1
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2025; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
2
|
He Z, Zhao F, Sun H, Hu J, Wang J, Liu X, Li M, Hao Z, Zhao Z, Shi B, Liu F, Li S. Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep. BMC Genomics 2025; 26:8. [PMID: 39762742 PMCID: PMC11702032 DOI: 10.1186/s12864-024-11195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development. The investigation utilized scanning electron microscopy and transcriptomic technology, focusing on two distinct types in Gansu alpine fine-wool sheep: coarse type (group C, MFD = 22.26 ± 0.69 μm, n = 6) and fine type (group F, MFD = 16.91 ± 0.29 μm, n = 6), which exhibit differing wool fiber diameters. The results showed that fine type wool fiber scales were more regularly distributed in rings with large scale spacing and smooth edges, while coarse type wool fiber scales were more irregularly arranged in tiles with relatively rougher edges, and the density of wool scales was greater than that of fine type wool. Furthermore, a comprehensive analysis revealed 164 differentially expressed lncRNAs along with 146 potential target genes linked to these lncRNAs in the skin tissues from groups C and F. Utilizing functional enrichment analysis on the target genes, we successfully identified a number of target genes might be associated with the improvement of wool fineness, such as FOXN1, LIPK, LOC101116068, LOC101106296, KRTAP5.4, KRT71, KRT82, DNASE1L2, which are related to hair follicle development, histidine metabolism, epidermal cell differentiation, oxidative phosphorylation and hair cycle process. Additionally, the interoperability network involving lncRNAs-mRNAs indicated lncRNAs (MSTRG.17445.2, XR_006060725.1, MSTRG.871.1, MSTRG.10907.4) might play a significant role in the wool growth development and fineness improvement process. In conclusion, the research enlarges the current lncRNAs database, providing a new insight for the investigation of wool fineness development in fine-wool sheep.
Collapse
Affiliation(s)
- Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongxian Sun
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Feiyan Liu
- Animal Husbandry and Veterinary Station, Weiyuan County, Luyuan Township, Dingxi, 748200, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Shi A, Ma S, Yang Z, Ding W, Tian J, Chen X, Tao J. Proteomic Analysis of Crimped and Straight Wool in Chinese Tan Sheep. Animals (Basel) 2024; 14:2858. [PMID: 39409807 PMCID: PMC11482551 DOI: 10.3390/ani14192858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using tandem mass tag (TMT)-based quantification. The mean fur curvature (MFC) of crimped wool was significantly greater than that of straight wool (p < 0.001). We identified 1218 proteins between the two types of wool, including 50 keratins (Ks) and 10 keratin-associated proteins (KAPs). There were 213 differentially expressed proteins, including 13 Ks and 4 KAPs. Crimped wool showed relatively high abundances of KAP24-1, K84, K32, K82, and intermediate filament rod domain-containing protein (IRDC), whereas straight wool had relatively high abundances of K6A, K27, K80, KAP16-1, KAP27-1, and trichohyalin (TCHH). The expression levels of KAP16-1, KAP24-1, and KAP27-1 were related to the ratio of paracortex, which may be associated with wool crimp formation. Additionally, high expressions of TCHH, K27, and K6A in the inner root sheath (IRS) were linked to fiber fineness in straight wool. These findings provide insight into the overall expression and distribution patterns of Ks and KAPs, offering opportunities to improve wool quality and enhance its economic potential in the textile industry.
Collapse
Affiliation(s)
- An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Sijia Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Wei Ding
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Jinyang Tian
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Xin Chen
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| |
Collapse
|
4
|
Bai L, Zhou H, Tao J, Hickford JGH. Characterisation of Ovine KRTAP19-3 and Its Impact on Wool Traits in Chinese Tan Sheep. Animals (Basel) 2024; 14:2772. [PMID: 39409721 PMCID: PMC11475705 DOI: 10.3390/ani14192772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Wool, a natural fibre derived from sheep, can present a challenge to wool processing and manufacturing industries because of the variation in fibre traits. Genetic improvement offers one solution to this challenge, and having a better understanding of the genes that affect wool fibre traits is therefore important. Here, we describe ovine KRTAP19-3, a new member of the KAP19 gene family. Phylogenetic analysis revealed its relationship to other known KRTAP19 gene sequences, and an analysis of the nucleotide sequence variation in KRTAP19-3 from 288 sheep of a variety of breeds revealed six unique variant sequences. Among these variants, eleven single nucleotide polymorphisms (SNPs) were detected, with six located in the coding region. Three of these coding region SNPs were non-synonymous and would result in amino acid changes. Associations were observed between the presence of specific sequence variants in Chinese Tan sheep and wool trait variation, particularly an increase in fibre diameter variability in the heterotypic hair fibres. These findings enhance our understanding of the genes that encode sheep wool proteins.
Collapse
Affiliation(s)
- Lingrong Bai
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jinzhong Tao
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jon G. H. Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
5
|
Yue L, Lu Z, Guo T, Liu J, Yang B, Yuan C. Key genes and metabolites that regulate wool fibre diameter identified by combined transcriptome and metabolome analysis. Genomics 2024; 116:110886. [PMID: 38880312 DOI: 10.1016/j.ygeno.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Fibre diameter is an important economic trait of wool fibre. As the fibre diameter decreases, the economic value of wool increases. Therefore, understanding the mechanism of wool fibre diameter regulation is important in improving the value of wool. RESULTS In this study, we used non-targeted metabolome and reference transcriptome data to detect differences in metabolites and genes in groups of Alpine Merino sheep with different wool fibre diameter gradients, and integrated metabolome and transcriptome data to identify key genes and metabolites that regulate wool fibre diameter. We found 464 differentially abundant metabolites (DAMs) and 901 differentially expressed genes (DEGs) in four comparisons of groups with different wool fibre diameters. Approximately 25% of the differentially abundant metabolites were lipid and lipid-like molecules. These molecules were predicted to be associated with skin development and keratin filament by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Key genes, including COL5A2, COL5A3, CREB3L4, COL1A1, and SFRP4, were identified by gene set enrichment analysis. CONCLUSIONS Key genes regulating wool fibre diameter were identified, the effects of lipid molecules on wool performance were investigated, and potential synergies between genes and metabolites were postulated, providing a theoretical framework for fine wool sheep breeding.
Collapse
Affiliation(s)
- Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
6
|
Smith EG, Waters DL, Walkom SF, Clark SA. Analysis of the genetic variance of fibre diameter measured along the wool staple for use as a potential indicator of resilience in sheep. Genet Sel Evol 2024; 56:57. [PMID: 39107702 PMCID: PMC11536905 DOI: 10.1186/s12711-024-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/19/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND The effects of environmental disturbances on livestock are often observed indirectly through the variability patterns of repeated performance records over time. Sheep are frequently exposed to diverse extensive environments but currently lack appropriate measures of resilience (or sensitivity) towards environmental disturbance. In this study, random regression models were used to analyse repeated records of the fibre diameter of wool taken along the wool staple (bundle of wool fibres) to investigate how the genetic and environmental variance of fibre diameter changes with different growing environments. RESULTS A model containing a fifth, fourth and second-order Legendre polynomial applied to the fixed, additive and permanent environmental effects, respectively, was optimal for modelling fibre diameter along the wool staple. The additive genetic and permanent environmental variance both showed variability across the staple length trajectory. The ranking of sire estimated breeding values (EBV) for fibre diameter was shown to change along the staple and the genetic correlations decreased as the distance between measurements along the staple increased. This result suggests that some genotypes were potentially more resilient towards the changes in the growing environment compared to others. In addition, the eigenfunctions of the random regression model implied the ability to change the fibre diameter trajectory to reduce its variability along the wool staple. CONCLUSIONS These results show that genetic variation in fibre diameter measured along the wool staple exists and this could be used to provide greater insight into the ability to select for resilience in extensively raised sheep populations.
