1
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Extracellular Vesicle MicroRNA That Are Involved in β-Thalassemia Complications. Int J Mol Sci 2021; 22:ijms22189760. [PMID: 34575936 PMCID: PMC8465435 DOI: 10.3390/ijms22189760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Beta thalassemia major (βT) is a hereditary anemia characterized by transfusion-dependency, lifelong requirement of chelation, and organ dysfunction. MicroRNA (miRNA) can be packed into extracellular vesicles (EVs) that carry them to target cells. We explored EV-miRNA in βT and their pathophysiologic role. Circulating EVs were isolated from 35 βT-patients and 15 controls. EV miRNA was evaluated by nano-string technology and real-time quantitative polymerase chain reaction (RT-qPCR). We explored effects of EVs on cell culture proliferation, apoptosis, and signal transduction. Higher amounts of small EV (exosomes) were found in patients than in controls. The expression of 21 miRNA was > two-fold higher, and of 17 miRNA < three-fold lower in βT-EVs than control-EVs. RT-qPCR confirmed differential expression of six miRNAs in βT, particularly miR-144-3p, a regulator of erythropoiesis. Exposure of endothelial, liver Huh7, and pancreatic 1.1B4 cells to βT-EVs significantly reduced cell viability and increased cell apoptosis. βT-EV-induced endothelial cell apoptosis involved the MAPK/JNK signal-transduction pathway. In contrast, splenectomized βT-EVs induced proliferation of bone marrow mesenchymal stem cells (BM-MSC). In summary, the miR-144-3p was strongly increased; βT-EVs induced apoptosis and decreased endothelial, pancreatic, and liver cell survival while supporting BM-MSC proliferation. These mechanisms may contribute to βT organ dysfunction and complications.
Collapse
|
3
|
Unbalance in Iron Metabolism in Childhood Leukemia Converges with Treatment Intensity: Biochemical and Clinical Analysis. Cancers (Basel) 2021; 13:cancers13123029. [PMID: 34204310 PMCID: PMC8233795 DOI: 10.3390/cancers13123029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary In children undergoing therapy for acute leukemia or after hematopoietic cell transplantation, the following iron metabolism parameters were analyzed in the context of iron overload: (1) parameters measuring functional and storage iron pools: non-transferrin-bound iron (NTBI) and labile plasma iron (LPI) levels, iron, transferrin, total iron-binding capacity, ferritin, ferritin heavy and light chains; (2) proteins regulating iron absorption and its release from tissue stores: hepcidin, soluble hemojuvelin, soluble ferroportin-1; (3) proteins regulating the erythropoietic activity of bone marrow: erythroferrone, erythropoietin, soluble transferrin receptor. It has been shown that the occurrence of NTBI and LPI in the circulation and the intensification of disturbances in iron metabolism were associated with the intensity of anti-leukemic treatment and were the highest in the transplant group followed by the acute leukemia after treatment and de novo groups. In patients after transplantation, the most significant changes were found in NTBI, LPI, iron, ferritin, hepcidin, and ferroportin-1 levels. Abstract Objective: The aim of this study was to evaluate non-transferrin-bound iron (NTBI) and labile plasma iron (LPI) levels and other parameters of iron metabolism in children undergoing therapy for acute leukemia or after hematopoietic cell transplantation (HCT), in the context of iron overload. Patients: A total number of 85 children were prospectively included into four groups: controls, acute leukemia de novo, acute leukemia after intensive treatment, and after HCT. Methods: The following iron metabolism parameters were analyzed: (1) parameters measuring functional and storage iron pools: NTBI, LPI, iron, transferrin, total iron-binding capacity, ferritin, ferritin heavy and light chains; (2) proteins regulating iron absorption and its release from tissue stores: hepcidin, soluble hemojuvelin, soluble ferroportin-1; (3) proteins regulating the erythropoietic activity of bone marrow: erythroferrone, erythropoietin, soluble transferrin receptor. Results: Intensive treatment of leukemia in children was associated with the presence of serum NTBI and LPI, which was the highest in the HCT group followed by the acute leukemia after treatment and de novo groups. In patients after HCT, the most significant changes were found in NTBI, LPI, iron, ferritin, hepcidin, and ferroportin-1 levels. Conclusions: The occurrence of NTBI and LPI in the circulation and the intensification of disturbances in iron metabolism were associated with the intensity of the anti-leukemic treatment.
