1
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Tang T, Wei Y, Jia H, Wang L, Xu Y, Zhang P. 3D artificial sebocyte glands from inertial focusing effect for facile and flexible analysis of light damage and drug screening. Biotechnol J 2023; 18:e2200634. [PMID: 37191095 DOI: 10.1002/biot.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
The sebaceous gland is a neuro-immuno-endocrine organ responsible for maintaining regular skin functions. Overdose exposure of UV and visible light (e.g., blue light) can cause sebocyte gland function disorders or even different diseases (e.g., chronic actinic dermatitis). Studying the mechanism of light-induced damage in sebaceous glands has been challenging, since ex vivo culture of sebaceous glands is difficult due to its short life in culture medium. To address this issue, a versatile 3D artificial sebocyte gland model was established using the inertial focusing effect for studying the impact of light damage and screening potential drugs. The artificial sebocyte gland exhibited specific biological function and structure similar to natural sebocyte glands. Using this artificial sebocyte gland, the interactions between the artificial organ and blue light or UV were studied. The results indicated that UV and blue light upregulated lipid secretion and downregulated cell viability within the sebocytes. Light damage intensified oxidative stress and promoted pro-inflammation cytokines (i.e., IL-1β and TNF-α) production in the artificial sebocytes. Additionally, the therapeutic effects of cannabidiol, a clinically tested drug for treating acne, was also indicated on restoring light damaged sebaceous gland functions. These results indicate that the 3D artificial sebocyte gland could be a versatile, fast, and low-cost platform for skincare studies or drug screening.
Collapse
Affiliation(s)
- Tan Tang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yanran Wei
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Hongxing Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lelin Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing, China
| | - Peipei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
3
|
Yang X, Reneker LW, Zhong X, Huang AJW, Jester JV. Meibomian gland stem/progenitor cells: The hunt for gland renewal. Ocul Surf 2023; 29:497-507. [PMID: 37422152 PMCID: PMC10528929 DOI: 10.1016/j.jtos.2023.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Meibomian glands (MGs) secrete lipid (meibum) onto the ocular surface to form the outermost layer of the tear film. Proper meibum secretion is essential for stabilizing the tear film, reducing aqueous tear evaporation, and maintaining the homeostasis of the ocular surface. Atrophy of MG as occurs with aging, leads to reduction of meibum secretion, loss of ocular surface homeostasis and evaporative dry eye disease (EDED). Since MGs are holocrine glands, secretion of meibum requires continuous self-renewal of lipid-secreting acinar meibocytes by stem/progenitor cells, whose proliferative potential is dramatically reduced with age leading to MG atrophy and an age-related meibomian gland dysfunction (ARMGD). Understanding the cellular and molecular mechanisms regulating meibocyte stem/progenitor cell maintenance and renewal may provide novel approaches to regenerating MG and treating EDED. Towards that end, recent label retaining cell and lineage-tracing experiments as well as knock-out transgenic mouse studies have begun to identify the location and identities of meibocyte progenitor cells and potential growth and transcription factors that may regulate meibocyte renewal. In addition, recent reports have shown that ARMGD may be reversed by novel therapeutics in mice. Herein, we discuss our current understanding of meibocyte stem/progenitor cells and the hunt for gland renewal.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lixing W Reneker
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan, China
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Manti PG, Darbellay F, Leleu M, Coughlan AY, Moret B, Cuennet J, Droux F, Stoudmann M, Mancini GF, Hautier A, Sordet-Dessimoz J, Vincent SD, Testa G, Cossu G, Barrandon Y. The Transcriptional Regulator Prdm1 Is Essential for the Early Development of the Sensory Whisker Follicle and Is Linked to the Beta-Catenin First Dermal Signal. Biomedicines 2022; 10:2647. [PMID: 36289911 PMCID: PMC9599752 DOI: 10.3390/biomedicines10102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
Prdm1 mutant mice are one of the rare mutant strains that do not develop whisker hair follicles while still displaying a pelage. Here, we show that Prdm1 is expressed at the earliest stage of whisker development in clusters of mesenchymal cells before placode formation. Its conditional knockout in the murine soma leads to the loss of expression of Bmp2, Shh, Bmp4, Krt17, Edar, and Gli1, though leaving the β-catenin-driven first dermal signal intact. Furthermore, we show that Prdm1 expressing cells not only act as a signaling center but also as a multipotent progenitor population contributing to the several lineages of the adult whisker. We confirm by genetic ablation experiments that the absence of macro vibrissae reverberates on the organization of nerve wiring in the mystacial pads and leads to the reorganization of the barrel cortex. We demonstrate that Lef1 acts upstream of Prdm1 and identify a primate-specific deletion of a Lef1 enhancer named Leaf. This loss may have been significant in the evolutionary process, leading to the progressive defunctionalization and disappearance of vibrissae in primates.