Collapse
Affiliation(s)
- Erin G Smith
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - Dominic L Waters
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Samuel F Walkom
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, 2351, Australia
| | - Sam A Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
7
|
Bai L, Zhou H, Li W, Tao J, Hickford JGH. Exploring Variation in Ovine KRTAP19-5 and Its Effect on Fine Wool Fibre Curvature in Chinese Tan Sheep. Animals (Basel) 2024; 14:2155. [PMID: 39123681 PMCID: PMC11311106 DOI: 10.3390/ani14152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sheep's wool is known to have unique biological, physical and chemical properties. The fibre primarily consists of proteins, but these have amino acid sequence variation, and at the phenotypic level wool fibre varies considerably. This can affect its utility and value. Unravelling the genetic factors that underpin the protein and phenotypic variability is crucial if we are to contemplate improving wool quality. Accordingly, this study investigates the high glycine and tyrosine content keratin-associated protein 19-5 gene (KRTAP19-5) in sheep. PCR-single strand confirmation polymorphism analysis, coupled with DNA sequencing of a region spanning whole coding sequence, revealed six sequence variants containing seven single nucleotide polymorphisms (SNPs). Five of the SNPs were located within the coding region, with four leading to amino acid changes if expressed. In 247 Chinese Tan sheep derived from 10 sire-lines, and renowned for their distinct 'spring-like' crimped wool at up to approximately 35 days after birth, one of the variants was found to be associated with decreased curvature of the fine wool fibres in the fleece. No associations were detected with other fibre traits or with variation in the heterotypic hair fibres of the Tan sheep. While these findings may be useful for developing gene markers to alter mean wool fibre curvature and improve sheep breeding, many other genes and environmental factors are known to contribute to variation in fibre traits.
Collapse
Affiliation(s)
- Lingrong Bai
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China;
| | - Jon G. H. Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
8
|
He M, Lv X, Mwacharo JM, Li Y, Wang S, Sun W. MicroRNA-181a Targets GNAI2 and Affects the Proliferation and Induction Ability of Dermal Papilla Cells: The Potential Involvement of the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2024; 25:7950. [PMID: 39063192 PMCID: PMC11277120 DOI: 10.3390/ijms25147950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Wool is generated by hair follicles (HFs), which are crucial in defining the length, diameter, and morphology of wool fibers. However, the regulatory mechanism of HF growth and development remains largely unknown. Dermal papilla cells (DPCs) are a specialized cell type within HFs that play a crucial role in governing the growth and development of HFs. This study aims to investigate the proliferation and induction ability of ovine DPCs to enhance our understanding of the potential regulatory mechanisms underlying ovine HF growth and development. Previous research has demonstrated that microRNA-181a (miR-181a) was differentially expressed in skin tissues with different wool phenotypes, which indicated that miR-181a might play a crucial role in wool morphogenesis. In this study, we revealed that miR-181a inhibited the proliferation and induction ability of ovine DPCs by quantitative Real-time PCR (qRT-PCR), cell counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and alkaline phosphatase staining. Then, we also confirmed G protein subunit alpha i2 (GNAI2) is a target gene of miR-181a by dual luciferase reporter assay, qRT-PCR, and Western blot, and that it could promote the proliferation and induction ability of ovine DPCs. In addition, GNAI2 could also activate the Wnt/β-Catenin signaling pathway in ovine DPCs. This study showed that miR-181a can inhibit the proliferation and induction ability of ovine DPCs by targeting GNAI2 through the Wnt/β-Catenin signaling pathway.
Collapse
Grants
- 32172689,BK20210810,20KJB230003,22KJA230001,PZCZ201739,32061143036,2022D01D47,G2022014148L,(2022) 2-323,KYCX23_3593 the National Natural Science Foundation of China (32172689), the Natural Science Foundation of Jiangsu Province (BK20210810), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB230003 and 22KJA230001), Major New Var
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St. Lucia, Brisbane, QLD 4067, Australia
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Tian D, Pei Q, Jiang H, Guo J, Ma X, Han B, Li X, Zhao K. Comprehensive analysis of the expression profiles of mRNA, lncRNA, circRNA, and miRNA in primary hair follicles of coarse sheep fetal skin. BMC Genomics 2024; 25:574. [PMID: 38849762 PMCID: PMC11161951 DOI: 10.1186/s12864-024-10427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-β, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, Qinghai, China
| | - Jijun Guo
- General Station of Animal Husbandry of Qinghai Province, Xining , 810000, Qinghai, China
| | - Xianghua Ma
- Hainan Tibetan Autonomous Prefecture science and technology extension service center, Hainan Tibetan Autonomous Prefecture, Qinghai, 813000, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China.
| |
Collapse
|
10
|
Tseng CC, Woolley TE, Jiang TX, Wu P, Maini PK, Widelitz RB, Chuong CM. Gap junctions in Turing-type periodic feather pattern formation. PLoS Biol 2024; 22:e3002636. [PMID: 38743770 PMCID: PMC11161087 DOI: 10.1371/journal.pbio.3002636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogeneous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating nonprotein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found 7 of the 12 investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation. Interestingly, inhibition of gap junctional intercellular communication (GJIC) in the ex vivo skin explant culture allowed the sequential emergence of new feather buds at specific spatial locations relative to the existing primary buds. The results suggest that GJIC may facilitate the propagation of long-distance inhibitory signals. Thus, inhibition of GJs may stimulate Turing-type periodic feather pattern formation during chick skin development, and the removal of GJ activity would enable the emergence of new feather buds if the local environment were competent and the threshold to form buds was reached. We further propose Turing-based computational simulations that can predict the sequential appearance of these ectopic buds. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Oxford, United Kingdom
| | - Randall B. Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Liang B, Bai T, Zhao Y, Han J, He X, Pu Y, Wang C, Liu W, Ma Q, Tian K, Zheng W, Liu N, Liu J, Ma Y, Jiang L. Two mutations at KRT74 and EDAR synergistically drive the fine-wool production in Chinese sheep. J Adv Res 2024; 57:1-13. [PMID: 37137429 PMCID: PMC10918353 DOI: 10.1016/j.jare.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.
Collapse
Affiliation(s)
- Benmeng Liang
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Tianyou Bai
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Yuhetian Zhao
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Jiangang Han
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaohong He
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Yabin Pu
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 75002, Ningxia, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Xinjiang Academy of Animal Science, China
| | | | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yuehui Ma
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| | - Lin Jiang
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Key Laboratory of Livestock and Poultry Resources (Cattle) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
12
|
Smith EG, Walkom SF, Clark SA. Exploring genetic variation in potential indicators of resilience in sheep using fibre diameter measured along the wool staple. Animal 2024; 18:101065. [PMID: 38237476 DOI: 10.1016/j.animal.2023.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/26/2024] Open
Abstract
Production animals are increasingly exposed to a wide variety of disturbances that can compromise their productivity, health and well-being. As a result, there is a growing need to be able to select animals that are more resilient to environmental disturbances. Fibre diameter variation measured along a wool staple is expected to contain information about how resilient sheep are to the disturbances of their internal and external environment. This study aimed to develop potential resilience indicators from fibre diameter variation, estimate their genetic parameters and assess whether these traits are genetically correlated across three age stages. The study used 6 140 Merino sheep from the Sheep Cooperative Research Centre Information Nucleus Flocks recorded at yearling, 2 years old, and adult ages. Eight potential traits were defined based on theory, literature and exploratory analysis, which were suggested to capture the animal's ability to resist, respond and recover from potential disturbances. Genetic evaluation of the traits was conducted using pedigree-based animal models. The traits were shown to be low to moderately heritable (0.01-0.33) when examined at each of the three age stages. The potential indicators were generally well correlated with one another within age stages. Further, the genetic correlation between the same trait measured at different age stages was moderate to high between yearling and 2 years old (0.35-0.94) and between 2 years old and adults (0.18-0.70), while slightly lower between yearling and adult estimates (0.09-0.62). These results suggest that selection for resilience indicators from fibre diameter is possible; however, further studies are warranted to refine the trait definitions and validate these indicators against other measures of health, fitness and productive performance.