Collapse
|
4
|
Time to Start Delivering Iron Chelation Therapy in Newly Diagnosed Severe β-Thalassemia. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8185016. [PMID: 33415156 PMCID: PMC7752293 DOI: 10.1155/2020/8185016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Background Iron overload is still a major complication of severe β-thalassemia. Indication to start iron chelation therapy is based on serum ferritin (SF) or transferrin saturation (TS) level or the amount of transfusion. The goal of this study is to analyse the pattern of iron status, the amount of transfusion regarding the time to start iron chelator, and serum hepcidin levels in newly diagnosed severe β-thalassemia. Methods A prospective cohort study was performed at Hasan Sadikin General Hospital on newly diagnosed severe β-thalassemia patients. Subjects had not received any blood transfusion with normal liver function test, CRP, and IL-6 levels who consumed normal diet according to age. The SF and TS levels indicate iron status, while hepcidin level indicates iron regulator status. Main indicator to start iron chelation therapy when SF level ≥1.000 ng/mL, TS level ≥70%, or after receiving transfusion at least 10 times. Statistical analysis used Mann–Whitney and Spearman. Results Forty-two newly severe β-thalassemia, 30 (71.4%), were diagnosed before 1 year old, mean 9.9 ± 6.4 months, range 2–24 months. Range amount of transfusion until SF level reached ≥1,000 ng/mL were 4-12 times, mean 7 ± 2 times. Mean SF and TS level at diagnosis were 365.6 ± 194.9 ng/mL and 67.3 ± 22.5%, while hepcidin level was normal, mean 242.6 ± 58 ng/mL. 36/42 patients have reached SF >1000 ng/mL with amount of transfusion less than 10 times. There was no significant difference of SF, TS, and hepcidin levels when SF >1000 ng/mL in the group with amount of transfusion 7–12 and less than 7 (p = 0.454, p = 0.084, p = 0.765), respectively. A significant positive correlation between SF and amount of transfusion was observed (p < 0.001; r = 0.781). Conclusion Iron overload in severe β-thalassemia patients might occur earlier even before they received 10 times transfusion. Hepcidin serum level tends to increase when iron overload just started.
Collapse
|
5
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
6
|
Levin C, Koren A, Rebibo-Sabbah A, Koifman N, Brenner B, Aharon A. Extracellular Vesicle Characteristics in β-thalassemia as Potential Biomarkers for Spleen Functional Status and Ineffective Erythropoiesis. Front Physiol 2018; 9:1214. [PMID: 30214417 PMCID: PMC6125348 DOI: 10.3389/fphys.2018.01214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022] Open
Abstract
β-thalassemia major (β-TM) is a therapeutically challenging chronic disease in which ineffective erythropoiesis is a main pathophysiological factor. Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells into biological fluids; they are involved in intercellular communication and in multiple physiological and pathological processes. The chaperone heat-shock protein 70 (HSP70), which is released from cells via EVs, aggravates ineffective erythropoiesis in β-TM. We propose that β-TM EVs may show specific signatures, reflecting disease mechanisms, stages and severity. Our study aims were to define EV profiles in β-TM patients, investigate the influence of hypersplenism and splenectomy on EV features, and explore the association of circulating EVs with ineffective erythropoiesis and iron-overload parameters. We characterized circulating EVs in 35 transfusion-dependent β-thalassemia patients and 35 controls using several techniques. Nanoparticle-tracking analysis revealed increased EV concentration in patients vs. controls (P = 0.0036), with smaller EV counts and sizes in patients with hypersplenism. Flow cytometry analysis showed lower levels of RBC and monocyte EVs in patients vs. controls. RBC-EV levels correlated with patient hematocrit, reflecting degree of anemia. The procoagulant potential of the EVs evaluated by flow cytometry revealed lower levels of endothelial protein C receptor-labeled EVs in patients vs. controls, and increased tissue factor-to-tissue factor pathway inhibitor-labeled EV ratio in splenectomized patients, suggesting a hypercoagulable state. Protein content, evaluated in EV pellets, showed increased levels of HSP70 in patients (P = 0.0018), inversely correlated with transfusion requirement and hemoglobin levels, and positively correlated with reticulocyte, erythropoietin and lactate dehydrogenase levels. This first description of EVs in patients with hypersplenism reveals the spleen’s importance in EV physiology and clearance. Circulating EV-HSP70 levels were associated with markers of ineffective erythropoiesis, hemolysis and hematological disease severity. EV analysis in β-TM—reflecting spleen status, hypercoagulability state and ineffective erythropoiesis—may serve as a biomarker of disease dynamics, supporting both anticipation of the risk of complications and optimizing treatment.
Collapse
Affiliation(s)
- Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Koren
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Annie Rebibo-Sabbah
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Naama Koifman
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Benjamin Brenner
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Anat Aharon
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
7
|
Yassin MA, Soliman AT, De Sanctis V, Abdula MAJ, Riaz LM, Ghori FF, Yousaf A, Nashwan AJ, Abusamaan S, Moustafa A, Kohla S, Soliman DS. Statural Growth and Prevalence of Endocrinopathies in Relation to Liver Iron Content (LIC) in Adult Patients with Beta Thalassemia Major (BTM) and Sickle Cell Disease (SCD). ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:33-40. [PMID: 29451227 PMCID: PMC6179035 DOI: 10.23750/abm.v89i2-s.7085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023]
Abstract
Despite regular blood transfusion and iron chelation therapy, growth impairment and pubertal delay are commonly seen in children and adolescents with transfusion-dependent Beta thalassaemia major (BTM) and sickle cell disease (SCD). We evaluated growth parameters and endocrine disorders in relation to the liver iron concentration (LIC) assessed by the Ferriscan® method in a cohort of adults with SCD (n =40) and BTM (n = 52) receiving blood transfusions and iron chelation therapy since early childhood. Before transfusion, hemoglobin concentration had not been less than 9 g/dl in the past 12 years; subcutaneous daily desferrioxamine was administered for all of them since early childhood (2- 5 years of age). All patients were shifted to oral therapy with deferasirox iron chelation, 20 mg/daily for the past 5 years. BTM patients with higher LIC (> 15 mg Fe/g dry weight) had significantly shorter stature, lower insulin-like growth factor-I SDS (IGF-I SDS), higher alanine transferase (ALT) and serum ferritin concentrations compared to thalassemic patients with lower LIC. Patients with SCD with LIC > 8 mg Fe/g dry weight had significantly shorter stature, lower IGF-I SDS and higher ALT compared to SCD patients with lower LIC. Patients with BTM had significantly shorted final height (Ht-SDS) , IGF-I SDS and FT4 level compared to patients with SCD. LIC and mean fasting blood glucose (FBG) were significantly higher in patients with BTM compared to those with SCD. The linear regression analysis showed a significant correlation between LIC and serum ferritin level in SCD and BTM. LIC and serum ferritin level were also correlated significantly with IGF-I level in patients with BTM. LIC was correlated significantly with ALT in patients with BTM. In conclusion, the prevalence of endocrinopathies especially hypothyroidism, DM, and hypogonadism were significantly higher in BTM patients versus SCD patients and higher in patients with higher LIC versus those with lower LIC. These complications occurred less frequently, but still considerable, in chronically transfused patients with SCD.