Collapse
Affiliation(s)
- Pierluigi G Manti
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Fabrice Darbellay
- Laboratory of Developmental Genomics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Marion Leleu
- BioInformatics Competence Center, UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Aisling Y Coughlan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Bernard Moret
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Julien Cuennet
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Frederic Droux
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Magali Stoudmann
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Gian-Filippo Mancini
- Histology Core Facility, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Agnès Hautier
- Histology Core Facility, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | | | - Stephane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester M139PL, UK
- Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Yann Barrandon
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital, Singapore 169608, Singapore
- A*STAR Skin Research Labs, Singapore 138648, Singapore
| |
Collapse
|
6
|
Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol 2021; 30:588-597. [PMID: 33599012 DOI: 10.1111/exd.14303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Sebaceous glands (SGs), typically associated with hair follicles, are critical for the homeostasis and function of mammalian skin. The main physiological function of SGs is the production and holocrine secretion of sebum to lubricate and protect the skin. Defective SGs have been linked to a variety of skin disorders, including acne, seborrheic dermatitis and formation of sebaceous tumors. Thus, a better understanding how SGs are formed and maintained is important to unravel the underlying molecular and cellular mechanisms of SG pathologies and to find better and effective therapies. Over the last two decades, research has come a long way from the initial identification of skin epithelial stem cells to the isolation and functional characterization of multiple stem cell pools as well as a better understanding of their unique and complex activities that drive skin homeostasis and operate in skin pathologies. Here, we discuss recent progress in unravelling cellular mechanisms underlying SG development, homeostasis and sebaceous tumor formation and assess the role of stem and progenitor cells in controlling SG physiology and disease processes. The development of elegant in vivo imaging as well as various in vitro and ex vivo stem cell and SG tissue models will advance mechanistic studies on SG function and allow drug screening and testing for efficient and successful targeting SG pathologies.
Collapse
Affiliation(s)
- Anna Geueke
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Wu L, Belyaeva OV, Adams MK, Klyuyeva AV, Lee SA, Goggans KR, Kesterson RA, Popov KM, Kedishvili NY. Mice lacking the epidermal retinol dehydrogenases SDR16C5 and SDR16C6 display accelerated hair growth and enlarged meibomian glands. J Biol Chem 2019; 294:17060-17074. [PMID: 31562240 DOI: 10.1074/jbc.ra119.010835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Retinol dehydrogenases catalyze the rate-limiting step in the biosynthesis of retinoic acid, a bioactive lipid molecule that regulates the expression of hundreds of genes by binding to nuclear transcription factors, the retinoic acid receptors. Several enzymes exhibit retinol dehydrogenase activities in vitro; however, their physiological relevance for retinoic acid biosynthesis in vivo remains unclear. Here, we present evidence that two murine epidermal retinol dehydrogenases, short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5) and SDR16C6, contribute to retinoic acid biosynthesis in living cells and are also essential for the oxidation of retinol to retinaldehyde in vivo Mice with targeted knockout of the more catalytically active SDR16C6 enzyme have no obvious phenotype, possibly due to functional redundancy, because Sdr16c5 and Sdr16c6 exhibit an overlapping expression pattern during later developmental stages and in adulthood. Mice that lack both enzymes are viable and fertile but display accelerated hair growth after shaving and also enlarged meibomian glands, consistent with a nearly 80% reduction in the retinol dehydrogenase activities of skin membrane fractions from the Sdr16c5/Sdr16c6 double-knockout mice. The up-regulation of hair-follicle stem cell genes is consistent with reduced retinoic acid signaling in the skin of the double-knockout mice. These results indicate that the retinol dehydrogenase activities of murine SDR16C5 and SDR16C6 enzymes are not critical for survival but are responsible for most of the retinol dehydrogenase activity in skin, essential for the regulation of the hair-follicle cycle, and required for the maintenance of both sebaceous and meibomian glands.