Collapse
Affiliation(s)
- E G Smith
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - S F Walkom
- Animal Genetics Breeding Unit, University of New England, Armidale, NSW 2350, Australia
| | - S A Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| |
Collapse
|
13
|
Xiao T, Li Y, Yue L, Lu Z, Yuan C, Song Y, Yang B, Liu J, Guo T. Correlation of 20 Single-Nucleotide Polymorphisms with Weight and Wool Traits in Alpine Merino Sheep. Animals (Basel) 2023; 14:127. [PMID: 38200858 PMCID: PMC10778225 DOI: 10.3390/ani14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
SNPs associated with important traits of fine-wool sheep that were previously obtained through genome-wide association analysis screening were verified and analyzed. A total of 20 SNPs related to birth weight, bundle strength, cleaning rate, and fiber diameter were screened using whole-genome resequencing, and the SNPshot assay was used to detect and analyze polymorphisms. This study found that, among the 20 SNPs associated with important traits in Alpine Merino sheep, 8 were monomorphic and 12 were polymorphic, of which 6 showed moderate polymorphisms and 6 showed low polymorphisms. The heterozygosity of the 12 polymorphic loci ranged from 0.10 to 0.49, the effective number of alleles ranged from 1.11 to 1.98, and the polymorphic information content ranged from 0.09 to 0.37. The chi-square test showed that only RHPN2:g.42678119T>G and RALYL:g.90030866A>G were in Hardy-Weinberg disequilibrium (p < 0.05); the other loci were in equilibrium (p > 0.05). These SNPs associated with important traits in Alpine Merino sheep provide a theoretical basis for genomic selection and molecular design breeding.
Collapse
Affiliation(s)
- Tong Xiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China;
| | - Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yali Song
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (T.X.); (Z.L.); (C.Y.); (Y.S.); (B.Y.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
14
|
Luo X, Liu J, Zhang P, Yu Y, Wu B, Jia Q, Liu Y, Xiao C, Cao Y, Jin H, Zhang L. Isolation, characterization and differentiation of dermal papilla cells from Small-tail Han sheep. Anim Biotechnol 2023; 34:3475-3482. [PMID: 36542538 DOI: 10.1080/10495398.2022.2156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.
Collapse
Affiliation(s)
- Xinhui Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Bin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Qi Jia
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Yanguang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Cheng Xiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
15
|
Zhou H, Li W, Bai L, Wang J, Luo Y, Li S, Hickford JGH. Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield. Genes (Basel) 2023; 14:2045. [PMID: 38002988 PMCID: PMC10671549 DOI: 10.3390/genes14112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analyses revealed four variants of this gene in a screening population of 170 sheep from a variety of breeds. The DNA sequencing of the variants revealed four single-nucleotide polymorphisms (SNPs) and a dinucleotide deletion. Three of these SNPs were in the coding region, and one of these was non-synonymous and potentially led to the amino acid substitution p.Cys27Gly near the middle of the protein. The remaining SNP was located near the putative TATA box, and the di-nucleotide deletion was near the putative transcription initiation site. The effect of this variation in KRTAP36-2 was investigated in 274 Southdown × Merino lambs that were the progeny of five sires. Variation was only found to be associated with wool yield, that is, the proportion of the greasy fleece that remained as clean fleece upon scouring (expressed as a percentage). This may have some value in increasing wool production.
Collapse
Affiliation(s)
- Huitong Zhou
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Lingrong Bai
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Jiqing Wang
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jonathan G. H. Hickford
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
16
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
17
|
Tseng CC, Woolley TE, Jiang TX, Wu P, Maini PK, Widelitz RB, Chuong CM. Gap junctions in Turing-type periodic feather pattern formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537019. [PMID: 37090608 PMCID: PMC10120740 DOI: 10.1101/2023.04.15.537019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogenous two-dimensional field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating non-protein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found seven of the twelve investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation, including patches of smooth skin and buds of irregular sizes. Later, after the primary feather arrays were laid out, inhibition of gap junctional intercellular communication in the ex vivo skin explant culture allowed the emergence of new feather buds in temporal waves at specific spatial locations relative to the existing primary buds. The results suggest that gap junctional communication may facilitate the propagation of long-distance inhibitory signals. Thus, the removal of GJ activity would enable the emergence of new feather buds if the local environment is competent and the threshold to form buds is reached. We propose Turing-based computational simulations that can predict the appearance of these ectopic bud waves. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, U.S.A
- Current address: Department of Molecular Biology, Princeton University, Princeton, NJ 08540, U.S.A
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, U.K
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, U.K
| | - Randall B. Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, U.S.A
| |
Collapse
|
18
|
miR-27a Targeting PIK3R3 Regulates the Proliferation and Apoptosis of Sheep Hair Follicle Stem Cells. Animals (Basel) 2022; 13:ani13010141. [PMID: 36611750 PMCID: PMC9817964 DOI: 10.3390/ani13010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Micro RNAs are regulatory factors in tissue development, organ formation, cell growth, apoptosis and other biological processes. In particular, several miRNAs are related to the development of hair follicles. Here, we investigated the effect of the targeting of PIK3R3 by miR-27a on the AKT/MTOR pathway and on the proliferation and apoptosis of hair follicle stem cells (HFSCs) in sheep. Knockdown of the expression of PIK3R3 was found to significantly inhibit the proliferation and promote the apoptosis of HFSCs. Similarly, a miR-27a mimic significantly inhibited the proliferation and promoted the apoptosis of HFSCs. The miR-27a mimic was also shown to significantly inhibit the expression of PIK3R3, AKT, and MTOR and the phosphorylation of AKT and MTOR, while a miR-27a inhibitor increased the expression of these genes. The presence of an miR-27a binding site in the 3' UTR of PIK3R3 was identified by a bioinformatics analysis, and the interaction was verified with a dual-luciferase reporter assay. The expression of PIK3R3 mRNA and protein was negatively correlated with the presence of miR-27a, which suggests that this interaction may be involved in the biological impacts on proliferation and apoptosis. Thus, this study demonstrates that miR-27a plays a potential role in the proliferation and apoptosis of sheep hair follicle stem cells by targeting PIK3R3, which can be used to design new methods to improve sheep wool.
Collapse
|
19
|
m6A Methylation Analysis Reveals Networks and Key Genes Underlying the Coarse and Fine Wool Traits in a Full-sib Merino Family. BIOLOGY 2022; 11:biology11111637. [PMID: 36358338 PMCID: PMC9687456 DOI: 10.3390/biology11111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Simple Summary Artificial breeding makes traits move forward in one direction and reach the extreme, such as ultra-fine wool covering the whole body of fine wool sheep. Nevertheless, many other domestic sheep remain the coarse wool type, and some mendelian genome loci have been identified as having major genes for these traits; however, the epigenetic regulation is still unclear. Abstract In our study, a set of lambs with coarse wool type all over their bodies were discovered within a full-sib family during an embryo transfer experiment of merino fine wool sheep. The difference between coarse and fine wool traits were studied from the perspective of RNA modification-N6-methyladenosine. A total of 31,153 peaks were collected, including 15,968 peaks in coarse skin samples and 15,185 peaks in fine skin samples. In addition, 7208 genes were differentially m6A methylated, including 4167 upregulated and 3041 downregulated in coarse skin samples. Four key genes (EDAR, FGF5, TCHH, KRT2) were obtained by comprehensive analysis of the MeRIP-seq and RNA sequence, which are closely related to primary wool follicle morphogenesis and development. The PI3K/AKT pathway was enriched through different m6A-related genes. These results provided new insights to understand the role of epigenetics in wool sheep domestication and breeding.
