1
|
RNF187 is Downregulated Following NF-κB Inhibition in Late Erythroblasts. Biochem Genet 2016; 54:714-21. [DOI: 10.1007/s10528-016-9750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
2
|
Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death. Blood Cells Mol Dis 2016; 58:57-66. [PMID: 27067490 DOI: 10.1016/j.bcmd.2016.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) interact with other RNAs, DNA and/or proteins to regulate gene expression during development. Erythropoiesis is one developmental process that is tightly controlled throughout life to ensure accurate red blood cell production and oxygen transport to tissues. Thus, homeostasis is critical and maintained by competitive outcomes of pro- and anti-apoptotic pathways. LncRNAs are expressed during blood development; however, specific functions are largely undefined. Here, a culture model of human erythropoiesis revealed that lncRNA Fas-antisense 1 (Fas-AS1 or Saf) was induced during differentiation through the activity of essential erythroid transcription factors GATA-1 and KLF1. Saf was also negatively regulated by NF-κB, where decreasing NF-κB activity levels tracked with increasing transcription of Saf. Furthermore, Saf over-expression in erythroblasts derived from CD34(+) hematopoietic stem/progenitor cells of healthy donors reduced surface levels of Fas and conferred protection against Fas-mediated cell death signals. These studies reveal a novel lncRNA-regulated mechanism that modulates a critical cell death program during human erythropoiesis.
Collapse
|
3
|
Forster L, McCooke J, Bellgard M, Joske D, Finlayson J, Ghassemifar R. Differential gene expression analysis in early and late erythroid progenitor cells in β-thalassaemia. Br J Haematol 2015; 170:257-67. [DOI: 10.1111/bjh.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luke Forster
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
| | - John McCooke
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - David Joske
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Jill Finlayson
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Reza Ghassemifar
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| |
Collapse
|
4
|
Lisowska KA, Dębska-Ślizień A, Jasiulewicz A, Jóźwik A, Rutkowski B, Bryl E, Witkowski JM. Flow cytometric analysis of STAT5 phosphorylation and CD95 expression in CD4+ T lymphocytes treated with recombinant human erythropoietin. J Recept Signal Transduct Res 2011; 31:241-6. [PMID: 21619451 DOI: 10.3109/10799893.2011.578646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Erythropoietin receptor (EPO-R) appears on the cell surface in the early stages of erythropoiesis. It also has been found on human T and B lymphocytes and monocytes suggesting that EPO could directly influence these cells. Moreover, earlier reports have shown that treatment with recombinant human (rh) EPO in chronic renal failure (CRF) patients improves interleukin-2 production and restores CD4+ T lymphocyte functions. We decided to investigate possibility of direct action of rhEPO on these cells in vitro by phosphorylated signal transducer and activator of transcription 5 (pSTAT5) detection and changes in CD95 antigen expression observation. Flow cytometry was used for detection of pSTAT5 and CD95 expression in CD4+ T lymphocytes treated with rhEPO. Our results show that presence of rhEPO in cell culture of lymphocytes stimulated with anti-CD3 antibody increases percentage of CD4+ T lymphocytes expressing pSTAT5. Stimulating effect of rhEPO was dose dependent. RhEPO presence also increases CD95 expression on these cells but still activated T lymphocytes are resistant to CD95-mediated apoptosis. These observations show that EPO is able to directly influence CD4+ T lymphocytes' signaling pathways.