Collapse
Affiliation(s)
- Mohamed A Yassin
- Department of Medical Oncolology Hematology Section, NCCCR, Hamad Medical Corporaton, Doha.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The Impact of Iron Overload in Acute Leukemia: Chronic Inflammation, But Not the Presence of Nontransferrin Bound Iron is a Determinant of Oxidative Stress. J Pediatr Hematol Oncol 2017; 39:425-439. [PMID: 28731917 DOI: 10.1097/mph.0000000000000867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the literature, studies on the oxidant effects of nontransferrin bound iron [NTBI (eLPI assay)] during chemotherapy of acute lymphoblastic leukemia and acute myeloblastic leukemia are lacking. We established NTBI and oxidative stress determinants (OSD), iron parameters, high-sensitive C-reactive protein (hs-CRP) levels, liver tests, cumulative chemotherapeutic doses, and transfused blood in 36 children with acute leukemia throughout chemotherapy. These parameters were determined at the beginning and end of chemotherapy blocks (11 time points) and in 20 healthy children using enzyme-linked immunosorbent assay, and colorimetric and fluorometric enzymatic methods. In acute lymphoblastic leukemia, NTBI, OSD, and hs-CRP were higher than controls at 4/11, 7/11, and 9/11 time points (P<0.05). At 3 time points, NTBI and OSD concurrently increased. Ferritin, soluble transferrin receptor, serum iron, and transferrin saturation were higher than in controls at 5 to 11/11 time points (P<0.05). Those with NTBI had higher iron parameters than those without NTBI (P<0.05), but showed similar OSD, hs-CRP, liver enzymes, cumulative chemotherapeutics, and transfused blood (P>0.05). OSD did not correlate with NTBI, but correlated with hs-CRP. In conclusion, NTBI is a poor predictor of OSD in acute leukemia possibly because of the heterogeneity of NTBI and chronic inflammation. Further studies are needed to delineate the pathophysiology of these diseases.
Collapse
|
9
|
Abstract
Blood transfusion plays a prominent role in the management of patients with sickle cell disease (SCD), but causes significant iron overload. As transfusions are used to treat the severe complications of SCD, it remains difficult to distinguish whether organ damage is a consequence of iron overload or is due to the complications treated by transfusion. Better management has resulted in increased survival, but prolonged exposure to iron puts SCD patients at greater risk for iron-related complications that should be treated. The success of chelation therapy is dominated by patient adherence to prescribed treatment; thus, adjustment of drug regimens to increase adherence to treatment is critical. This review will discuss the current biology of iron homeostasis in patients with SCD and how this informs our clinical approach to treatment. We will present the clinical approach to treatment of iron overload at our centre using serial assessment of organ iron by magnetic resonance imaging.
Collapse
Affiliation(s)
- Thomas D. Coates
- Hematology Section, Children’s Centre for Cancer, Blood Diseases and Bone Marrow Transplantation, University of Southern California, Los Angeles California, USA
| | - John C. Wood
- Division of Cardiology, at the Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles California, USA
| |
Collapse
|
10
|
Wongjaikam S, Kumfu S, Khamseekaew J, Chattipakorn SC, Chattipakorn N. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine. Sci Rep 2017; 7:44460. [PMID: 28287621 PMCID: PMC5347387 DOI: 10.1038/srep44460] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats.
Collapse
Affiliation(s)
- Suwakon Wongjaikam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Jeney V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front Pharmacol 2017; 8:77. [PMID: 28270766 PMCID: PMC5318432 DOI: 10.3389/fphar.2017.00077] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 01/19/2023] Open
Abstract
Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone.