Collapse
|
20
|
Anello M, Daverio MS, Di Rocco F. Genetics of coat color and fiber production traits in llamas and alpacas. Anim Front 2022; 12:78-86. [PMID: 35974792 PMCID: PMC9374512 DOI: 10.1093/af/vfac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Melina Anello
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| | - María Silvana Daverio
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| | - Florencia Di Rocco
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| |
Collapse
|
21
|
He J, Zhao B, Huang X, Fu X, Liu G, Tian Y, Wu C, Mao J, Liu J, Gun S, Tian K. Gene network analysis reveals candidate genes related with the hair follicle development in sheep. BMC Genomics 2022; 23:428. [PMID: 35672687 PMCID: PMC9175362 DOI: 10.1186/s12864-022-08552-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. Results We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFβ2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. Conclusion This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08552-2.
Collapse
Affiliation(s)
- Junmin He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jing Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
22
|
Wang S, Wu T, Sun J, Li Y, Yuan Z, Sun W. Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Front Cell Dev Biol 2022; 9:800157. [PMID: 34993204 PMCID: PMC8724054 DOI: 10.3389/fcell.2021.800157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Wool is the critical textile raw material which is produced by the hair follicle of sheep. Therefore, it has important implications to investigate the molecular mechanism governing hair follicle development. Due to high cellular heterogeneity as well as the insufficient cellular, molecular, and spatial characterization of hair follicles on sheep, the molecular mechanisms involved in hair follicle development and wool curvature of sheep remains largely unknown. Single-cell RNA sequencing (scRNA-seq) technologies have made it possible to comprehensively dissect the cellular composition of complex skin tissues and unveil the differentiation and spatial signatures of epidermal and hair follicle development. However, such studies are lacking so far in sheep. Here, single-cell suspensions from the curly wool and straight wool lambskins were prepared for unbiased scRNA-seq. Based on UAMP dimension reduction analysis, we identified 19 distinct cell populations from 15,830 single-cell transcriptomes and characterized their cellular identity according to specific gene expression profiles. Furthermore, novel marker gene was applied in identifying dermal papilla cells isolated in vitro. By using pseudotime ordering analysis, we constructed the matrix cell lineage differentiation trajectory and revealed the dynamic gene expression profiles of matrix progenitors' commitment to the hair shaft and inner root sheath (IRS) cells. Meanwhile, intercellular communication between mesenchymal and epithelial cells was inferred based on CellChat and the prior knowledge of ligand–receptor pairs. As a result, strong intercellular communication and associated signaling pathways were revealed. Besides, to clarify the molecular mechanism of wool curvature, differentially expressed genes in specific cells between straight wool and curly wool were identified and analyzed. Our findings here provided an unbiased and systematic view of the molecular anatomy of sheep hair follicle comprising 19 clusters; revealed the differentiation, spatial signatures, and intercellular communication underlying sheep hair follicle development; and at the same time revealed the potential molecular mechanism of wool curvature, which will give important new insights into the biology of the sheep hair follicle and has implications for sheep breeding.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yue Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Chai W, Zhou H, Gong H, Hickford JG. Variation in the ovine KRT34 promoter region affects wool traits. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, Babenko O, Stavetska R, Kalashnik O, Kucher D, Kochuk-Yashchenko O, Asadollahpour Nanaei H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 2021; 17:369. [PMID: 34861880 PMCID: PMC8641187 DOI: 10.1186/s12917-021-03077-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sheep were among the first animals to be domesticated. They are raised all over the world and produce a major scale of animal-based protein for human consumption and play an important role in agricultural economy. Iran is one of the important locations for sheep genetic resources in the world. Here, we compared the Illumina Ovine SNP50 BeadChip data of three Iranian local breeds (Moghani, Afshari and Gezel), as a population that does not undergone artificial breeding programs as yet, and five other sheep breeds namely East Friesian white, East Friesian brown, Lacaune, DorsetHorn and Texel to detect genetic mechanisms underlying economical traits and daptation to harsh environments in sheep. RESULTS To identify genomic regions that have been targeted by positive selection, we used fixation index (Fst) and nucleotide diversity (Pi) statistics. Further analysis indicated candidate genes involved in different important traits such as; wool production included crimp of wool (PTPN3, NBEA and KRTAP20-2 genes), fiber diameter (PIK3R4 gene), hair follicle development (LHX2 gene), the growth and development of fiber (COL17A1 gene)), adaptation to hot arid environments (CORIN gene), adaptive in deficit water status (CPQ gene), heat stress (PLCB4, FAM107B, NBEA, PIK3C2B and USP43 genes) in sheep. CONCLUSIONS We detected several candidate genes related to wool production traits and adaptation to hot arid environments in sheep that can be applicable for inbreeding goals. Our findings not only include the results of previous researches, but also identify a number of novel candidate genes related to studied traits. However, more works will be essential to acknowledge phenotype- genotype relationships of the identified genes in our study.
Collapse
Affiliation(s)
| | | | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz, Iran
| | - Olena Babenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Ruslana Stavetska
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Oleksandr Kalashnik
- Department of Animal Science, Sumy National Agrarian University, Sumy, Ukraine
| | - Dmytro Kucher
- Department of Breeding, Animal Genetics and Biotechnology, Polissia National University, Zhytomyr, Ukraine
| | | | | |
Collapse
|
25
|
Zhao B, Luo H, He J, Huang X, Chen S, Fu X, Zeng W, Tian Y, Liu S, Li CJ, Liu GE, Fang L, Zhang S, Tian K. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep. BMC Biol 2021; 19:197. [PMID: 34503498 PMCID: PMC8427949 DOI: 10.1186/s12915-021-01127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Characterization of the molecular mechanisms underlying hair follicle development is of paramount importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from Merino sheep skin. Results We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105, and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135 Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep. For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with dermatological, metabolic, and immune traits in humans. Conclusions Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying gene expression in the normal development of organs in understanding the genetic architecture of economically important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep genome, and for elucidating early skin development in mammals, including humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01127-9.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junmin He
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Siqian Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weidan Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Shuli Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
26
|
Li S, Xi Q, Zhao F, Wang J, He Z, Hu J, Liu X, Luo Y. Short Communication: A highly polymorphic caprine keratin-associated protein gene identified and its effect on cashmere traits. J Anim Sci 2021; 99:6346686. [PMID: 34370022 DOI: 10.1093/jas/skab233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
Five keratin-associated protein 6 genes (KRTAP6) have been identified in sheep and variation in some KRTAP6 has been associated with wool fibre diameter-related traits, but none of these homologues has been identified in goats. In this study, we reported the identification of the sheep KRTAP6-5 homologue on goat chromosome 1 and PCR-single strand conformation polymorphism analysis in 300 Longdong cashmere goats revealed the existence of twelve variant sequences. Both coding region and 3'UTR of the putative caprine KRTAP6-5 displayed a biggest sequence similarity to ovine KRTAP6-5 gene. This suggested that the gene represents caprine KRTAP6-5 sequences, and these sequences composed twenty three genotypes which was the most polymorphism gene in KRTAPs that have been studied. Among these sequences, fifteen nucleotide substitutions and a 24-bp insertion/detection were identified. Variation in goat KRTAP6-5 was associated with variation in mean fibre diameter, suggesting that KRTAP6-5 is worthy of further study in the context of variation in cashmere traits.