Collapse
|
5
|
Liu YY, She ZJ, Yao MH. Erythropoietin inhibits gamma-irradiation-induced apoptosis by upregulation of Bcl-2 and decreasing the activation of caspase 3 in human UT-7/erythropoietin cell line. Clin Exp Pharmacol Physiol 2010; 37:624-9. [PMID: 20132233 DOI: 10.1111/j.1440-1681.2010.05370.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Erythropoietin (EPO) can reverse radiotherapy-induced anaemia by stimulating bone marrow cells to produce erythrocytes. However, there are limited studies that address the mechanisms by which EPO exerts its beneficial effects in radiotherapy-induced anaemia. In the present study, we used a human bone marrow-derived EPO-dependent leukaemia cell line UT-7/EPO that progressed further in erythroid development to evaluate the anti-apoptotic effects of EPO on irradiated human erythroid progenitor. 2. The UT-7/EPO cells exposed to gamma-irradiation were cultured in the presence or absence of EPO at a concentration of 7 U/mL. The cell viability, cell apoptosis and the expression of apoptosis-related proteins Bcl-2, Bax and caspase 3 were examined. 3. The results showed that EPO protected the viability of human UT-7/EPO cells exposed to gamma-irradiation. EPO significantly inhibited gamma-irradiation-induced apoptosis in human UT-7/EPO cells: a significant decrease in the percentage of apoptotic cells was observed (62, 69 and 62% at 24, 48 and 72 h, respectively). Furthermore, EPO significantly increased the expression of Bcl-2 protein and the relative Bcl-2/Bax ratio, and decreased the activation of caspase 3 and formation of the p17 and p12 cleavage in similar conditions. 4. In conclusion, EPO exerts anti-apoptotic effects on irradiated human UT-7/EPO cells through upregulation of Bcl-2 protein and the relative Bcl-2/Bax ratio, and by decreasing the activation of caspase 3. These findings may contribute to our understanding of the beneficial function of EPO in radiotherapy-induced anaemia.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | | | | |
Collapse
|
6
|
Prutchi Sagiv S, Lifshitz L, Orkin R, Mittelman M, Neumann D. Erythropoietin effects on dendritic cells: potential mediators in its function as an immunomodulator? Exp Hematol 2008; 36:1682-90. [PMID: 18922618 DOI: 10.1016/j.exphem.2008.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/17/2008] [Accepted: 07/31/2008] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Modulatory effects of erythropoietin (EPO) on the cellular and humoral compartments of the immune system have been described; however, the mechanism of action by which EPO affects the lymphocyte number and functions has yet to be elucidated. Because no EPO receptors (EPO-R) could be detected on lymphocytes, we searched for cells that might express the EPO-R and thereby mediate these immunomodulatory effects. We thus focused on dendritic cells (DCs), the most potent antigen-presenting and T-cell-priming cells, as possible mediators of the immunomodulatory actions of EPO. MATERIALS AND METHODS We examined the in vitro effects of EPO on human DCs. Expression of EPO-R, expression of costimulatory molecules, antigen uptake, secretion of cytokines, and DC maturation were investigated. RESULTS We demonstrate that the EPO-R is expressed in human DCs and that EPO directly affects their phenotype and function. When applied in vitro, EPO increased the percentage of peripheral blood DCs and monocyte-derived DCs (MoDCs) expressing the costimulatory molecules CD80 and CD86. EPO treatment of MoDCs was also associated with an increase in surface expression of CD80 and CD86 as well as that of HLA-DR. EPO enhanced MoDC function, as manifested in increased antigen uptake and secretion of interleukin 12. When applied to immature MoDCs, EPO in itself induced their maturation. CONCLUSION Our finding that DCs are directly affected by EPO renders them as potential candidates that mediate the immunomodulatory actions of EPO.
