1
|
Shi A, Ma S, Yang Z, Ding W, Tian J, Chen X, Tao J. Proteomic Analysis of Crimped and Straight Wool in Chinese Tan Sheep. Animals (Basel) 2024; 14:2858. [PMID: 39409807 PMCID: PMC11482551 DOI: 10.3390/ani14192858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using tandem mass tag (TMT)-based quantification. The mean fur curvature (MFC) of crimped wool was significantly greater than that of straight wool (p < 0.001). We identified 1218 proteins between the two types of wool, including 50 keratins (Ks) and 10 keratin-associated proteins (KAPs). There were 213 differentially expressed proteins, including 13 Ks and 4 KAPs. Crimped wool showed relatively high abundances of KAP24-1, K84, K32, K82, and intermediate filament rod domain-containing protein (IRDC), whereas straight wool had relatively high abundances of K6A, K27, K80, KAP16-1, KAP27-1, and trichohyalin (TCHH). The expression levels of KAP16-1, KAP24-1, and KAP27-1 were related to the ratio of paracortex, which may be associated with wool crimp formation. Additionally, high expressions of TCHH, K27, and K6A in the inner root sheath (IRS) were linked to fiber fineness in straight wool. These findings provide insight into the overall expression and distribution patterns of Ks and KAPs, offering opportunities to improve wool quality and enhance its economic potential in the textile industry.
Collapse
Affiliation(s)
- An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Sijia Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Wei Ding
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Jinyang Tian
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Xin Chen
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| |
Collapse
|
2
|
Abe J, Aono Y, Hirai Y. The decline in cellular iron is crucial for differentiation in keratinocytes. Metallomics 2024; 16:mfae014. [PMID: 38449344 DOI: 10.1093/mtomcs/mfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
Iron is a vital metal for most biological functions in tissues, and its concentration is exquisitely regulated at the cellular level. During the process of differentiation, keratinocytes in the epidermis undergo a noticeable reduction in iron content. Conversely, psoriatic lesions, characterized by disruptions in epidermal differentiation, frequently reveal an excessive accumulation of iron within keratinocytes that have undergone differentiation. In this study, we clarified the significance of attenuated cellular iron content in the intricate course of epidermal differentiation. We illustrated this phenomenon through the utilization of hinokitiol, an iron chelator derived from the heartwood of Taiwanese hinoki, which forcibly delivers iron into cells independent of the intrinsic iron-regulation systems. While primary cultured keratinocytes readily succumbed to necrotic cell death by this iron chelator, mild administration of the hinokitiol-iron complex modestly disrupts the process of differentiation in these cells. Notably, keratinocyte model cells HaCaT and anaplastic skin rudiments exhibit remarkable resilience against the cytotoxic impact of hinokitiol, and the potent artificial influx of iron explains a suppressive effect selectively on epidermal differentiation. Moreover, the augmentation of iron content induced by the overexpression of divalent metal transporter 1 culminates in the inhibition of differentiation in HaCaT cells. Consequently, the diminution in cellular iron content emerges as an important determinant influencing the trajectory of keratinocyte differentiation.
Collapse
Affiliation(s)
- Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University. 1, Gakuen-Uegahara, Sanda 669-1330, Japan
| | - Yuichi Aono
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University. 1, Gakuen-Uegahara, Sanda 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University. 1, Gakuen-Uegahara, Sanda 669-1330, Japan
| |
Collapse
|
3
|
Westgate GE, Ginger RS, Green MR. The biology and genetics of curly hair. Exp Dermatol 2018; 26:483-490. [PMID: 28370528 DOI: 10.1111/exd.13347] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races. The creation of the highly complex biomaterials in hair follicle and how these confer mechanical functions on the fibre so formed is a topic that remains relatively unexplained thus far. We review the current understanding on how hair fibres are formed into a nonlinear coiled form and which genetic and biological factors are thought to be responsible for hair shape. We report on a new GWAS comparing low and high curl individuals in South Africa, revealing strong links to polymorphic variation in trichohyalin, a copper transporter protein CUTC and the inner root sheath component keratin 74. This builds onto the growing knowledge base describing the control of curly hair formation.