Collapse
Affiliation(s)
- Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Qiming Xi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Sawyer G, Fox DR, Narayan E. Pre- and post-partum variation in wool cortisol and wool micron in Australian Merino ewe sheep ( Ovis aries). PeerJ 2021; 9:e11288. [PMID: 33987000 PMCID: PMC8086564 DOI: 10.7717/peerj.11288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
An individual merino sheep's output of wool production is influenced by synergistic interactions of sheep genetics, climate, farm management, and nutrition available to the whole flock. The price paid to the producer for this wool commodity is determined via numerous tested parameters and /or subjective appraisal of the raw greasy wool. This research investigated the level of variation in wool cortisol (a physiological stress biomarker) and wool micron (MIC) in Merino ewes (Ovis aries), pre-partum and post-lambing (lactation/lambs at foot), using maiden ewe (n = 38) managed in an outdoor paddock in a commercial farm. The key findings of this study are; (1) wool quality indicators showed a significant variation between pre- and post- parturition including significant reduction in MIC and (2) there was a negative correlation between wool cortisol levels and wool micron pre-parturition (rs = - 0.179, p < 0.05). This relationship between wool cortisol and wool micron was positive (rs = + 0.29, p < 0.05) during post-parturition suggesting that ewes with lambs at foot ended up with finer wool (reduction in fibre diameter) but they also maintained high levels of wool cortisol. Furthermore, the comfort factor, curvature, standard deviation and spin fineness of the wool were also significantly reduced post-parturition. The results of this study show that metabolic resources partitioning in ewe associated with pregnancy and lambing can result in a reduction in wool quality indices. The activity of the HPA-axis is attenuated during late gestation and parturition as a maternal adaptation; however, the results of our study show that wool cortisol remained similar between pre- and post- lambing. This result indicates that environmental stressors that may have been operating on farm (e.g., cold winter period) could influence on maternal physiological stress response however the exact level of influence of environment conditions on ewe stress levels and productivity traits (e.g., lambing success and wool quality) warrants further investigation. In conclusion, the use of top-knot wool sampling in combination with wool cortisol analysis provides researchers with a convenient method to quantify wool quality and physiological stress simultaneously under commercial sheep production.
Collapse
Affiliation(s)
- Gregory Sawyer
- School of Science, University of Western Sydney, Penrith, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Dylan Russell Fox
- School of Science, University of Western Sydney, Penrith, Australia
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St Lucia, Australia
| | - Edward Narayan
- School of Science, University of Western Sydney, Penrith, Australia
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Australia
| |
Collapse
|
29
|
Zhao H, Guo T, Lu Z, Liu J, Zhu S, Qiao G, Han M, Yuan C, Wang T, Li F, Zhang Y, Hou F, Yue Y, Yang B. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genomics 2021; 22:127. [PMID: 33602144 PMCID: PMC7893944 DOI: 10.1186/s12864-021-07399-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.
Collapse
Affiliation(s)
- Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
30
|
Zhao J, Ding Q, Li L, Kalds P, Zhou S, Sun J, Huang S, Wang X, Chen Y. Deletions in the KAP6-1 gene are associated with fiber traits in cashmere-producing goats. Anim Biotechnol 2021; 33:1198-1204. [PMID: 33583337 DOI: 10.1080/10495398.2021.1881529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Keratin-associated proteins (KAPs) are important structural components of fibers that predominantly present in the ortho-cortex. These proteins form a cross-linked network with keratin intermediate filaments (KIFs), thus producing a strong hair shaft. The keratin-associated protein 6-1 gene (KAP6-1) is a member of the KAPs family that has a potential correlation with fiber traits. In this study, we investigated the influence of KAP6-1 sequence polymorphisms on the fiber characteristics of a Chinese cashmere-producing goat breed (n = 844). Two main variants were found, including a three base pair (bp) deletion (namely B) and a 36-bp deletion (namely C), while the reference genotype of KAP6-1 was named A. Among them, the B variant was first reported on cashmere goats. This study then correlated these genotypes with the collected fiber data to investigate the potential association of these variants. The results showed that variant A is associated with decreased fiber diameter (p < 0.01), while variant C is associated with deceased fiber length (p < 0.01). These two related variants of the KAP6-1 gene have potential applications as gene-makers to improve the fiber diameter and length in cashmere-producing goats.
Collapse
Affiliation(s)
- Jin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiang Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayuan Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Characterization and functional analysis of Krtap11-1 during hair follicle development in Angora rabbits (Oryctolagus cuniculus). Genes Genomics 2020; 42:1281-1290. [PMID: 32955717 DOI: 10.1007/s13258-020-00995-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Keratin-associated protein (KAP), the structural protein molecule of hair fibers, plays a key role in determining the physical properties of hair. Studies of Krtap11-1 have focused only on its localization. Functional studies of Krtap11-1 in hair follicle development have so far not been reported. OBJECTIVE This study aimed to provide evidence for the role of Krtap11-1 in skin and hair development. METHODS Full-length cloning and analysis of Krtap11-1 were conducted to ascertain its function. Overexpression vectors and interference sequences were constructed and transfected into RAB-9 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate the hair follicle developmental stage of Krtap11-1, the expression of different tissues, and the effects on other hair follicle development-related genes. RESULTS The full length of cloned Krtap11-1 was 947 bp. Krtap11-1 was confirmed to be a hydrophilic protein localized mostly in mitochondria. The greatest mRNA expression was observed in skin. Using a follicle synchronization model, it was found that Krtap11-1 mRNA expression levels first increased then decreased over the passage of time, principally during hair follicle catagen and telogen. Following the overexpression of Krtap11-1, mRNA expression levels of the WNT-2, KRT17, BMP-2, and TGF-β-1 genes increased, and LEF-1 decreased (P < 0.05), the converse after the corresponding use of si-RNA interference. CONCLUSIONS Krtap11-1 exerts a promoting effect. The results provide novel insight into the relationship between hair follicle development and Krtap11-1 gene expression.
Collapse
|
32
|
Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene 2020; 758:144968. [PMID: 32707304 DOI: 10.1016/j.gene.2020.144968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
The hair follicle is an excellent mini-system illustrating the mechanisms governing organogenesis and regeneration. Although the general mechanisms modulating skin and hair follicle development are widely studied in mouse and chicken models, the delicate network regulating skin and hair diversity remains largely unclear. Sheep is an additional model to address the various wool characteristics observed in nature. The coarse and fine wool sheep with diverse fibers were examined to show differences in the primary wool follicle size and skin thickness. The molecular dynamics in skin staged at the primary wool follicle induction between two sheep lines were investigated by RNA-sequencing analyses to generate 1994 differentially expressed genes revealing marker genes for epithelium (6 genes), dermal condensate (38 genes) and dermal fibroblast (58 genes) highly correlated with skin and wool follicle morphological differences. The DEGs were enriched in GO terms represented by epithelial cell migration and differentiation, regulation of hair follicle development and ectodermal placode formation, and KEGG pathways typified by WNT and Hedgehog signaling pathways governing the differences of skin structure. The qPCR detection of 9 genes confirmed the similar expression tendency with RNA-sequencing profiles. This comparative study of coarse and fine wool sheep skin reveals the presence of skin and wool follicle differences at primary wool follicle induction stage, and indicates the potential effectors (APCDD1, FGF20, DKK1, IGFBP3 and SFRP4) regulating the skin compartments during the early morphogenesis of primary wool follicles to shape the variable wool fiber thickness in later developmental stages.
