The implants on the right legs were used as a sham control and did not receive a vibration load. RESULTS After 20 days, the 10, 20, and 30 Hz groups showed significantly greater newly formed bone volume, density, ratio of the bone surface area to the trabecular bone surface area, and ratio of the bone surface area in direct contact with osteoclasts versus the total bone surface area in the region of interest compared with the sham control group, especially the 20 Hz group. However, the 40 Hz group did not. CONCLUSIONS In conclusion, the application of direct LMHF (10, 20, or 30 Hz) vibration on the implants promoted bone formation and osseointegration, especially at 20 Hz; however, the use of 40 Hz did not result in any significant improvement.
Collapse
Affiliation(s)
- Shirui Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junying Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Prati A, Casati M, Ribeiro F, Cirano F, Pastore G, Pimentel S, Casarin R. Release of bone markers in immediately loaded and nonloaded dental implants: a randomized clinical trial. J Dent Res 2013; 92:161S-7S. [PMID: 24158337 PMCID: PMC3860065 DOI: 10.1177/0022034513504951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to compare the release of bone markers during osseointegration of immediately loaded and nonloaded implants. Forty patients who were indicated for rehabilitation with dental implants randomly received either implant and prosthesis placement within 72 hours (group IM) or implant insertion and no prosthesis placement (group NL). Peri-implant crevicular fluid was collected immediately after implant insertion and 7, 15, 30, 60, 90, and 120 days after surgery and levels of osteoprotegerin, transforming growth factors, osteocalcin, osteopontin, and parathyroid hormone were evaluated using Luminex assay. Bleeding index and peri-implantar sulcus depth were also evaluated. The data were compared using statistical tests (α = 5%). No statistical difference was found regarding demographic and clinical parameters (p > .05). Transforming growth factors, osteoprotegerin, osteopontin, and parathyroid hormone presented an earlier release peak in group IM than in NL group (p < .05). Osteocalcin achieved higher levels in group IM versus group NL between 7 and 30 days of evaluation (p < .05). It may be concluded that earlier loading positively modulates bone mediators release around immediately loaded implants when compared with nonloaded dental implants.
Collapse
Affiliation(s)
- A.J. Prati
- Division of Maxillofacial Surgery, Paulista University, Sao Paulo, Brazil
| | - M.Z. Casati
- Division of Periodontics, Paulista University, Sao Paulo, Brazil
| | - F.V. Ribeiro
- Division of Periodontics, Paulista University, Sao Paulo, Brazil
| | - F.R. Cirano
- Division of Periodontics, Paulista University, Sao Paulo, Brazil
| | - G.P. Pastore
- Division of Maxillofacial Surgery, Paulista University, Sao Paulo, Brazil
| | - S.P. Pimentel
- Division of Periodontics, Paulista University, Sao Paulo, Brazil
| | - R.C.V. Casarin
- Division of Periodontics, Paulista University, Sao Paulo, Brazil
| |
Collapse
|
22
|
Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2013; 47:3-13. [PMID: 24268798 DOI: 10.1016/j.jbiomech.2013.09.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.
Collapse
Affiliation(s)
- Vincent Mathieu
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Romain Vayron
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Gilles Richard
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Grégory Lambert
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Salah Naili
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, CHU H. Mondor, 94017 Créteil cedex, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.
| |
Collapse
|
23
|
Yamamoto M, Ogawa T, Yokoyama M, Koyama S, Sasaki K. Influence of immediate and early loading on bone metabolic activity around dental implants in rat tibiae. Clin Oral Implants Res 2013; 25:1084-90. [PMID: 23802506 DOI: 10.1111/clr.12218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The aim of this study was to examine the influence of immediate and early loading on dynamic changes in bone metabolism around dental implants using bone scintigraphy. MATERIAL AND METHODS Two titanium implants were inserted in the right tibiae of 21 rats. Closed coil springs with 4.0-N loads were applied parallel to the upper portion of the implants for 35 days. According to the load application timing, rats were divided into three groups: immediate loading (IL) group, early loading 1 day after implant insertion (1-D early loading [EL]) group, and loading 3 days after implant insertion (3-D EL) group. Rats were intravenously injected with technetium-99 m-methylene diphosphonate (Tc99 m-MDP) (74 MBq/rat) and scanned by bone scintigraphy at 1, 4, 7, 11, 14, 21, 28, and 35 days after load application. The ratio of accumulation of Tc99 m-MDP around the implants to that of a reference site (uptake ratio) was calculated to evaluate bone metabolism. RESULTS In every group, the uptake ratio increased until 7 days after load application and then gradually decreased. It was significantly higher than baseline at 4, 7, 11, and 14 days (P < 0.001). The uptake ratio in the 1-D EL and 3-D EL groups were significantly higher than that in the control group and also that in the IL group (P < 0.001). CONCLUSIONS Bone metabolism initially increased and then gradually decreased to baseline despite differences in load timing. Increases in bone metabolic activity differed according to load application timing; the later the load application, the more enhanced the bone metabolism.