Collapse
Affiliation(s)
- Viktória Jeney
- Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
12
|
Mathew R, Huang J, Wu JM, Fallon JT, Gewitz MH. Hematological disorders and pulmonary hypertension. World J Cardiol 2016; 8:703-718. [PMID: 28070238 PMCID: PMC5183970 DOI: 10.4330/wjc.v8.i12.703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH), a serious disorder with a high morbidity and mortality rate, is known to occur in a number of unrelated systemic diseases. Several hematological disorders such as sickle cell disease, thalassemia and myeloproliferative diseases develop PH which worsens the prognosis. Associated oxidant injury and vascular inflammation cause endothelial damage and dysfunction. Pulmonary vascular endothelial damage/dysfunction is an early event in PH resulting in the loss of vascular reactivity, activation of proliferative and antiapoptotic pathways leading to vascular remodeling, elevated pulmonary artery pressure, right ventricular hypertrophy and premature death. Hemolysis observed in hematological disorders leads to free hemoglobin which rapidly scavenges nitric oxide (NO), limiting its bioavailability, and leading to endothelial dysfunction. In addition, hemolysis releases arginase into the circulation which converts L-arginine to ornithine, thus bypassing NO production. Furthermore, treatments for hematological disorders such as immunosuppressive therapy, splenectomy, bone marrow transplantation, and radiation have been shown to contribute to the development of PH. Recent studies have shown deregulated iron homeostasis in patients with cardiopulmonary diseases including pulmonary arterial hypertension (PAH). Several studies have reported low iron levels in patients with idiopathic PAH, and iron deficiency is an important risk factor. This article reviews PH associated with hematological disorders and its mechanism; and iron homeostasis and its relevance to PH.
Collapse
|
13
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
14
|
Badawy SM, Liem RI, Rigsby CK, Labotka RJ, DeFreitas RA, Thompson AA. Assessing cardiac and liver iron overload in chronically transfused patients with sickle cell disease. Br J Haematol 2016; 175:705-713. [DOI: 10.1111/bjh.14277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/09/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Sherif M. Badawy
- Department of Pediatrics; Feinberg School of Medicine at Northwestern University; Chicago IL USA
- Division of Hematology, Oncology and Stem Cell Transplant; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago IL USA
| | - Robert I. Liem
- Department of Pediatrics; Feinberg School of Medicine at Northwestern University; Chicago IL USA
- Division of Hematology, Oncology and Stem Cell Transplant; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago IL USA
| | - Cynthia K. Rigsby
- Division of Medical Imaging; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago IL USA
- Department of Radiology; Feinberg School of Medicine at Northwestern University; Chicago IL USA
| | - Richard J. Labotka
- Department of Pediatrics; Division of Hematology and Oncology; University of Illinois School of Medicine at Chicago; Chicago IL USA
| | - R. Andrew DeFreitas
- Department of Pediatrics; Feinberg School of Medicine at Northwestern University; Chicago IL USA
- Division of Pediatric Cardiology; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago IL USA
| | - Alexis A. Thompson
- Department of Pediatrics; Feinberg School of Medicine at Northwestern University; Chicago IL USA
- Division of Hematology, Oncology and Stem Cell Transplant; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago IL USA
| |
Collapse
|
15
|
Lal A, Gomez E, Calloway C. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia. JCI Insight 2016; 1. [PMID: 27583305 DOI: 10.1172/jci.insight.88150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P < 0.001, respectively). ΔmtDNA4977 was increased in the presence of either liver iron concentration > 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* < 20 ms) was present in 0%, 22%, and 46% of subjects with ΔmtDNA4977 frequency < 20, 20-40, and > 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia.
Collapse
Affiliation(s)
- Ashutosh Lal
- Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, California, USA; Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Esteban Gomez
- Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, California, USA
| | - Cassandra Calloway
- Children's Hospital Oakland Research Institute, Oakland, California, USA; Forensic Science Graduate Group, University of California, Davis, California, USA
| |
Collapse
|
16
|
Al-Darwish M, Farhan N, Al-Jebreen A, Allam R, Al-Ahmari A, Seraihy A, Al-Sweedan S, El-Solh H, Belgaumi AF. The contribution of multiple packed red blood cell transfusions toward cardiac and liver dysfunction in pediatric patients with acute myeloid leukemia. Leuk Lymphoma 2016; 57:2472-5. [PMID: 26916606 DOI: 10.3109/10428194.2016.1151509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammed Al-Darwish
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Neameh Farhan
- c Division of Nursing , King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Abdullah Al-Jebreen
- b Department of Radiology and the King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Reem Allam
- b Department of Radiology and the King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Ali Al-Ahmari
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Amal Seraihy
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Suleiman Al-Sweedan
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia
| | - Hassan El-Solh
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia ;,d College of Medicine, AlFaisal University , Riyadh , Saudi Arabia
| | - Asim F Belgaumi
- a Department of Pediatric Hematology/Oncology King Faisal Specialist Hospital and Research Center , Riyadh , Saudi Arabia ;,e Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
17
|
Karafin MS, Koch KL, Rankin AB, Nischik D, Rahhal G, Simpson P, Field JJ. Erythropoietic drive is the strongest predictor of hepcidin level in adults with sickle cell disease. Blood Cells Mol Dis 2015; 55:304-7. [PMID: 26460251 DOI: 10.1016/j.bcmd.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 01/19/2023]
Abstract
Levels of hepcidin, a key modulator of iron metabolism, are influenced by erythropoiesis, iron, and inflammation, all of which may be increased in patients with sickle cell disease (SCD). The objectives of this study were to determine: 1) the variation in hepcidin level, and 2) the relative contribution of erythropoietic drive, iron, and inflammation to differences in hepcidin level in an adult cohort with SCD. In a prospective study, cross-sectional measurements of hepcidin, reticulocyte percentage, erythropoietin, ferritin, and high-sensitivity CRP were obtained. A regression tree analysis was used to measure the association between these interacting factors and hepcidin level. The cohort was comprised of 40 adults with SCD. Median age was 26years, 68% were female, and all had HbSS. Hepcidin values ranged from 30ng/ml to 326ng/ml, with a median of 87ng/ml. Regression tree analysis demonstrated that reticulocyte percentage, erythropoietin, ferritin and hs-CRP all were associated with hepcidin. The highest hepcidin values were found in subjects with low reticulocyte percentage and erythropoietin. In conclusion, erythropoietic drive, iron status, and inflammation all contribute to variation in hepcidin level. The strongest contributor is erythropoietic drive. Future studies could determine whether suppression of erythropoiesis with chronic transfusion influences hepcidin level.