Collapse
Affiliation(s)
- Sara Prutchi Sagiv
- Department of Cell and Developmental Biology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
7
|
Maiese K, Chong ZZ, Li F, Shang YC. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194-213. [PMID: 18396368 PMCID: PMC2441910 DOI: 10.1016/j.pneurobio.2008.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/04/2008] [Accepted: 02/22/2008] [Indexed: 01/06/2023]
Abstract
Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer's disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
8
|
Scicchitano MS, McFarland DC, Tierney LA, Boyce RW, Frazier KS, Schwartz LW, Thomas HC. Role of p38 in regulation of hematopoiesis: Effect of p38 inhibition on cytokine production and transcription factor activity in human bone marrow stromal cells. Blood Cells Mol Dis 2008; 40:370-80. [DOI: 10.1016/j.bcmd.2007.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
|
9
|
Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
10
|
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22:1251-67. [PMID: 17647198 PMCID: PMC2515712 DOI: 10.14670/hh-22.1251] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interest in the diverse biology of protein tyrosine phosphatases that are encoded by more than 100 genes in the human genome continues to grow at an accelerated pace. In particular, two cytoplasmic protein tyrosine phosphatases composed of two Src homology 2 (SH2) NH2-terminal domains and a C-terminal protein-tyrosine phosphatase domain referred to as SHP-1 and SHP-2 are known to govern a host of cellular functions. SHP-1 and SHP-2 modulate progenitor cell development, cellular growth, tissue inflammation, and cellular chemotaxis, but more recently the role of SHP-1 and SHP-2 to directly control cell survival involving oxidative stress pathways has come to light. SHP-1 and SHP-2 are fundamental for the function of several growth factor and metabolic pathways yielding far reaching implications for disease pathways and disorders such as diabetes, neurodegeneration, and cancer. Although SHP-1 and SHP-2 can employ similar or parallel cellular pathways, these proteins also clearly exert opposing effects upon downstream cellular cascades that affect early and late apoptotic programs. SHP-1 and SHP-2 modulate cellular signals that involve phosphatidylinositol 3-kinase, Akt, Janus kinase 2, signal transducer and activator of transcription proteins, mitogen-activating protein kinases, extracellular signal-related kinases, c-Jun-amino terminal kinases, and nuclear factor-kappaB. Our progressive understanding of the impact of SHP-1 and SHP-2 upon multiple cellular environments and organ systems should continue to facilitate the targeted development of treatments for a variety of disease entities.
Collapse
Affiliation(s)
- Z Z Chong
- Division of Cellular and Molecular Cerebral Ischemia, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
11
|
Jie KE, Verhaar MC, Cramer MJM, van der Putten K, Gaillard CAJM, Doevendans PA, Koomans HA, Joles JA, Braam B. Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Renal Physiol 2006; 291:F932-44. [PMID: 16885153 DOI: 10.1152/ajprenal.00200.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have recently proposed severe cardiorenal syndrome (SCRS), in which cardiac and renal failure mutually amplify progressive failure of both organs. This frequent pathophysiological condition has an extremely poor prognosis. Interactions between inflammation, the renin-angiotensin system, the balance between the nitric oxide and reactive oxygen species and the sympathetic nervous system form the cardiorenal connectors and are cornerstones in the pathophysiology of SCRS. An absolute deficit of erythropoietin (Epo) and decreased sensitivity to Epo in this syndrome both contribute to the development of anemia, which is more pronounced than renal anemia in the absence of heart failure. Besides expression on erythroid progenitor cells, Epo receptors are present in the heart, kidney, and vascular system, in which activation results in antiapoptosis, proliferation, and possibly antioxidation and anti-inflammation. Interestingly, Epo can improve cardiac and renal function. We have therefore reviewed the literature with respect to Epo and the cardiorenal connectors. Indeed, there are indications that Epo can diminish inflammation, reduce renin-angiotensin system activity, and shift the nitric oxide and reactive oxygen species balance toward nitric oxide. Information about Epo and the sympathetic nervous system is scarce. This analysis underscores the relevance of a further understanding of clinical and cellular mechanisms underlying protective effects of Epo, because this will support better treatment of SCRS.
