1
|
Hida T, Idogawa M, Ishikawa A, Okura M, Sasaki S, Tokino T, Uhara H. A case of familial progressive hyperpigmentation with or without hypopigmentation presenting with hypopigmented striae along the lines of Blaschko. J Dermatol 2025; 52:159-162. [PMID: 39269165 DOI: 10.1111/1346-8138.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Familial progressive hyperpigmentation with or without hypopigmentation (FPHH) is an autosomal dominant disorder characterized by widespread skin hyperpigmentation, café-au-lait spots, and hypopigmented circular macules, resulting from KITLG variants. KITLG, expressed by keratinocytes, binds to KIT on melanocytes, stimulating melanogenesis. Disturbances in the KITLG-KIT interaction result in diffuse hyperpigmentation in FPHH. However, the mechanisms behind hypopigmented macule formation remain unclear. This report presents a unique FPHH case in a patient with a novel KITLG mutation (Ser78Leu). Notably, the patient showed multiple hypopigmented macules and striae along the lines of Blaschko. Digital polymerase chain reaction analysis of the DNA from skin and blood tissues indicated a copy-neutral loss of heterozygosity at the KITLG locus, only in the hypopigmented macule. These findings suggest that the hypopigmented macules might result from revertant mosaicism. Conversely, café-au-lait spots do not follow the lines of Blaschko and can superimpose on the hypopigmented striae, indicating a distinct pathogenesis. This case contributes to the understanding of the genetic mechanisms in FPHH.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aki Ishikawa
- Department of Medical Genetics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Saracino AM, Kelberman D, Otto GW, Gagunashvili A, Abraham DJ, Denton CP. Unravelling morphoea aetiopathogenesis by next-generation sequencing of paired skin biopsies. Arch Dermatol Res 2023; 315:2035-2056. [PMID: 36912952 PMCID: PMC10366313 DOI: 10.1007/s00403-023-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Morphoea can have a significant disease burden. Aetiopathogenesis remains poorly understood, with very limited existing genetic studies. Linear morphoea (LM) may follow Blascho's lines of epidermal development, providing potential pathogenic clues. OBJECTIVE The first objective of this study was to identify the presence of primary somatic epidermal mosaicism in LM. The second objective was tTo explore differential gene expression in morphoea epidermis and dermis to identify potential pathogenic molecular pathways and tissue layer cross-talk. METHODOLOGY Skin biopsies from paired affected and contralateral unaffected skin were taken from 16 patients with LM. Epidermis and dermis were isolated using a 2-step chemical-physical separation protocol. Whole Genome Sequencing (WGS; n = 4 epidermal) and RNA-seq (n = 5-epidermal, n = 5-dermal) with gene expression analysis via GSEA-MSigDBv6.3 and PANTHER-v14.1 pathway analyses, were performed. RTqPCR and immunohistochemistry were used to replicate key results. RESULTS Sixteen participants (93.8% female, mean age 27.7 yrs disease-onset) were included. Epidermal WGS identified no single affected gene or SNV. However, many potential disease-relevant pathogenic variants were present, including ADAMTSL1 and ADAMTS16. A highly proliferative, inflammatory and profibrotic epidermis was seen, with significantly-overexpressed TNFα-via-NFkB, TGFβ, IL6/JAKSTAT and IFN-signaling, apoptosis, p53 and KRAS-responses. Upregulated IFI27 and downregulated LAMA4 potentially represent initiating epidermal 'damage' signals and enhanced epidermal-dermal communication. Morphoea dermis exhibited significant profibrotic, B-cell and IFN-signatures, and upregulated morphogenic patterning pathways such as Wnt. CONCLUSION This study supports the absence of somatic epidermal mosaicism in LM, and identifies potential disease-driving epidermal mechanisms, epidermal-dermal interactions and disease-specific dermal differential-gene-expression in morphoea. We propose a potential molecular narrative for morphoea aetiopathogenesis which could help guide future targeted studies and therapies.
Collapse
Affiliation(s)
- Amanda M Saracino
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK.
- Department of Dermatology, Royal Free NHS Foundation Trust, London, UK.