Collapse
Affiliation(s)
- Matthew S Karafin
- Medical Sciences Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Kathryn L Koch
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amy B Rankin
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Debora Nischik
- Medical Sciences Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Ghady Rahhal
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pippa Simpson
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joshua J Field
- Medical Sciences Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Porter JB, El-Alfy M, Viprakasit V, Giraudier S, Chan LL, Lai Y, El-Ali A, Han J, Cappellini MD. Utility of labile plasma iron and transferrin saturation in addition to serum ferritin as iron overload markers in different underlying anemias before and after deferasirox treatment. Eur J Haematol 2015; 96:19-26. [PMID: 25691036 DOI: 10.1111/ejh.12540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Plasma markers in addition to serum ferritin (SF) may be useful for the assessment of iron overload; however, predictive utility may differ depending on underlying, transfusion-dependent, anemias. METHODS Data were collected before and after 1 year of deferasirox treatment (end of study; EOS) from the large, 1-year EPIC (Evaluation of Patients' Iron Chelation with Exjade(®) ) study. Trends were evaluated between liver iron concentration (LIC), transferrin saturation (TfSat), predose labile plasma iron (LPI) and their relationship to SF categories in 1530 patients: thalassemia major (TM; n = 1114), myelodysplastic syndromes (MDS, n = 336), and sickle-cell disease (SCD, n = 80). RESULTS Baseline and EOS SF values showed a clear and similar relationship to LIC for all disease groups. TfSat also showed a relationship to SF, most clearly in patients with SCD, where TfSat was lowest in the lowest relative SF category. Unlike SF or LIC, TfSat did not decrease at EOS in any disease group. Baseline LPI was raised in TM and MDS, but not in patients with SCD, decreasing at EOS in both patient groups. After 1 year of chelation therapy, there was a significant trend for greater LPI reduction in patients with TM achieving LIC <7 mg Fe/g dw (P = 0.0137). CONCLUSIONS Despite limitations, SF showed the clearest relationship, of the plasma markers evaluated, to LIC before and after 1 year of deferasirox in patients with TM, MDS, and SCD. In patients with TM, changes in LPI with chelation show a significant relationship to EOS LIC and may provide an additional indicator of chelation response (clinicaltrials.gov identifier: NCT00171821).
Collapse
Affiliation(s)
| | | | | | | | - Lee Lee Chan
- University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Yongrong Lai
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | - Jackie Han
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | |
Collapse
|
19
|
Porter JB, Garbowski M. The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am 2015; 28:683-701, vi. [PMID: 25064708 DOI: 10.1016/j.hoc.2014.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pathophysiologic consequences of transfusional iron overload (TIO) as well as the benefits of iron chelation therapy are best described in thalassemia major, although TIO is increasingly seen in other clinical settings. These consequences broadly reflect the levels and distribution of excess storage iron in the heart, endocrine tissues, and liver. TIO also increases the risk of infection, due to increased availability of labile iron to microorganisms. The authors suggest that extrahepatic iron distribution, and hence toxicity, is influenced by balance between generation of nontransferrin-bound iron from red cell catabolism and the utilization of transferrin iron by the erythron.