Collapse
|
33
|
Zhao R, Li J, Liu N, Li H, Liu L, Yang F, Li L, Wang Y, He J. Transcriptomic Analysis Reveals the Involvement of lncRNA-miRNA-mRNA Networks in Hair Follicle Induction in Aohan Fine Wool Sheep Skin. Front Genet 2020; 11:590. [PMID: 33117415 PMCID: PMC7528302 DOI: 10.3389/fgene.2020.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNA) and microRNAs (miRNA) are new found classes of non-coding RNAs (ncRNAs) that are not translated into proteins but regulate various cellular and biological processes. In this study, we conducted a transcriptomic analysis of ncRNA and mRNA expression in Aohan fine wool sheep (AFWS) at different growth stages (embryonic day 90, embryonic day 120, and the day of birth), and explored their relationship with wool follicle growth. In total, 461 lncRNAs, 106 miRNAs, and 1,009 mRNAs were found to be differentially expressed during the three stages of wool follicle development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to clarify the roles of the differentially expressed lncRNA, miRNA, and mRNA in the different stages of wool follicle development. Quantitative real-time PCR (qRT-PCR) was used to validate the results of RNA-seq analysis. lncRNA (MSTRG.223165) was found to act as a competing endogenous RNA (ceRNA) and may participate in wool follicle development by acting as an miR-21 sponge. Network prediction implicated the MSTRG.223165-miR-21-SOX6 axis in the wool follicle development. The targeting relationships of miR-21 with SOX6 and MSTRG.223165 were validated in dual-luciferase assays. This is the first report indicating the association of the lncRNA-miRNA-mRNA network with wool follicle development in AFWS. This study provides new insights into the regulation of the wool follicle growth and represents a solid foundation for wool sheep breeding programs.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
34
|
Guo T, Han J, Yuan C, Liu J, Niu C, Lu Z, Yue Y, Yang B. Comparative proteomics reveals genetic mechanisms underlying secondary hair follicle development in fine wool sheep during the fetal stage. J Proteomics 2020; 223:103827. [PMID: 32422274 DOI: 10.1016/j.jprot.2020.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/01/2023]
Abstract
The aim of this study was to investigate the genetic mechanisms underlying wool production by characterizing the skin protein profile and determining the proteomic changes that occur as a consequence of development in wool-producing sheep using a label-free proteomics approach. Samples were collected at four stages during gestation (87, 96, 102, and 138 days), and every two consecutive stages were statistically compared (87 versus 96, 96 versus 102, and 102 versus 138 days). We identified 227 specific proteins in the sheep proteome that were present in all four stages, and 123 differentially abundant proteins (DAPs). We also observed that the microstructure of the secondary follicles changed significantly during the development of the fetal skin hair follicle. The screened DAPs were strictly related to metabolic and skin development pathways, and were associated with pathways such as the glycolysis/gluconeogenesis. These analyses indicated that the wool production of fine wool sheep is regulated via a variety of pathways. These findings provide an important resource that can be used in future studies of the genetic mechanisms underlying wool traits in fine wool sheep, and the identified DAPs should be further investigated as candidate markers for predicting wool traits in sheep. SIGNIFICANCE: Wool quality (fiber diameter, length, etc.) is an important economic trait of fine wool sheep that is determined by secondary follicle differentiation and re-differentiation. Secondary follicles of fine wool sheep developed from a bud (87 days), and underwent differentiation (96 days) and rapid growth (102 days) until maturity (138 days) during gestation. Comparative analysis based on differential proteomics of these four periods could provide a better understanding of the wool growth mechanism of fine wool sheep and offer novel strategies for improving fine wool quality by breeding.
Collapse
Affiliation(s)
- Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jilong Han
- Shihezi University, Shihezi 832000, People's Republic of China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
35
|
Discovery of genes and proteins possibly regulating mean wool fibre diameter using cDNA microarray and proteomic approaches. Sci Rep 2020; 10:7726. [PMID: 32382132 PMCID: PMC7206055 DOI: 10.1038/s41598-020-64903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Wool fibre diameter (WFD) is one of the wool traits with higher economic impact. However, the main genes specifically regulating WFD remain unidentified. In this current work we have used Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin, bearing more wool, in Aohan fine wool sheep, a Chinese indigenous breed, and compared them with that of small tail Han sheep, a sheep bread with coarse wool. Microarray analyses showed that most of the genes likely determining wool diameter could be classified into a few categories, including immune response, regulation of receptor binding and growth factor activity. Certain gene families might play a role in hair growth regulation. These include growth factors, immune cytokines, solute carrier families, cellular respiration and glucose transport amongst others. Proteomic analyses also identified scores of differentially expressed proteins.
Collapse
|
36
|
Bryson WG, McCormack AC, Plowman JE, Grosvenor AJ, Murphy CJ, Nagase S, Itou T, Koike K. Improved two-dimensional electrophoretic mapping of Japanese human hair proteins; application to curved and straight Japanese human hairs; and protein identification by MALDI MS and MS/MS quadrupole time-of-flight mass spectrometry. Int J Cosmet Sci 2020; 42:346-358. [PMID: 32251525 DOI: 10.1111/ics.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate improved protein extraction and two-dimensional electrophoresis (2DE) separation methods with Japanese reference human hair (JRH); to determine whether fibre curvature is related to protein composition in curly and straight Japanese women's human hair (JHH) samples; and to identify proteins from JRH 2DE maps and expression differences between curly and straight JHH. METHODS Hair keratin and keratin-associated proteins (KAPs) were extracted intact with dithiothreitol or tris(2-carboxyethyl) phosphine from JRH or from curved or straight JHH. Extracted proteins were isoelectric-focused on first-dimensional pH gradient gel strips, then separated by molecular weight on laboratory-made, second-dimension, large format gels. The software compared protein abundance between duplicate 2DE gels of curved and straight JHH. Thirty-eight proteins from a JRH 2DE gel were enzyme-cleaved for MALDI-TOF-MS analysis to determine peptide composition, and where possible, de novo sequencing gave peptide sequence data. An in-house human hair protein database incorporating ninety-eight annotated protein sequences assisted MS analysis. RESULTS 2DE gels of tris(2-carboxyethyl) phosphine-extracted JRH improved keratin and KAP resolution and number compared to those of dithiothreitol-extracted JRH and published commercially made second-dimensional gels. Silver-stained 2DE gels of the straight or curved JHH sets were remarkably similar. Over-staining to reveal basic proteins caused poor resolution of the major acidic protein classes. Software comparisons of fifty-nine resolved proteins revealed two were significantly different in abundance between curved and straight hairs but in insufficient amounts for MS analysis. MS identified twelve proteins from a JRH CBBG-stained 2DE gel: six type II keratins, three type I keratins and three high sulphur proteins. A further eight were potential conformational isoforms and isoelectric variants of the identified proteins bringing the total to twenty identified or partially identified proteins. CONCLUSION Root-end human hair extraction with tris(2-carboxyethyl) phosphine improves protein resolution and visualizes more proteins on large format 2DE gels. The two minor protein differences between duplicate straight or curved JHH 2DE gels were unlikely to change fibre structure from straight to curved hair. MS results confirmed that multiple isoforms exist of various hair proteins. Low sequence coverage prevented distinction between members in rows of homologous protein spots of similar molecular weight.