- Melbourne Dermatology Clinic, 258 Park Street, South Melbourne, VIC, 3205, Australia.
| | - Daniel Kelberman
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Georg W Otto
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - David J Abraham
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
- Department of Rheumatology, Royal Free NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Ortega-Loayza AG, Friedman MA, Reese AM, Liu Y, Greiling TM, Cassidy PB, Marzano AV, Gao L, Fei SS, Rosenbaum JT. Molecular and cellular characterization of pyoderma gangrenosum: Implications for the use of gene expression. J Invest Dermatol 2021; 142:1217-1220.e14. [PMID: 34536481 DOI: 10.1016/j.jid.2021.08.431] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Alex G Ortega-Loayza
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| | - Marcia A Friedman
- Department of Medicine, Division of Arthritis and Rheumatic Disease, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashley M Reese
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yuangang Liu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Teri M Greiling
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Angelo V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Portland, Oregon, USA
| | - Lina Gao
- Oregon National Primate Research Center Bioinformatics & Biostatistics Core, Portland, Oregon, USA
| | - Suzanne S Fei
- Oregon National Primate Research Center Bioinformatics & Biostatistics Core, Portland, Oregon, USA
| | - James T Rosenbaum
- Department of Medicine, Division of Arthritis and Rheumatic Disease, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism. Am J Hum Genet 2021; 108:1026-1039. [PMID: 34004138 DOI: 10.1016/j.ajhg.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Revertant mosaicism, or "natural gene therapy," refers to the spontaneous in vivo reversion of an inherited mutation in a somatic cell. Only approximately 50 human genetic disorders exhibit revertant mosaicism, implicating a distinctive role played by mutant proteins in somatic correction of a pathogenic germline mutation. However, the process by which mutant proteins induce somatic genetic reversion in these diseases remains unknown. Here we show that heterozygous pathogenic CARD14 mutations causing autoinflammatory skin diseases, including psoriasis and pityriasis rubra pilaris, are repaired mainly via homologous recombination. Rather than altering the DNA damage response to exogenous stimuli, such as X-irradiation or etoposide treatment, mutant CARD14 increased DNA double-strand breaks under conditions of replication stress. Furthermore, mutant CARD14 suppressed new origin firings without promoting crossover events in the replication stress state. Together, these results suggest that mutant CARD14 alters the replication stress response and preferentially drives break-induced replication (BIR), which is generally suppressed in eukaryotes. Our results highlight the involvement of BIR in reversion events, thus revealing a previously undescribed role of BIR that could potentially be exploited to develop therapeutics for currently intractable genetic diseases.
Collapse
|
5
|
Nakamizo S, Honda T, Sato T, Al Mamun M, Chow Z, Duan K, Lum J, Tan KJ, Tomari K, Sato R, Kitoh A, Tay ASL, Common JEA, Guan NL, Setou M, Ginhoux F, Kabashima K. High-fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice. J Allergy Clin Immunol 2021; 148:473-485.e10. [PMID: 33713763 DOI: 10.1016/j.jaci.2021.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Neutrophilic folliculitis is an inflammatory condition of hair follicles. In some neutrophilic folliculitis, such as in patients with acne and hidradenitis suppurativa, follicular hyperkeratosis is also observed. Neutrophilic folliculitis is often induced and/or exacerbated by a high-fat diet (HFD). However, the molecular mechanisms by which an HFD affects neutrophilic folliculitis are not fully understood. OBJECTIVE Our aim was to elucidate how an HFD promotes the development of neutrophilic folliculitis. METHODS Mice were fed an HFD, and their skin was subjected to histologic, RNA sequencing, and imaging mass spectrometry analyses. To examine the effect of an HFD on neutrophil accumulation around the hair follicles, phorbol 12-myristate 13-acetate (PMA) was used as an irritant to the skin. RESULTS Histologic analysis revealed follicular hyperkeratosis in the skin of HFD-fed mice. RNA sequencing analysis showed that genes related to keratinization, especially in upper hair follicular keratinocytes, were significantly upregulated in HFD-fed mice. Application of PMA to the skin induced neutrophilic folliculitis in HFD-fed mice but not in mice fed a normal diet. Accumulation of neutrophils in the skin and around hair follicles was dependent on CXCR2 signaling, and CXCL1 (a CXCR2 ligand) was produced mainly by hair follicular keratinocytes. Imaging mass spectrometry analysis revealed an increase in fatty acids in the skin of HFD-fed mice. Application of these fatty acids to the skin induced follicular hyperkeratosis and caused PMA-induced neutrophilic folliculitis even in mice fed a normal diet. CONCLUSION An HFD can facilitate the development of neutrophilic folliculitis with the induction of hyperkeratosis of hair follicles and increased neutrophil infiltration around the hair follicles via CXCR2 signaling.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, School of Medicine, Hamamatsu University, Hamamatsu, Shizuoka, Japan.