Collapse
Affiliation(s)
- John B Porter
- Department of Haematology, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Maciej Garbowski
- Department of Haematology, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Chintagari NR, Nguyen J, Belcher JD, Vercellotti GM, Alayash AI. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease. Blood Cells Mol Dis 2014; 54:302-6. [PMID: 25582460 DOI: 10.1016/j.bcmd.2014.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD), a hereditary hemolytic disorder is characterized by chronic hemolysis, oxidative stress, vaso-occlusion and end-organ damage. Hemolysis releases toxic cell-free hemoglobin (Hb) into circulation. Under physiologic conditions, plasma Hb binds to haptoglobin (Hp) and forms Hb-Hp dimers. The dimers bind to CD163 receptors on macrophages for further internalization and degradation. However, in SCD patients plasma Hp is depleted and free Hb is cleared primarily by proximal tubules of kidneys. Excess free Hb in plasma predisposes patients to renal damage. We hypothesized that administration of exogenous Hp reduces Hb-mediated renal damage. To test this hypothesis, human renal proximal tubular cells (HK-2) were exposed to HbA (50μM heme) for 24h. HbA increased the expression of heme oxygenase-1 (HO-1), an enzyme which degrades heme, reduces heme-mediated oxidative toxicity, and confers cytoprotection. Similarly, infusion of HbA (32μM heme/kg) induced HO-1 expression in kidneys of SCD mice. Immunohistochemistry confirmed the increased HO-1 expression in the proximal tubules of the kidney. Exogenous Hp attenuated the HbA-induced HO-1 expression in vitro and in SCD mice. Our results suggest that Hb-mediated oxidative toxicity may contribute to renal damage in SCD and that Hp treatment reduces heme/iron toxicity in the kidneys following hemolysis.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Julia Nguyen
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - John D Belcher
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - Gregory M Vercellotti
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
21
|
Coates TD. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med 2014; 72:23-40. [PMID: 24726864 PMCID: PMC4940047 DOI: 10.1016/j.freeradbiomed.2014.03.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/19/2023]
Abstract
Iron overload and iron toxicity, whether because of increased absorption or iron loading from repeated transfusions, can be major causes of morbidity and mortality in a number of chronic anemias. Significant advances have been made in our understanding of iron homeostasis over the past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to monitor and quantify iron concentrations noninvasively in specific organs. Furthermore, effective iron chelators are now available, including preparations that can be taken orally. This has resulted in substantial improvement in mortality and morbidity for patients with severe chronic iron overload. This paper reviews the key points of iron homeostasis and attempts to place clinical observations in patients with transfusional iron overload in context with the current understanding of iron homeostasis in humans.
Collapse
Affiliation(s)
- Thomas D Coates
- Children׳s Center for Cancer and Blood Diseases, Children׳s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA.
| |
Collapse
|
22
|
Aydinok Y, Kattamis A, Viprakasit V. Current approach to iron chelation in children. Br J Haematol 2014; 165:745-55. [PMID: 24646011 DOI: 10.1111/bjh.12825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transfusion-dependent children, mostly with thalassaemia major, but also and occasionally to a more significant degree, with inherited bone marrow failures, can develop severe iron overload in early life. Moreover, chronic conditions associated with ineffective erythropoiesis, such as non-transfusion-dependent thalassaemia (NTDT), may lead to iron overload through increased gut absorption of iron starting in childhood. Currently, the goal of iron chelation has shifted from treating iron overload to preventing iron accumulation and iron-induced end-organ complications, in order to achieve a normal pattern of complication-free survival and of quality of life. New chelation options increase the likelihood of achieving these goals. Timely initiation, close monitoring and continuous adjustment are the cornerstones of optimal chelation therapy in children, who have a higher transfusional requirements compared to adults in order to reach haemoglobin levels adequate for normal growth and development. Despite increased knowledge, there are still uncertainties about the level of body iron at which iron chelation therapy should be started and about the appropriate degree of iron stores' depletion.
Collapse
Affiliation(s)
- Yesim Aydinok
- Department of Paediatric Haematology/Oncology, Ege University Children's Hospital, Ege University School of Medicine, Izmir, Turkey
| | | | | |
Collapse
|
23
|
Glutathione redox system in β -thalassemia/Hb E patients. ScientificWorldJournal 2013; 2013:543973. [PMID: 24223032 PMCID: PMC3816076 DOI: 10.1155/2013/543973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
β -thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH)/glutathione disulfide (GSSG) and also to evaluate glutathione-related responses to oxidation in β -thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β -thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body's first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.
Collapse
|
24
|
Affiliation(s)
- R. Ward
- Division of Medical Oncology and HematologyDepartment of Medicine, Toronto General Hospital, University Health Network, Canada
| |
Collapse
|
25
|
Awadallah SM, Atoum MF, Nimer NA, Saleh SA. Ischemia modified albumin: An oxidative stress marker in β-thalassemia major. Clin Chim Acta 2012; 413:907-10. [DOI: 10.1016/j.cca.2012.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/16/2022]
|
26
|
Budzyń M, Iskra M, Krasiński Z, Dzieciuchowicz Ł, Kasprzak M, Gryszczyńska B. Serum iron concentration and plasma oxidant-antioxidant balance in patients with chronic venous insufficency. Med Sci Monit 2012; 17:CR719-27. [PMID: 22129904 PMCID: PMC3628123 DOI: 10.12659/msm.882132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate serum iron concentration and influence of this element on biomarkers of oxidative stress in patients affected by chronic venous insufficiency (CVI). Material/Methods Serum iron (SI) concentration and plasma parameters of oxidant–antioxidant balance (i.e., malonyldialdehyde [MDA], uric acid [UA] concentration, and total antioxidant capacity [TAC]) were compared between 35 patients divided into appropriate groups and 23 healthy individuals. Results The subgroups analysis showed that SI concentration was significantly higher only in patients with shorter duration of CVI in comparison with the control group (P=0.013). Significant, negative correlation was found between SI concentration and duration of the disease (r=−0.422, P=0.014), age of the patients (r=−0.542, P=0.001) and BMI (r=−0.408, P=0.018). Mean value of MDA concentration and TAC capacity were higher in patients with CVI in comparison with healthy individuals (P<0.05). UA concentration was decreased, especially in CVI patients with mild clinical stage of disease and shorter CVI duration (P=0.047; P=0.034). There was no significant correlation found between SI concentration and the parameters of oxidant–antioxidant balance. Conclusions High concentration of MDA and low UA level in blood of CVI patients suggests that oxidative stress plays an important role in the pathogenesis of the disease. The increase in SI concentration observed in the early stage of CVI can enhance free radicals formation; however, direct evidence has not been provided by the present study.
