1
|
Liu L, Mu LM, Yan Y, Wu JS, Hu YJ, Bu YZ, Zhang JY, Liu R, Li XQ, Lu WL. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine 2017; 12:4163-4176. [PMID: 28615943 PMCID: PMC5459983 DOI: 10.2147/ijn.s133194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, chemotherapy is less efficient in controlling the continued development of breast cancer because it cannot eliminate extrinsic and intrinsic refractory cancers. In this study, mitochondria were modified by functional epirubicin liposomes to eliminate refractory cancers through initiation of an apoptosis cascade. The efficacy and mechanism of epirubicin liposomes were investigated on human breast cancer cells in vitro and in vivo using flow cytometry, confocal microscopy, high-content screening system, in vivo imaging system, and tumor inhibition in mice. Mechanistic studies revealed that the liposomes could target the mitochondria, activate the apoptotic enzymes caspase 8, 9, and 3, upregulate the proapoptotic protein Bax while downregulating the antiapoptotic protein Mcl-1, and induce the generation of reactive oxygen species (ROS) through an apoptosis cascade. In xenografted mice bearing breast cancer, the epirubicin liposomes demonstrated prolonged blood circulation, significantly increased accumulation in tumor tissue, and robust anticancer efficacy. This study demonstrated that functional epirubicin liposomes could significantly induce programmed death of refractory breast cancer by activating caspases and ROS-related apoptotic signaling pathways, in addition to the direct killing effect of the anticancer drug itself. Thus, we present a simple nanomedicine strategy to treat refractory breast cancer.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Zi Bu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xue-Qi Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Shen X, Chen G, Zhu G, Fong WF. (+/-)-3'-O, 4'-O-dicynnamoyl-cis-khellactone, a derivative of (+/-)-praeruptorin A, reverses P-glycoprotein mediated multidrug resistance in cancer cells. Bioorg Med Chem 2006; 14:7138-45. [PMID: 16875827 DOI: 10.1016/j.bmc.2006.06.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
P-glycoprotein (Pgp) is an ATP-driven membrane exporter for a broad spectrum of hydrophobic xenobiotics. Pgp-overexpression is a common cause of multidrug resistance (MDR) in cancer cells and could lead to chemotherapeutic failure. Through an extensive herbal drug screening program we previously showed that (+/-)-praeruptorin A (PA), a naturally existing pyranocumarin isolated from the dried root of Peucedanum praeruptorum Dunn., re-sensitizes Pgp-mediated MDR (Pgp-MDR) cancer cells to cancer drugs. A number of PA derivatives were synthesized and one of these, (+/-)-3'-O, 4'-O-dicynnamoyl-cis-khellactone (DCK), was more potent than PA or verapamil in the reversal of Pgp-MDR. In Pgp-MDR cells DCK increased cellular accumulation of doxorubicin without affecting the expression level of Pgp. In Pgp-enriched membrane fractions DCK moderately stimulated basal Pgp-ATPase activity, suggesting some transport substrate-like function. However, DCK also inhibited Pgp-ATPase activity stimulated by the standard substrates verapamil or progesterone with decreased V(max)s but K(m)s were relatively unchanged, suggesting a primarily non-competitive mode of inhibition. While the binding of substrates to active Pgp would increase the reactivity of the Pgp-specific antibody UIC2, DCK decreased UIC2 reactivity. These results suggest that DCK could bind simultaneously with substrates to Pgp but perhaps at an allosteric site and thus affect Pgp-substrate interactions.
Collapse
Affiliation(s)
- Xiaoling Shen
- Bioactive Products Research Group, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
3
|
Chauvier D, Morjani H, Manfait M. Homocamptothecin-daunorubicin association overcomes multidrug-resistance in breast cancer MCF7 cells. Breast Cancer Res Treat 2002; 73:113-25. [PMID: 12088114 DOI: 10.1023/a:1015244604336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The multidrug-resistance (MDR) status of a novel camptothecin analogue, homocamptothecin (hCPT), was investigated in human colon adenocarcinoma HT29 cells, myelogenous leukemia K562 cells and breast carcinoma MCF7 cells. The cytotoxicity of hCPT was not sensitive to the MDR status in K562 cell lines. However, its cytotoxicity was altered by MRP1, but not Pgp, in naturally MRP1-expressing HT29 cells, and etoposide- and doxorubicin-resistant MCF7/VP and MCF7/DOX cells, respectively. These cells were sensitized to hCPT in presence of MK571, probenecid but not verapamil. These results led to consider hCPT as a substrate for MRP1 and a potential modulator of MRP1 activity. The relationship between the cytotoxic effect of anthracyclines and their nuclear localization had been previously demonstrated. We show that MRPI mediated the daunorubicin (DNR) efflux in MCF7/VP and MCF7/DOX cells. The combination of sub-toxic doses of hCPT with DNR resulted in the potentiation of DNR activity, well-correlated with an increase in its nuclear accumulation in MCF7/VP cells. Simultaneous pattern was shown to provide higher cytotoxic response than sequential one. In agreement, hCPT increased also the DNR nuclear accumulation in low MRP1-expressing MCF7/DOX cells. However, the enhancement of cytotoxicity in the DNR-hCPT combination was poorly correlated with the nuclear concentration of DNR in MCF7/DOX cells. In addition to the increase in DNR accumulation, the potentiation of DNR activity by hCPT in MCF7/DOX cells implied a synergistic mechanism between both drugs. These data suggest that the present topoisomerase I/II inhibitors combination may be of clinical interest to overcome MDR phenotype in DNR-treated breast cancer patients.
Collapse
Affiliation(s)
- David Chauvier
- Unité Médian, CNRS FRE2141, UFR Pharmacie, IFR53, Reims, France.
| | | | | |
Collapse
|