Collapse
Affiliation(s)
- Lizhi Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Mark K Adams
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Seung-Ah Lee
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Robert A Kesterson
- Department of Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
8
|
Chang HC, Huang DY, Wu NL, Kannagi R, Wang LF, Lin WW. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J Dermatol Sci 2018; 92:151-161. [DOI: 10.1016/j.jdermsci.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
|
9
|
Sundberg JP, Shen T, Fiehn O, Rice RH, Silva KA, Kennedy VE, Gott NE, Dionne LA, Bechtold LS, Murray SA, Kuiper R, Pratt CH. Sebaceous gland abnormalities in fatty acyl CoA reductase 2 (Far2) null mice result in primary cicatricial alopecia. PLoS One 2018; 13:e0205775. [PMID: 30372477 PMCID: PMC6205590 DOI: 10.1371/journal.pone.0205775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
In a large scale screen for skin, hair, and nail abnormalities in null mice generated by The Jackson Laboratory’s KOMP center, homozygous mutant Far2tm2b(KOMP)Wtsi/2J (hereafter referrred to as Far2-/-) mice were found to develop focal areas of alopecia as they aged. As sebocytes matured in wildtype C57BL/NJ mice they became pale with fine, uniformly sized clear lipid containing vacuoles that were released when sebocytes disintegrated in the duct. By contrast, the Far2-/- null mice had sebocytes that were similar within the gland but become brightly eosinophilic when the cells entered the sebaceous gland duct. As sebocytes disintegrated, their contents did not readily dissipate. Scattered throughout the dermis, and often at the dermal hypodermal fat junction, were dystrophic hair follicles or ruptured follicles with a foreign body granulomatous reaction surrounding free hair shafts (trichogranuloma). The Meibomian and clitoral glands (modified sebaceous glands) of Far2-/- mice showed ducts dilated to various degrees that were associated with mild changes in the sebocytes as seen in the truncal skin. Skin surface lipidomic analysis revealed a lower level of wax esters, cholesterol esters, ceramides, and diacylglycerols compared to wildtype control mice. Similar changes were described in a number of other mouse mutations that affected the sebaceous glands resulting in primary cicatricial alopecia.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | - Tong Shen
- West Coast Metabolomics Center, University of California, Davis, California, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, California, United States of America
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | | | | | - Nicholas E. Gott
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Louise A. Dionne
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Raoul Kuiper
- Department of Laboratory Medicine, The Karolinska Institute, Stockholm, Sweden
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
10
|
Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Törőcsik D, Bíró T, Schneider MR. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 2016; 17:319-334. [PMID: 27726049 DOI: 10.1007/s11154-016-9389-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sebaceous gland is most commonly found in association with a hair follicle. Its traditional function is the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly characterized substances. Due to the gland's central role in acne pathogenesis, early research had focused on its lipogenic activity. Less studied aspects of the sebaceous gland, such as stem cell biology, the regulation of cellular differentiation by transcription factors, the significance of specific lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and its contribution to the innate immunity, the detoxification of the skin, and skin aging have only recently attracted the attention of researchers from different disciplines. Here, we summarize recent multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland research may stimulate the development of novel therapeutic strategies targeting specific molecular pathways of the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ichiro Kurokawa
- Department of Dermatology, Meiwa Hospital, Nishinomiya, Japan
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Wan Z, Lu Y, Rui L, Yu X, Li Z. PRDM1 overexpression induce G0/G1 arrest in DF-1 cell line. Gene 2016; 592:119-127. [PMID: 27474451 DOI: 10.1016/j.gene.2016.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
PRDM1 (PR domain containing 1) is a transcriptional repressor that affects the expression of numerous genes involved in cell proliferation, differentiation and metabolism. However, the molecular mechanisms underlying PRDM1-regulated gene expression in the DF-1 cell line remain to be elucidated. In this study, we explored the role of PRDM1 in cell proliferation and cell cycle by forced expression of PRDM1 in DF-1 cells. Our results showed an absence of endogenous PRDM1 in this cell line, while exogenous PRDM1 was specifically localized to the nucleus. Ectopic expression of PRDM1 inhibited DF-1 cell proliferation and altered clonal morphology. Furthermore, PRDM1 overexpression caused an increase in the G0/G1 phase population. The levels of p53 mRNA and the p53-regulated p21(WAF1) and MDM2 genes were significantly increased in DF-1 cells transfected with the PRDM1 expression vector. Examination of the Rb pathway further revealed that Rb, E2F-1 and p15(INK4b) alternate reading frame (ARF) mRNA were also significantly increased after transient transfection. Interestingly, the mRNA expression levels of multiple chicken cyclin genes were also increased. These results show that PRDM1 overexpression induced G0/G1 arrest in DF-1 cells through multiple parallel mechanisms, including the p53 and Rb pathways.