Collapse
Affiliation(s)
- W G Bryson
- Formerly of Canesis Network Limited, 55 Westlake Drive, Halswell, Christchurch, 8025, New Zealand
| | - A C McCormack
- MYOB NZ Limited, PO Box 2864, 17 Sir William Pickering Drive, Christchurch, 8053, New Zealand
| | - J E Plowman
- Lincoln Research Centre, AgResearch Limited, Private Bag 4749, Christchurch, Canterbury, New Zealand
| | - A J Grosvenor
- Lincoln Research Centre, AgResearch Limited, Private Bag 4749, Christchurch, Canterbury, New Zealand
| | - C J Murphy
- Hutt Central, 3A Epuni St, Lower Hutt, 5011, New Zealand
| | - S Nagase
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| | - T Itou
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| | - K Koike
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| |
Collapse
|
37
|
Pallotti S, Valbonesi A, Yujie L, Jiyuan Y, Peirong T, Antonini M. Postnatal development of the skin follicle population in the chinese alashan left banner white cashmere goat. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
VELAMOOR S, RICHENA M, MITCHELL A, LEQUEUX S, BOSTINA M, HARLAND D. High‐pressure freezing followed by freeze substitution of a complex and variable density miniorgan: the wool follicle. J Microsc 2020; 278:18-28. [DOI: 10.1111/jmi.12875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- S. VELAMOOR
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
- Department of Immunology and MicrobiologyUniversity of Otago Dunedin New Zealand
| | - M. RICHENA
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
| | - A. MITCHELL
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - S. LEQUEUX
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - M. BOSTINA
- Department of Immunology and MicrobiologyUniversity of Otago Dunedin New Zealand
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - D. HARLAND
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
| |
Collapse
|
39
|
Ullah F, Jamal SM, Ekegbu UJ, Haruna IL, Zhou H, Hickford JGH. Polymorphism in the ovine keratin-associated protein gene KRTAP7-1 and its association with wool characteristics. J Anim Sci 2020; 98:5682607. [PMID: 31863114 DOI: 10.1093/jas/skz381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 01/28/2023] Open
Abstract
The keratin-associated proteins (KAPs) are structural components of wool fibers and variation in the genes encoding the KAPs can affect wool traits. In this study, sequence variation in the ovine KAP7-1 gene (KRTAP7-1) was investigated in 222 sheep across 5 different Pakistani breeds and breed crosses. Two previously identified variants (A and B) of the KRTAP7-1 coding sequence were identified. The frequency of the genotypes AA and AB was 76% and 23%, respectively, and that of BB was 1%. The association of sequence variation with various wool traits and measurements included yield (the proportion of greasy fleece weight that is clean fleece), mean staple length (MSL), wool bulk, mean fiber diameter, fiber diameter SD, the coefficient of variation of fiber diameter, medullation, the SD of medullation, the coefficient of variation of medullation, fiber opacity, the SD of opacity, and the coefficient of variation of opacity. Variation in KRTAP7-1 was found to be associated with yield (P = 0.017). The adjusted mean yield of sheep of genotype AA (n = 169) was 79.9 ± 2.72%, while that of genotype AB (n = 51) was 81.9 ± 3.37%. There was also an association between variation in KRTAP7-1 and MSL (P = 0.024), with sheep of genotype AA (n = 169) having an adjusted mean MSL of 47.3 ± 0.57 mm compared with sheep of genotype AB (n = 51, 50.9 ± 0.65 mm). Yield and MSL are both important wool production traits, hence variation in KRTAP7-1 needs to be further investigated in more sheep of differing breed.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Syed M Jamal
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Ugonna J Ekegbu
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Ishaku L Haruna
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
40
|
Wortmann FJ, Wortmann G, Sripho T. Why is hair curly?—Deductions from the structure and the biomechanics of the mature hair shaft. Exp Dermatol 2019; 29:366-372. [DOI: 10.1111/exd.14048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Franz J. Wortmann
- Department of Materials School of Natural Sciences The University of Manchester Manchester UK
| | - Gabriele Wortmann
- Department of Materials School of Natural Sciences The University of Manchester Manchester UK
| | - Therakanya Sripho
- Department of Materials School of Natural Sciences The University of Manchester Manchester UK
| |
Collapse
|
41
|
Gong H, Zhou H, Wang J, Li S, Luo Y, Hickford JGH. Characterisation of an Ovine Keratin Associated Protein (KAP) Gene, Which Would Produce a Protein Rich in Glycine and Tyrosine, but Lacking in Cysteine. Genes (Basel) 2019; 10:E848. [PMID: 31717789 PMCID: PMC6896175 DOI: 10.3390/genes10110848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
The keratin-associated proteins (KAPs) are structural components of hair/wool fibres. All of the KAPs identified to date contain cysteine, which is thought to form disulphide bonds cross-linking the keratin intermediate filaments. Here, we report the identification of a KAP gene in sheep that would produce a protein that contains a high proportion (63.2 mol%) of glycine and tyrosine, but would not contain any cysteine. This suggests that other forms of intra- and inter-strand interaction may occur with this KAP, such as interactions via ring-stacking and hydrogen-bonding. The gene was dissimilar to any previously reported KAP gene, and was therefore assigned to a new family, and named KRTAP36-1. The KRTAP36-1 genome sequence was almost identical to some EST sequences from sheep and goat skin follicles, suggesting that it is present and expressed in sheep and goats. A BLAST search of the human genome assembly sequence did not reveal any human homologue. Three variant sequences (named A to C) of ovine KRTAP36-1 were identified and four single nucleotide polymorphisms (SNPs) were detected. One SNP was located 32 bp upstream of the coding region, and all of the others were in the coding region and were nonsynonymous. After correcting for potential linkage to the proximal KRTAP20-1, variant B of KRTAP36-1 was found to be associated with increased prickle factor (PF) in wool, suggesting that variation in the gene may have the potential to be used as gene marker for breeding sheep with lower PF.
Collapse
Affiliation(s)
- Hua Gong
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jiqing Wang
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jonathan G. H. Hickford
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.G.); (H.Z.); (J.W.); (S.L.)
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
42
|
Li S, Zhou H, Gong H, Zhao F, Wang J, Liu X, Hu J, Luo Y, Hickford JGH. Identification of the Ovine Keratin-Associated Protein 21-1 Gene and Its Association with Variation in Wool Traits. Animals (Basel) 2019; 9:E450. [PMID: 31315271 PMCID: PMC6680380 DOI: 10.3390/ani9070450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Keratin-associated proteins (KAPs) are key constituents of wool and hair fibers. In this study, an ovine KAP gene encoding a HGT-KAP protein was identified. The gene was different from all of the HGT-KAP genes identified in sheep, but was closely related to the human KAP21-1 gene, suggesting that it represented the unidentified ovine KRTAP21-1. Four variants (named A to D) of ovine KRTAP21-1 were found in 360 Merino × Southdown-cross lambs from four sire lines. Three sequence variations were detected among these variants. Two of the sequence variations were located upstream of the coding region and the remaining one was a synonymous variation in the coding sequence. Six genotypes were found in the Merino-cross lambs, with only two of the genotypes (AA and AC) occurring at a frequency of over 5%. Wool from sheep of genotype AA had a higher yield than that from AC sheep (p = 0.014), but tended to have a lower greasy fleece weight (GFW) than that of genotype AC (P = 0.078). This suggests that variation in KRTAP21-1 affects wool yield and the gene may have potential for use as a genetic maker for improving wool yield.
Collapse
Affiliation(s)
- Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Hua Gong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
43
|
Fürtbauer I, Solman C, Fry A. Sheep wool cortisol as a retrospective measure of long-term HPA axis activity and its links to body mass. Domest Anim Endocrinol 2019; 68:39-46. [PMID: 30797176 DOI: 10.1016/j.domaniend.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
Abstract
Hair cortisol analysis has been suggested as a powerful retrospective measure of long-term hypothalamic-pituitary-adrenal (HPA) axis activity in numerous mammal species. In contrast, research evaluating the use of wool as a marker of long-term HPA axis activity is still scarce, and wool differs from hair in a number of ways. Here, we assess repeatability and differences in wool cortisol concentrations (WCCs) across (i) the wool shaft, (ii) two body locations, and (iii) time, in 33 barren Welsh mountain ewes (Ovis aries). We also (iv) investigated effects of grazing-related changes in body mass on WCCs and (v) assessed effects of the washing procedure during sample preparation on WCCs. Cortisol concentrations were repeatable but differed significantly across the wool shaft indicating that, provided wool growth rate is known, a single sample per individual could be used as a retrospective cortisol "timeline." WCCs were significantly higher in shoulder than in back samples, and no correlation between these two body locations was found, highlighting the importance of sampling from the same body location for repeated measures. An increase in body mass during grazing corresponded with a decrease in WCCs, which was significantly negatively correlated with body mass (and positively with age), suggesting that WCCs can be used as a marker of body condition and nutritional status in sheep. Interestingly, we found higher WCCs in washed compared with unwashed samples and discuss implications of this finding for future work. Overall, our study revealed significant within- and between-individual differences in WCCs and highlights a number of advantages but also methodological considerations of using WCCs as a retrospective measure of long-term HPA axis activity in sheep.