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zachary Chow
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kahbing Jasmine Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kaori Tomari
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reiko Sato
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Angeline S L Tay
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Ng Lai Guan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.
| | - Kenji Kabashima
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
6
|
Endo Y, Yoshida H, Ota Y, Akazawa Y, Sayo T, Hanai U, Imagawa K, Sasaki M, Takahashi Y. Accelerated human epidermal turnover driven by increased hyaluronan production. J Dermatol Sci 2020; 101:123-133. [PMID: 33358097 DOI: 10.1016/j.jdermsci.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hyaluronan (HA) is an essential component of extracellular matrix in the skin, but its functions in the epidermis remain elusive. OBJECTIVE We examined the interaction of increased HA production mediated by 1-ethyl-β-N-acetylglucosaminide (β-NAG2), a newly developed highly selective inducer of HA production which is intracellularly converted to UDP-N-acetylglucosamine, a substrate of HA, with epidermal proliferation and differentiation. METHODS The amount, molecular size and epidermal tissue distribution of HA and expression of CD44, a cell surface receptor for HA, were analyzed in β-NAG2-treated organ cultured human skin, reconstructed human skin equivalents or cultured human skin keratinocytes. The relationship between HA and epidermal proliferation or differentiation was examined. RESULTS β-NAG2 significantly increased HA production in the epidermis of skin explants or skin equivalents without affecting molecular size of HA (>2000 kDa) or CD44 mRNA expression. Histochemical experiments revealed that β-NAG2 enhances HA signals in the basal to granular layers of the epidermis of skin equivalents, accompanying increased epidermal stratification. Immunohistochemical experiments demonstrated that signals of Ki67, transglutaminase 1 and filaggrin are increased in β-NAG2-treated skin equivalents, and these observations were confirmed by the data showing that mRNA expression of PCNA, transglutaminase 1 (TGM1) and filaggrin (FLG) is significantly up-regulated by β-NAG2 in skin equivalents. Importantly, blockade of HA production by inhibiting conversion of β-NAG2 to UDP-NAG abolished β-NAG2-mediated up-regulation of PCNA, TGM1 and FLG mRNA expression in cultured keratinocytes. CONCLUSION These results suggest that increased epidermal HA production plays a key role in epidermal morphogenesis and homeostasis by accelerating keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Yoko Endo
- Biological Science Research, Kao Corporation, Kanagawa, Japan
| | | | - Yukiko Ota
- Biological Science Research, Kao Corporation, Kanagawa, Japan
| | - Yumiko Akazawa
- Skin Care Products Research, Kao Corporation, Kanagawa, Japan
| | - Tetsuya Sayo
- Biological Science Research, Kao Corporation, Kanagawa, Japan.