Collapse
Affiliation(s)
- Zhiyi Wan
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yanan Lu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lei Rui
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoxue Yu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zandong Li
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
12
|
|
13
|
Characterization of quiescent epithelial cells in mouse meibomian glands and hair follicle/sebaceous glands by immunofluorescence tomography. J Invest Dermatol 2014; 135:1175-1177. [PMID: 25398054 DOI: 10.1038/jid.2014.484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
|
15
|
BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports 2014; 3:620-33. [PMID: 25358790 PMCID: PMC4223714 DOI: 10.1016/j.stemcr.2014.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023] Open
Abstract
B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1) was previously reported to define a sebaceous gland (SG) progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1(+) cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1(+) sebocytes have no greater clonogenic potential than BLIMP1(-) sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.
Collapse
|
16
|
Kretzschmar K, Watt FM. Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a013631. [PMID: 24993676 DOI: 10.1101/cshperspect.a013631] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| |
Collapse
|
17
|
Wan Z, Rui L, Li Z. Expression patterns of prdm1 during chicken embryonic and germline development. Cell Tissue Res 2014; 356:341-56. [PMID: 24691770 PMCID: PMC4015062 DOI: 10.1007/s00441-014-1804-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
PRDM1 (PR domain containing 1) is a transcriptional repressor that has been identified in various species and is crucial for cell growth, differentiation and development. However, the expression pattern and role of PRDM1 in development has not been sufficiently established in birds. We therefore investigate the spatio-temporal expression of PRDM1 in various tissues, especially in the germline, during chicken development, providing the basis for functional study. Our results show that prdm1 mRNA was expressed in blastodermal cells (BCs) at stage X and in various tissues including the liver, skin, lung, kidney, eye, bursa of fabricius, spleen, proventriculus, gizzard, intestine, testis, ovary, tongue, feathers and thymus but was not or was only sparcely present in the heart, brain and skeletal muscle. The level of prdm1 mRNA was highest in the BCs among all tissues tested and significantly changed during development in many tissues, such as the blastoderm, bursa of fabricius, spleen, feathers and germline. Furthermore, the expression of the PRDM1 protein generally paralleled the mRNA results, except for in the gizzard. Immunohistochemistry also revealed that PRDM1 was localized in the smooth muscle. In addition, during germline development, PRDM1 was found to be continuously expressed in the presumptive primordial germ cells (PGCs) at stage X, the circulating PGCs in blood and the germ cells in the gonads from embryonic day 6 to adult in both males and females. The expression pattern of PRDM1 in chicken thus suggests that this protein plays an important role during chicken development, such as in BC differentiation, feather formation and germ cell specification.
Collapse
Affiliation(s)
- Zhiyi Wan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| | - Lei Rui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| | - Zandong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
18
|
Hinde E, Haslam IS, Schneider MR, Langan EA, Kloepper JE, Schramm C, Zouboulis CC, Paus R. A practical guide for the study of human and murine sebaceous glandsin situ. Exp Dermatol 2013; 22:631-7. [DOI: 10.1111/exd.12207] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Eleanor Hinde
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Iain S. Haslam
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology; Gene Center; LMU Munich; Munich; Germany
| | | | | | | | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau; Germany
| | | |
Collapse
|
19
|
Cangkrama M, Ting SB, Darido C. Stem cells behind the barrier. Int J Mol Sci 2013; 14:13670-86. [PMID: 23812084 PMCID: PMC3742210 DOI: 10.3390/ijms140713670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function.
Collapse
Affiliation(s)
- Michael Cangkrama
- Epidermal Development Laboratory, Department of Medicine, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
| | - Stephen B. Ting
- Stem Cell Research Group, Australian Centre for Blood Diseases, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
| | - Charbel Darido
- Epidermal Development Laboratory, Department of Medicine, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-3-9903-0619
| |
Collapse
|
20
|
Sriwiriyanont P, Lynch KA, McFarland KL, Supp DM, Boyce ST. Characterization of hair follicle development in engineered skin substitutes. PLoS One 2013; 8:e65664. [PMID: 23799033 PMCID: PMC3684595 DOI: 10.1371/journal.pone.0065664] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.