Collapse
Affiliation(s)
- Miou Yamamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | |
Collapse
|
24
|
Sato N, Kuwana T, Yamamoto M, Suenaga H, Anada T, Koyama S, Suzuki O, Sasaki K. Bone response to immediate loading through titanium implants with different surface roughness in rats. Odontology 2013; 102:249-58. [PMID: 23563749 DOI: 10.1007/s10266-013-0107-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Naoko Sato
- Tohoku University Hospital, Maxillofacial Prosthetics Clinic, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kono T, Ayukawa Y, Moriyama Y, Kurata K, Takamatsu H, Koyano K. The Effect of Low-Magnitude, High-Frequency Vibration Stimuli on the Bone Healing of Rat Incisor Extraction Socket. J Biomech Eng 2012; 134:091001. [DOI: 10.1115/1.4007247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of small vibration stimuli on bone formation have been reported. In the present study, we used morphological and morphometric procedures to elucidate whether low-magnitude, high-frequency (LMHF) vibration stimuli could enhance the bone healing of rat incisor extraction sockets. After extraction of incisors from six-week-old rats, animals were assigned into a control group and two experimental groups to receive 50 Hz stimuli at either 0.05 mm or 0.2 mm peak-to-peak for an hour/day. LMHF vibration stimuli were generated by placing the mandibles of the animals onto a vibration generator. All groups were subdivided into two, according to the study periods (1 and 3 weeks). After the study period, undecalcified ground sections were taken and morphological and morphometric analyses performed. At both 1 and 3 weeks, newly formed bone was observed mainly in the upper wall of the extraction socket in all groups. Morphometric analyses revealed that the trabecular thickness in both experimental groups at 1 week was significantly greater than that in the control. LMHF vibration stimuli had a positive effect on bone at the early stage of bone healing, particularly in trabecular thickness, at the incisor extraction socket.
Collapse
Affiliation(s)
- Takashi Kono
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuko Moriyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kosaku Kurata
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takamatsu
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Zhang X, Torcasio A, Vandamme K, Ogawa T, van Lenthe GH, Naert I, Duyck J. Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS One 2012; 7:e40488. [PMID: 22808172 PMCID: PMC3393711 DOI: 10.1371/journal.pone.0040488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. Methodology Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. Principal Findings After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. Conclusions The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Antonia Torcasio
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Toru Ogawa
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - G. Harry van Lenthe
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ignace Naert
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
27
|
Chen B, Li Y, Xie D, Yang X. Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res 2012; 30:733-9. [PMID: 22058045 DOI: 10.1002/jor.22004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 10/14/2011] [Indexed: 02/04/2023]
Abstract
Osseointegration is vital to avoid long-time implants loosening after implantation surgery. This study investigated the effect of low-magnitude high-frequency (LMHF) loading via whole body vibration on bone-implant osseointegration in osteoporotic rats, and a comparison was made between LMHF vibration and alendronate on their effects. Thirty rats were ovariectomized to induce osteoporosis, and then treated with LMHF vibration (VIB) or alendronate (ALN) or a control treatment (OVX). Another 10 rats underwent sham operation to establish Sham control group. Prior to treatment, hydroxyapatite (HA)-coated titanium implants were inserted into proximal tibiae bilaterally. Both LMHF vibration and alendronate treatment lasted for 8 weeks. Histomorphometrical assess showed that both group VIB, ALN and Sham significantly increased bone-to-implant contact and peri-implant bone fraction (p < 0.05) when compared with group OVX. Nevertheless the bone-to-implant contact and peri-implant bone fraction of group VIB were inferior to group ALN and Sham (p < 0.05). Biomechanical tests also revealed similar results in maximum push out force and interfacial shear strength. Accordingly, it is concluded that LMHF loading via whole body vibration enhances bone-to-implant osseointegration in ovariectomized rats, but its effectiveness is weaker than alendronate.
Collapse
Affiliation(s)
- BaiLing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | |
Collapse
|
28
|
Vignoletti F, Abrahamsson I. Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol 2012; 39 Suppl 12:6-27. [DOI: 10.1111/j.1600-051x.2011.01830.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Vignoletti
- Department of Periodontology; Faculty of Odontology; Complutense University of Madrid; Madrid; Spain
| | - Ingemar Abrahamsson
- Department of Periodontology; Institute of Odontology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| |
Collapse
|
29
|
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J R Soc Interface 2012; 9:1697-704. [PMID: 22279157 DOI: 10.1098/rsif.2011.0820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae. Biomech Model Mechanobiol 2011; 11:743-50. [DOI: 10.1007/s10237-011-0347-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|