Collapse
Affiliation(s)
- Magdalena Budzyń
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Belini Junior E, da Silva DGH, Torres LDS, de Almeida EA, Cancado RD, Chiattone C, Bonini-Domingos CR. Oxidative stress and antioxidant capacity in sickle cell anaemia patients receiving different treatments and medications for different periods of time. Ann Hematol 2011; 91:479-89. [PMID: 21947087 DOI: 10.1007/s00277-011-1340-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/11/2011] [Indexed: 01/29/2023]
Abstract
To evaluate, in a longitudinal study, the profile of lipid peroxidation and antioxidant capacity markers in sickle cell anaemia patients receiving different treatments and medication over different time periods. The three groups were: patients undergoing transfusion therapy and receiving iron chelator deferasirox (DFX group, n = 20); patients receiving deferasirox and hydroxyurea (DFX + HU group, n = 10), and patients receiving only folic acid (FA group, n = 15). Thiobarbituric acid-reactive substance (TBARS) assays and trolox-equivalent antioxidant capacity (TEAC) assays were evaluated during two different periods of analysis, T0 and T1 (after ~388 days). Higher FA group TBARS values were observed compared with the DFX + HU group (p = 0.016) at T0; and at T1, higher FA group TBARS values were also observed compared with both the DFX group (p = 0.003) and the DFX + HU group (p = 0.0002). No variation in TEAC values was seen between groups, at either T0 or T1. The mean values of TBARS and TEAC for both the DFX and DFX + HU groups decreased at T1. The antioxidant effects of HU and DFX were observed by through an increase in TEAC levels in DFX and DFX + HU groups when compared with those of normal subjects. Increased TEAC values were not recorded in the FA group, and lipid peroxidation was seen to decrease after DFX and HU use.
Collapse
Affiliation(s)
- Edis Belini Junior
- Department of Biology, Haemoglobin and Haematologic Diseases Genetic Laboratory, UNESP-Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
28
|
Clinical spectrum of serious bacterial infections among splenectomized patients with hemoglobinopathies in Israel: a 37-year follow-up study. Infection 2011; 40:35-9. [PMID: 21866338 DOI: 10.1007/s15010-011-0178-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE Patients with hemoglobinopathies who undergo splenectomy are at risk for invasive infections. The aim of this investigation was to present the clinical spectrum of infections in splenectomized patients. METHODS The study cohort comprised 54 splenectomized patients with beta-thalassemia (β-thalassemic) and sickle cell disease. The incidence of serious invasive bacterial infections was recorded. All patients received pneumococcal vaccine and all received oral prophylactic penicillin. RESULTS A total of 22 episodes of serious bacterial infections were identified in 19 patients among the study cohort of 54 splenectomized patients (35%). The clinical spectrum included sepsis (10 patients), bacteremia (8), liver abscess (1), forearm abscess (1), and urinary tract infection (2). The most frequent pathogens were Escherichia coli (8 cases), Steptococcus pneumoniae (5), and Campylobacter (2). 22 patients with β thalassemia died during the study period: 6 due to bacterial infection and 18 due to cardiomyopathy. The time elapsed between splenectomy and S. pneumoniae infection was significantly shorter than that between splenectomy and infections caused by other pathogens (18 ± 14 vs. 115 ± 93 months, respectively; p = 0.035). CONCLUSIONS Splenectomized patients with β thalassemia and sickle cell disease are predisposed to severe infections, with the majority of these infections being caused by Gram-negative microorganisms. The attending physician(s) should take these findings into consideration when deciding upon an empiric antibiotic treatment for splenectomized patients who present with fever or sepsis.
Collapse
|
29
|
Taccone-Gallucci M, Manca-di-Villahermosa S, Noce A. Iron-chelating therapy for transfusional iron overload. N Engl J Med 2011; 364:1475-6; author reply 1477. [PMID: 21488786 DOI: 10.1056/nejmc1101838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Wood JC, Glynos T, Thompson A, Giardina P, Harmatz P, Kang BP, Paley C, Coates TD. Relationship between labile plasma iron, liver iron concentration and cardiac response in a deferasirox monotherapy trial. Haematologica 2011; 96:1055-8. [PMID: 21393329 DOI: 10.3324/haematol.2010.032862] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The US04 trial was a multicenter, open-label, single arm trial of deferasirox monotherapy (30-40 mg/kg/day) for 18 months. Cardiac iron response was bimodal with improvements observed in patients with mild to moderate initial somatic iron stores; relationship of cardiac response to labile plasma iron is now presented. Labile plasma iron was measured at baseline, six months, and 12 months. In patients having a favorable cardiac response at 18 months, initial labile plasma iron was elevated in only 31% of patients at baseline and no patient at six or 12 months. Cardiac non-responders had elevated labile plasma iron in 50% of patients at baseline, 50% patients at six months, and 38% of patients at 12 months. Risk of abnormal labile plasma iron and cardiac response increased with initial liver iron concentration. Persistently increased labile plasma iron predicts cardiac non-response to deferasirox but labile plasma iron suppression does not guarantee favorable cardiac outcome. Study registered at www.clinicaltrials.gov (NCT00447694).