Collapse
Affiliation(s)
- Penkanok Sriwiriyanont
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Kaari A. Lynch
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Kevin L. McFarland
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, United States of America
| | - Dorothy M. Supp
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, United States of America
| | - Steven T. Boyce
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep 2013; 3:427-41. [PMID: 23403291 PMCID: PMC3778892 DOI: 10.1016/j.celrep.2013.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/28/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
Although the sebaceous gland (SG) plays an important role in skin function, the mechanisms regulating SG differentiation and carcinoma formation are poorly understood. We previously reported that c-MYC overexpression stimulates SG differentiation. We now demonstrate roles for the androgen receptor (AR) and p53. MYC-induced SG differentiation was reduced in mice lacking a functional AR. High levels of MYC triggered a p53-dependent DNA damage response, leading to accumulation of proliferative SG progenitors and inhibition of AR signaling. Conversely, testosterone treatment or p53 deletion activated AR signaling and restored MYC-induced differentiation. Poorly differentiated human sebaceous carcinomas exhibited high p53 and low AR expression. Thus, the consequences of overactivating MYC in the SG depend on whether AR or p53 is activated, as they form a regulatory axis controlling proliferation and differentiation.
Collapse
|
22
|
Angiero F, Ferri A, Valente GM, Cattoretti G. Nonsebaceous lymphadenoma of salivary gland: report of a case with immunohistochemistry and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:e41-7. [PMID: 22862989 DOI: 10.1016/j.oooo.2012.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Nonsebaceous lymphadenomas are rare benign neoplasms. We emphasize the role of immunohistochemistry and attempt to elucidate the pathogenesis by investigating the distribution of 2 transcription factors, MYC and BLIMP1. STUDY DESIGN A 70-year-old man was evaluated for a 3-cm left parotid mass. Ultrasound-guided fine-needle aspiration biopsy findings were suggestive of a diagnosis of pleomorphic adenoma. A left superficial parotidectomy was performed, and based on histopathology a diagnosis of lymphadenoma, nonsebaceous type, was rendered. RESULTS The tumor was positive for AE1/3, CKA, BclII, P63, CD79a, CD3, and MYC; focally positive for CK7 and epithelial membrane antigen; and negative for CD10, calponin, CD117, and BLIMP1. CONCLUSIONS The rarity of nonsebaceous lymphadenoma and its superficial resemblance to commoner salivary gland tumors may present a diagnostic challenge for pathologists. The expression of MYC in the ductal component and the differentiation-related expression of PRDM1 in the superficial keratinizing layers point to a potential role for these 2 transcription factors in the pathogenesis of this neoplasm.
Collapse
Affiliation(s)
- Francesca Angiero
- Department of Medical Science, Dentistry, and Biophysics, University of Genoa, Genoa, Italy.
| | | | | | | |
Collapse
|
23
|
Abstract
The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
24
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
25
|
Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci 2011; 52:1938-78. [PMID: 21450915 PMCID: PMC3072159 DOI: 10.1167/iovs.10-6997c] [Citation(s) in RCA: 723] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/23/2011] [Indexed: 12/15/2022] Open
Affiliation(s)
- Erich Knop
- Ocular Surface Center Berlin, Department for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Sellheyer K. Stem cell markers can help identify adnexal tumor differentiation when evaluated in the context of morphology: methodology matters. J Cutan Pathol 2011; 38:460-74. [DOI: 10.1111/j.1600-0560.2010.01671.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Xin A, Nutt SL, Belz GT, Kallies A. Blimp1: driving terminal differentiation to a T. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:85-100. [PMID: 21842367 DOI: 10.1007/978-1-4419-5632-3_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B lymphocyte maturation-induced protein-1 (Blimp1) is a transcriptional repressor expressed in diverse cell types. In the adaptive immune system, Blimp1 is expressed in lymphocytes that have undergone effector differentiation. Blimp1 is a master regulator of plasma cell differentiation and plays important roles in controlling T cell homeostasis and effector differentiation. Blimp1 can be induced by a variety of cytokines including IL-2, IL-4, IL-12, and IL-21 in addition to TCR and co-stimulatory signals. Blimp1-deficient mice develop spontaneous inflammatory disease mediated by infiltration of activated T cells into tissues. During immune responses Blimp1 is required for the differentiation of plasma cells as well as short-lived CD8(+) cytotoxic T cells. Mounting evidence suggests that Blimp1 plays a common role in the terminal differentiation of multiple cell subsets.
Collapse
|
28
|
Affiliation(s)
- Kathryn Calame
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|