| | - Ushio Hanai
- Department of Plastic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Kotaro Imagawa
- Department of Plastic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Masashi Sasaki
- Department of Oral and Maxillofacial Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|
7
|
Sølberg J, Jacobsen SB, Andersen JD, Litman T, Ulrich NH, Ahlström MG, Kampmann ML, Morling N, Thyssen JP, Johansen JD. The stratum corneum transcriptome in atopic dermatitis can be assessed by tape stripping. J Dermatol Sci 2020; 101:14-21. [PMID: 33218696 DOI: 10.1016/j.jdermsci.2020.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Skin biopsies represent a gold standard in skin immunology and pathology but can cause pain and induce scarring. Non-invasive techniques will facilitate study recruitment of e.g. patients with paediatric atopic dermatitis (AD), hand eczema or facial dermatitis. OBJECTIVE By RNA sequencing, we examined whether the stratum corneum transcriptome in AD skin can be assessed by tape stripping, as compared to the epidermal transcriptome of AD in skin biopsies. To make the procedure clinically relevant tape strips were stored and shipped at room temperature for up to 3 days. METHODS Nine adult Caucasian AD patients and three healthy volunteers were included. Tape samples were collected from non-lesional and lesional skin. Biopsies were collected from lesional skin and were split into epidermis and dermis. Total RNA was extracted, and shotgun sequencing was performed. RESULTS Shotgun sequencing could be performed on skin cells obtained from two consecutive tape strips which had been stored and shipped at room temperature for up to three days. The most prominent differences between the tape strip and biopsy derived transcriptome were due to structural genes, while established molecular markers of AD, including CCL17, CCL22, IL17A and S100A7-S100A9, were also identified in tape strip samples. Furthermore, the tape strip derived transcriptome showed promise in also analysing the skin microbiome. CONCLUSION Our study shows that the stratum corneum (SC) transcriptome of AD can be assessed by tape stripping the skin, supporting that this method may be central in future skin biomarker research. NCBI GEO data accession: GSE160501.
Collapse
Affiliation(s)
- Julie Sølberg
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark.
| | - Stine B Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Litman
- Dept. of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nina H Ulrich
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Malin G Ahlström
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Jeanne D Johansen
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| |
Collapse
|
8
|
Reliable approaches to extract high-integrity RNA from skin and other pertinent tissues used in pain research. Pain Rep 2020; 5:e818. [PMID: 32440611 PMCID: PMC7209822 DOI: 10.1097/pr9.0000000000000818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Comprehensive mRNA sequencing is a powerful tool for conducting unbiased, quantitative differential gene expression analysis. However, the reliability of these data is contingent on the extraction of high-quality RNA from samples. Preserving RNA integrity during extraction can be problematic, especially in tissues such as skin with dense, connective matrices and elevated ribonuclease expression. This is a major barrier to understanding the influences of altered gene expression in many preclinical pain models and clinical pain disorders where skin is the site of tissue injury. Objective This study developed and evaluated extraction protocols for skin and other tissues to maximize recovery of high-integrity RNA needed for quantitative mRNA sequencing. Methods Rodent and human tissue samples underwent one of the several different protocols that combined either RNA-stabilizing solution or snap-freezing with bead milling or cryosectioning. Indices of RNA integrity and purity were assessed for all samples. Results Extraction of high-integrity RNA is highly dependent on the methods used. Bead-milling skin collected in RNA-stabilizing solution resulted in extensive RNA degradation. Snap-freezing in liquid nitrogen was required for skin and highly preferable for other tissues. Skin also required cryosectioning to achieve effective penetration of RNA-stabilizing solution to preserve RNA integrity, whereas bead milling could be used instead with other tissues. Each method was reproducible across multiple experimenters. Electrophoretic anomalies that skewed RNA integrity value assignment required manual correction and often resulted in score reduction. Conclusion To achieve the potential of quantitative differential gene expression analysis requires verification of tissue-dependent extraction methods that yield high-integrity RNA.
Collapse
|
9
|
Chen L, Karisma VW, Liu H, Zhong L. MicroRNA-300: A Transcellular Mediator in Exosome Regulates Melanoma Progression. Front Oncol 2019; 9:1005. [PMID: 31681565 PMCID: PMC6803498 DOI: 10.3389/fonc.2019.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023] Open
Abstract
Melanoma is a common and high-mortality skin cancer. Oxidative stress and DNA damage caused by ultraviolet light (UV) are major causative factors of melanoma formation. However, the specific molecular mechanism is still unclear. In this study, 218 dysregulated genes and 104 dysregulated miRNAs in response to UV were screened by analyzing sequencing datasets. Among them, 29 up-regulated miRNAs and 28 down-regulated miRNAs were involved in the melanoma pathway. As the only differential gene in the melanoma pathway, GADD45B severely affects the prognosis of melanoma patients. MiR-300 is the only differentially expressed miRNA that regulates GADD45B. In addition, compared to normal melanocytes, miR-300 was significantly down-regulated in melanoma cells (log FC = −1.63) and exosomes (log FC = −1.34). Among the transcription factors predicted to regulate miR-300, MYC, PPARG, and ZIC2 were significantly up-regulated in melanoma cells, and TP53, JUN, JUNB, FOS, and FOSB interacted with GADD45B. We attempted to reveal the pathogenesis of melanoma and screen new biomarkers by constructing a TF-mRNA-miRNA axis in turn to provide a view for further research.