Collapse
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Rebecca S Ginger
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Martin R Green
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
4
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
5
|
Pośpiech E, Karłowska-Pik J, Marcińska M, Abidi S, Andersen JD, Berge MVD, Carracedo Á, Eduardoff M, Freire-Aradas A, Morling N, Sijen T, Skowron M, Söchtig J, Syndercombe-Court D, Weiler N, Schneider PM, Ballard D, Børsting C, Parson W, Phillips C, Branicki W. Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans. Forensic Sci Int Genet 2015; 19:280-288. [PMID: 26414620 DOI: 10.1016/j.fsigen.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/10/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
DNA-based prediction of hair morphology, defined as straight, curly or wavy hair, could contribute to an improved description of an unknown offender and allow more accurate forensic reconstructions of physical appearance in the field of forensic DNA phenotyping. Differences in scalp hair morphology are significant at the worldwide scale and within Europe. The only genome-wide association study made to date revealed the Trichohyalin gene (TCHH) to be significantly associated with hair morphology in Europeans and reported weaker associations for WNT10A and FRAS1 genes. We conducted a study that centered on six SNPs located in these three genes with a sample of 528 individuals from Poland. The predictive capacity of the candidate DNA variants was evaluated using logistic regression; classification and regression trees; and neural networks, by applying a 10-fold cross validation procedure. Additionally, an independent test set of 142 males from six European populations was used to verify performance of the developed prediction models. Our study confirmed association of rs11803731 (TCHH), rs7349332 (WNT10A) and rs1268789 (FRAS1) SNPs with hair morphology. The combined genotype risk score for straight hair had an odds ratio of 2.7 and these predictors explained ∼ 8.2% of the total variance. The selected three SNPs were found to predict straight hair with a high sensitivity but low specificity when a 10-fold cross validation procedure was applied and the best results were obtained using the neural networks approach (AUC=0.688, sensitivity=91.2%, specificity=23.0%). Application of the neural networks model with 65% probability threshold on an additional test set gave high sensitivity (81.4%) and improved specificity (50.0%) with a total of 78.7% correct calls, but a high non-classification rate (66.9%). The combined TTGGGG SNP genotype for rs11803731, rs7349332, rs1268789 (European frequency=4.5%) of all six straight hair-associated alleles was identified as the best predictor, giving >80% probability of straight hair. Finally, association testing of 44 SNPs previously identified to be associated with male pattern baldness revealed a suggestive association with hair morphology for rs4679955 on 3q25.1. The study results reported provide the starting point for the development of a predictive test for hair morphology in Europeans. More studies are now needed to discover additional determinants of hair morphology to improve the predictive accuracy of this trait in forensic analysis.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland.
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Marcińska
- Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
| | - Sarah Abidi
- Faculty of Life Sciences, King's College, London, UK
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margreet van den Berge
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Genomic Medicine Group, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain
| | - Mayra Eduardoff
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Titia Sijen
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Małgorzata Skowron
- Department of Dermatology, Medical College of Jagiellonian University, Krakow, Poland
| | - Jens Söchtig
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Natalie Weiler
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Peter M Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - David Ballard
- Faculty of Life Sciences, King's College, London, UK
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chris Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Wojciech Branicki
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland; Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
| | | |
Collapse
|
6
|
Fujimoto S, Takase T, Kadono N, Maekubo K, Hirai Y. Krtap11-1, a hair keratin-associated protein, as a possible crucial element for the physical properties of hair shafts. J Dermatol Sci 2013; 74:39-47. [PMID: 24439038 DOI: 10.1016/j.jdermsci.2013.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The physical properties of the hair are predominantly determined by the assembly of keratin bundles. The keratin-associated proteins (Krtaps) are thought to be involved in keratin bundle assembly, however, the functional role of the individual member still remains largely unknown. OBJECTIVE The aim of this study is to clarify the role of a unique class of Krtaps, Krtap11-1, in the development and physical properties of the hair. METHODS The expression regulation of Krtap11-1 was analyzed and its binding partners in the hair cortex were determined. Also, the effects of the forcible expression of this protein on the hair follicle development were analyzed in culture. RESULTS The expression pattern of Krtap11-1 was concentrically asymmetric in the faulty hair that develops in Foxn1nu mice. In cultured keratinocytes, the expression of Krtap11-1 transgene product was strictly regulated by the keratinization process and proteasome-dependent protein elimination. While the association with keratin as well as the cohesive self-assembly of Krtap11-1 appeared to be stabilized by disulfide cross-links, the biotinylated Krtap11-1 probe enabled the adherence to certain type I keratins in the hair cortex, including K31, 33 and 34, in the absence of disulfide formation. When embryonic upper lip rudiments were forcibly introduced with Krtap11-1, the hair follicles formed irregularly arranged globular hair keratin-clumps surrounded by multilayered epithelial cells in culture. CONCLUSION Krtap11-1 may play an important role on keratin-bundle assembly in the hair cortex and this study provides insight into the physical properties of the hair shaft.
Collapse
Affiliation(s)
- Shunsuke Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Takahisa Takase
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Nanako Kadono
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kenji Maekubo
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Yohei Hirai
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| |
Collapse
|
7
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Takase T, Hirai Y. Identification of the C-terminal tail domain of AHF/trichohyalin as the critical site for modulation of the keratin filamentous meshwork in the keratinocyte. J Dermatol Sci 2011; 65:141-8. [PMID: 22261007 DOI: 10.1016/j.jdermsci.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/21/2011] [Accepted: 12/20/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND AHF/trichohyalin is a large structural protein abundant in the inner root sheath (IRS) of anagenic hair follicles, which has been thought to mediate the keratin filamentous assembly. However, its functional mechanism is largely unknown. OBJECTIVE This study aimed at the identification of the key domain in AHF for keratin association and the establishment of a plausible mechanism for the modulation of the keratin meshwork. METHODS Several keratinocyte cell lines were introduced with the full length or several mutants of AHF, together with IRS-specific keratin krt31, and the profile of the AHF granules and the cellular behaviors were carefully analyzed. RESULTS Full length of AHF formed small round granules that clearly bound to and aligned on the exogenous keratin filaments in the keratinocytes, severely affected cellular growth, mobility and shape. Intriguingly, the removal of only 6 amino acids around the C-terminal tail of AHF resulted not only in the complete loss of its keratin adherent ability but also in a dramatic enlargement of the granules. CONCLUSION We propose a model for cytoskeletal modulation in the IRS of anagenic hair follicles: AHF latches onto the keratin bundles by its C-terminus and rearranges the keratin meshwork by intrinsic cohesive activity for the granule formation.
Collapse
Affiliation(s)
- Takahisa Takase
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | | |
Collapse
|