Collapse
Affiliation(s)
- Kim E Jie
- Dept. of Nephrology and Hypertension, F03.223, Univ. Medical Ctr. Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li F, Chong ZZ, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3beta, beta-catenin, and nuclear factor-kappaB. Curr Neurovasc Res 2006; 3:187-201. [PMID: 16918383 PMCID: PMC1986678 DOI: 10.2174/156720206778018758] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognized as a robust cytoprotectant for multiple tissues of the hematopoietic, vascular, cardiac, and nervous systems, erythropoietin (EPO) also is considered to be an attractive therapeutic candidate to modulate inflammatory cell function and survival during neurodegenerative disorders. To this end, microglia of the central nervous system serve a complex function not only to dispense of foreign organisms and injured cells of the brain, but also to foster tissue repair and reorganization during neuronal and vascular cell insults. We therefore examined the ability of EPO to modulate microglial cell survival and the underlying signal transduction pathways that govern microglial integrity during oxygen-glucose deprivation (OGD)--induced oxidative stress. We demonstrate in the microglial cell line EOC 2 that EPO provides direct microglial protection against early and late apoptotic programs of membrane phosphatidylserine exposure and genomic DNA degradation. Furthermore, expression and activation of Akt1 is vital to the cytoprotective capacity of EPO, since pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression eliminates the ability of EPO to protect microglial cells. Through Akt1 dependent mechanisms that can be abrogated through the gene silencing of Akt1, maintenance of microglial cell integrity during OGD by EPO is closely integrated with the phosphorylation and inhibition of glycogen synthase kinase-3beta activity as well as the intracellular trafficking of beta-catenin and nuclear factor-kappaB. Further work that continues to elucidate the ability of EPO to target the intricate pathways that determine inflammatory cell function and integrity may lay the ground work for new therapeutic avenues for neurodegenerative disease.
Collapse
Affiliation(s)
- Faqi Li
- Division of Cellular and Molecular Ischemia, Wayne State University School of Medicine, Michigan 48201, USA
| | | | | |
Collapse
|
13
|
Chong ZZ, Li F, Maiese K. Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr Neurovasc Res 2005; 2:387-99. [PMID: 16375720 PMCID: PMC1986681 DOI: 10.2174/156720205774962683] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
No longer considered exclusive for the function of the hematopoietic system, erythropoietin (EPO) is now considered as a viable agent to address central nervous system injury in a variety of cellular systems that involve neuronal, vascular, and inflammatory cells. Yet, it remains unclear whether the protective capacity of EPO may be effective for chronic neurodegenerative disorders such as Alzheimer's disease (AD) that involve beta-amyloid (Abeta) apoptotic injury to hippocampal neurons. We therefore investigated whether EPO could prevent both early and late apoptotic injury during Abeta exposure in primary hippocampal neurons and assessed potential cellular pathways responsible for this protection. Primary hippocampal neuronal injury was evaluated by trypan blue dye exclusion, DNA fragmentation, membrane phosphatidylserine (PS) exposure, and nuclear factor-kappaB (NF-kappaB) expression with subcellular translocation. We show that EPO, in a concentration specific manner, is able to prevent the loss of both apoptotic genomic DNA integrity and cellular membrane asymmetry during Abeta exposure. This blockade of Abeta generated neuronal apoptosis by EPO is both necessary and sufficient, since protection by EPO is completely abolished by co-treatment with an anti-EPO neutralizing antibody. Furthermore, neuroprotection by EPO is closely linked to the expression of NF-kappaB p65 by preventing the degradation of this protein by Abeta and fostering the subcellular translocation of NF-kappaB p65 from the cytoplasm to the nucleus to allow the initiation of an anti-apoptotic program. In addition, EPO intimately relies upon NF-kappaB p65 to promote neuronal survival, since gene silencing of NF-kappaB p65 by RNA interference removes the protective capacity of EPO during Abeta exposure. Our work illustrates that EPO is an effective entity at the neuronal cellular level against Abeta toxicity and requires the close modulation of the NF-kappaB p65 pathway, suggesting that either EPO or NF-kappaB may be used as future potential therapeutic strategies for the management of chronic neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA
| | | | | |
Collapse
|