Collapse
Affiliation(s)
- I Fürtbauer
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK.
| | - C Solman
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK
| | - A Fry
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK
| |
Collapse
|
44
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
45
|
Daverio MS, Anello M, Alcolea Ersinger V, Alvarez S, Frank E, Vidal-Rioja L, Di Rocco F. Identification of llama KRTAP7-1 and KRTAP8-1 fiber genes and polymorphism screening. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
46
|
Yang HYL, Yang H, Shi GQ, Shen M, Yang JQ, Yang YL, Liu XJ. Expression profile analysis of microRNAs during hair follicle development in the sheep foetus. Biosci Biotechnol Biochem 2019; 83:1045-1061. [PMID: 30935300 DOI: 10.1080/09168451.2019.1591261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) regulate the development and growth cycle of hair follicles (HFs). The molecular mechanism by which miRNAs determine the development of HFs in the sheep foetus remains elusive. In this study, the expression profiles of miRNAs at 11 development periods (45, 55, 65, 75, 85, 95, 105, 115, 125, 135 and 145 d) in sheep foetus skin were analysed by high-throughput sequencing and bioinformatics analysis. A total of 72 conserved miRNAs, 44 novel miRNAs and 32 known miRNAs were significantly differentially expressed. qRT-PCR results for 18 miRNAs were consistent with the sequencing data. 85 d of foetal development was the starting point for secondary hair follicle (SF) development according to tissue morphology and cluster analysis. In SF development, the prolactin signalling pathway and platelet activation played important roles, and 10 miRNAs were potential candidate miRNAs in SF initiation.
Collapse
Affiliation(s)
- Han-Yu-Lu Yang
- a College of Animal Science and Technology , Shihezi University , Shihezi , China
| | - Hua Yang
- b State Key Laboratory of Sheep Genetic Improvement and Healthy Production , Xinjiang Academy of Agricultural and Reclamation Science , Shihezi , China
| | - Guo-Qing Shi
- b State Key Laboratory of Sheep Genetic Improvement and Healthy Production , Xinjiang Academy of Agricultural and Reclamation Science , Shihezi , China
| | - Min Shen
- b State Key Laboratory of Sheep Genetic Improvement and Healthy Production , Xinjiang Academy of Agricultural and Reclamation Science , Shihezi , China
| | - Jing-Quan Yang
- b State Key Laboratory of Sheep Genetic Improvement and Healthy Production , Xinjiang Academy of Agricultural and Reclamation Science , Shihezi , China
| | - Yong-Lin Yang
- b State Key Laboratory of Sheep Genetic Improvement and Healthy Production , Xinjiang Academy of Agricultural and Reclamation Science , Shihezi , China
| | - Xiao-Jun Liu
- a College of Animal Science and Technology , Shihezi University , Shihezi , China.,c College of Animal Science and Veterinary Medicine , Henan Agricultural University , Henan , China
| |
Collapse
|
47
|
Differences between ultrastructure and protein composition in straight hair fibres. ZOOLOGY 2019; 133:40-53. [DOI: 10.1016/j.zool.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
48
|
Li S, Zheng X, Nie Y, Chen W, Liu Z, Tao Y, Hu X, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Defining Key Genes Regulating Morphogenesis of Apocrine Sweat Gland in Sheepskin. Front Genet 2019; 9:739. [PMID: 30761184 PMCID: PMC6363705 DOI: 10.3389/fgene.2018.00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
The apocrine sweat gland is a unique skin appendage in humans compared to mouse and chicken models. The absence of apocrine sweat glands in chicken and murine skin largely restrains further understanding of the complexity of human skin biology and skin diseases, like hircismus. Sheep may serve as an additional system for skin appendage investigation owing to the distributions and histological similarities between the apocrine sweat glands of sheep trunk skin and human armpit skin. To understand the molecular mechanisms underlying morphogenesis of apocrine sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631 differentially expressed genes that were mainly enriched in three functional groups (cellular component, molecular function and biological process), particularly in gland, epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms enriched in epithelial cell migration and morphogenesis of branching epithelium that were potentially correlated with the wool follicle peg elongation. An additional 5 GO terms were enriched in gland morphogenesis (20 genes), gland development (42 genes), salivary gland morphogenesis and development (8 genes), branching involved in salivary gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4 genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes and Genomes pathway genes (WNT and TGF-β) were potentially involved in the induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3, WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR. Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin. SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were both observed in precursor cells of apocrine sweat glands and later in gland ducts. These results combined with the upregulation of BMP signaling genes indicate that apocrine sweat glands were originated from outer root sheath of primary wool follicle and positively regulated by BMP signaling. This report established the primary network regulating early development of apocrine sweat glands in sheepskin and will facilitate the further understanding of histology and pathology of apocrine sweat glands in human and companion animal skin.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingfeng Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Haibei, China
| | | | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Haixi, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Nie Y, Li S, Zheng X, Chen W, Li X, Liu Z, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Transcriptome Reveals Long Non-coding RNAs and mRNAs Involved in Primary Wool Follicle Induction in Carpet Sheep Fetal Skin. Front Physiol 2018; 9:446. [PMID: 29867522 PMCID: PMC5968378 DOI: 10.3389/fphys.2018.00446] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Murine primary hair follicle induction is driven by the communication between the mesenchyme and epithelium and mostly governed by signaling pathways including wingless-related integration site (WNT), ectodysplasin A receptor (EDAR), bone morphogenetic protein (BMP), and fibroblast growth factor (FGF), as observed in genetically modified mouse models. Sheep skin may serve as a valuable system for hair research owing to the co-existence of sweat glands with wool follicles in trunk skin and asynchronized wool follicle growth pattern similar to that of human head hair follicles. However, the mechanisms underlying wool follicle development remain largely unknown. To understand how long non-coding RNAs (lncRNAs) and mRNAs function in primary wool follicle induction in carpet wool sheep, we conducted high-throughput RNA sequencing and revealed globally altered lncRNAs (36 upregulated and 26 downregulated), mRNAs (228 elevated and 225 decreased), and 80 differentially expressed novel transcripts. Several key signals in WNT (WNT2B and WNT16), BMP (BMP3, BMP4, and BMP7), EDAR (EDAR and EDARADD), and FGF (FGFR2 and FGF20) pathways, and a series of lncRNAs, including XLOC_539599, XLOC_556463, XLOC_015081, XLOC_1285606, XLOC_297809, and XLOC_764219, were shown to be potentially important for primary wool follicle induction. GO and KEGG analyses of differentially expressed mRNAs and potential targets of altered lncRNAs were both significantly enriched in morphogenesis biological processes and transforming growth factor-β, Hedgehog, and PI3K-Akt signaling, as well as focal adhesion and extracellular matrix-receptor interactions. The prediction of mRNA-mRNA and lncRNA-mRNA interaction networks further revealed transcripts potentially involved in primary wool follicle induction. The expression patterns of mRNAs and lncRNAs of interest were validated by qRT-PCR. The localization of XLOC_297809 and XLOC_764219 both in placodes and dermal condensations was detected by in situ hybridization, indicating important roles of lncRNAs in primary wool follicle induction and skin development. This is the first report elucidating the gene network of lncRNAs and mRNAs associated with primary wool follicle early development in carpet wool sheep and will shed new light on selective wool sheep breeding.
Collapse
Affiliation(s)
- Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - XinTing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueer Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Quanbang Pei
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Qinghai, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Westgate GE, Ginger RS, Green MR. The biology and genetics of curly hair. Exp Dermatol 2018; 26:483-490. [PMID: 28370528 DOI: 10.1111/exd.13347] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races. The creation of the highly complex biomaterials in hair follicle and how these confer mechanical functions on the fibre so formed is a topic that remains relatively unexplained thus far. We review the current understanding on how hair fibres are formed into a nonlinear coiled form and which genetic and biological factors are thought to be responsible for hair shape. We report on a new GWAS comparing low and high curl individuals in South Africa, revealing strong links to polymorphic variation in trichohyalin, a copper transporter protein CUTC and the inner root sheath component keratin 74. This builds onto the growing knowledge base describing the control of curly hair formation.
Collapse
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Rebecca S Ginger
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Martin R Green
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|