Collapse
Affiliation(s)
- John C Wood
- Children's Hospital of Los Angeles, Los Angeles CA 90027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Association of haptoglobin phenotypes with ceruloplasmin ferroxidase activity in β-thalassemia major. Clin Chim Acta 2011; 412:975-9. [PMID: 21315066 DOI: 10.1016/j.cca.2011.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/15/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Haptoglobin (Hp) and ceruloplasmin (CP) are 2 plasma antioxidants playing a role in preventing iron-induced oxidative damage. This study presents data related to Hp phenotypes and ceruloplasmin ferroxidase activity in relation to iron store markers in patients with β-thalassemia major. METHODS Blood specimens were collected from 196 subjects (124 β-thalassemia major patients and 72 healthy controls). Serum levels of iron, total iron binding capacity (TIBC), ferritin, high sensitivity C-reactive protein (hs-CRP), ceruloplasmin, and ferroxidase activity were determined using conventional methods. Haptoglobin phenotypes were determined by polyacrylamide gel electrophoresis. RESULTS As expected, the mean levels of iron store markers, except TIBC, were significantly higher in patients than in controls. Ceruloplasmin concentrations (mg/dl) and its ferroxidase activity (U/l) were significantly higher in patients than in controls (57.9±18.8 vs 46.9±14.2 and 159.9±47.8 vs 95.3±20.9; p<0.001, for CP and Hp, respectively). As for Hp phenotypes, no significant differences were observed between iron store markers and ferroxidase activity among the control group. In the patients group however, significantly higher concentrations of ceruloplasmin and its ferroxidase activity were observed among patients with Hp2-2 phenotype as compared to patients with the other phenotypes. Additionally, correlations according to Hp phenotypes revealed strong association between ceruloplasmin ferroxidase activity and serum ferritin in patients with Hp 2-2 phenotype and not in the others (r=0.331, p<0.05). CONCLUSION Thalassemia patients with Hp 2-2 phenotype are under greater iron-driven oxidative stress than patients with other phenotypes.
Collapse
|
32
|
Inati A, Khoriaty E, Musallam KM. Iron in sickle-cell disease: what have we learned over the years? Pediatr Blood Cancer 2011; 56:182-90. [PMID: 21157888 DOI: 10.1002/pbc.22721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023]
Abstract
Over the last four decades, monumental advances have been made in the understanding, assessment, and management of transfusion-dependent patients, which have translated into significant improvements in patient morbidity and mortality. Important lessons have been learned from extensive clinical experience of iron management in the thalassemias, but greater knowledge of key differences in the sickle-cell disease (SCD) population may impact on our approach to patient assessment and management. The unique pathophysiology of SCD is reflected in a distinct pattern of iron loading with minimal organ-specific injury. An appreciation and understanding of these differences should allow us to develop tailored management approaches that optimize patient outcomes.
Collapse
Affiliation(s)
- Adlette Inati
- Division of Paediatric Haematology and Oncology, Children's Centre for Cancer and Blood Diseases, Rafik Hariri University Hospital, Beirut, Lebanon.
| | | | | |
Collapse
|
33
|
Inati A, Khoriaty E, Musallam KM, Taher AT. Iron chelation therapy for patients with sickle cell disease and iron overload. Am J Hematol 2010; 85:782-6. [PMID: 20721892 DOI: 10.1002/ajh.21806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Adlette Inati
- Division of Pediatric Hematology and Oncology, Children's Centre for Cancer and Blood Diseases, Rafik Hariri University Hospital, Beirut, Lebanon.
| | | | | | | |
Collapse
|
34
|
Abstract
In sickle cell disease transfusions improve blood flow by reducing the proportion of red cells capable of forming sickle hemoglobin polymer. This limits hemolysis and the endothelial damage that result from high proportions of sickle polymer-containing red cells. Additionally, transfusions are used to increase blood oxygen carrying capacity in sickle cell patients with severe chronic anemia or with severe anemic episodes. Transfusion is well-defined as prophylaxis (stroke) and as therapy (acute chest syndrome and stroke) for major complications of sickle cell disease and has been instituted, based on less conclusive data, for a range of additional complications, such as priapism, vaso-occlusive crises, leg ulcers, pulmonary hypertension, and during complicated pregnancies. The major and unavoidable complication of transfusions in sickle cell disease is iron overload. This paper provides an overview of normal iron metabolism, iron overload in transfused patients with sickle cell disease, patterns of end organ damage, diagnosis, treatment, and prevention of iron overload.
Collapse
|