Collapse
Affiliation(s)
- Long Chen
- Bioengineering Institute of Chongqing University, Chongqing, China
| | | | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong
- Bioengineering Institute of Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Suzuki S, Nomura T, Miyauchi T, Takeda M, Fujita Y, Nishie W, Akiyama M, Ishida-Yamamoto A, Shimizu H. Somatic recombination underlies frequent revertant mosaicism in loricrin keratoderma. Life Sci Alliance 2019; 2:2/1/e201800284. [PMID: 30718378 PMCID: PMC6362306 DOI: 10.26508/lsa.201800284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
We demonstrate that revertant mosaicism frequently occurs in loricrin keratoderma and that somatic recombination is the major mechanism underlying this therapeutically important phenomenon. Revertant mosaicism is a phenomenon in which pathogenic mutations are rescued by somatic events, representing a form of natural gene therapy. Here, we report on the first evidence for revertant mosaicism in loricrin keratoderma (LK), an autosomal dominant form of ichthyosis caused by mutations in LOR on 1q21.3. We identified two unrelated LK families exhibiting dozens of previously unreported white spots, which increased in both number and size with age. Biopsies of these spots revealed that they had normal histology and that causal LOR mutations were lost. Notably, dense single nucleotide polymorphism mapping identified independent copy-neutral loss-of-heterozygosity events on chromosome 1q extending from regions centromeric to LOR to the telomere in all investigated spots, suggesting that somatic recombination represents a common reversion mechanism in LK. Furthermore, we demonstrated that reversion of LOR mutations confers a growth advantage to cells in vitro, but the clinically limited size of revertant spots suggests the existence of mechanisms constraining revertant clone expansion. Nevertheless, the identification of revertant mosaicism in LK might pave the way for revertant therapy for this intractable disease.
Collapse
Affiliation(s)
- Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshinari Miyauchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Mills KJ, Robinson MK, Sherrill JD, Schnell DJ, Xu J. Analysis of gene expression profiles of multiple skin diseases identifies a conserved signature of disrupted homeostasis. Exp Dermatol 2018; 27:1000-1008. [DOI: 10.1111/exd.13694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kevin J. Mills
- The Procter and Gamble Company; Mason Business Center; Mason OH USA
| | | | | | - Daniel J. Schnell
- Department of Biomedical Informatics; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - Jun Xu
- Calico, LLC; South San Francisco CA USA
| |
Collapse
|
12
|
Danilenko M, Stones R, Rajan N. Transcriptomic profiling of human skin biopsies in the clinical trial setting: A protocol for high quality RNA extraction from skin tumours. Wellcome Open Res 2018; 3:45. [PMID: 29904728 PMCID: PMC5989147 DOI: 10.12688/wellcomeopenres.14360.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Transcriptomic profiling of skin disease using next generation sequencing allows for detailed information on aspects of RNA biology including gene expression, non-coding regulatory elements and gene splicing. The application of RNA sequencing to human skin disease and cancer is often hampered by degraded RNA. Here we describe a protocol that allows for consistently intact RNA to be extracted from snap frozen skin biopsy samples, which has been validated in a clinical trial setting. Human skin tumour punch biopsies (n=28) ranging from 4-6mm in diameter were obtained from 14 patients with an inherited skin tumour syndrome (CYLD cutaneous syndrome) and frozen in liquid nitrogen prior to being stored at -80°C. These samples were then subject to cyrostat sectioning, allowing for histological assessment, and were homogenised using a bead-based lysis platform. RNA extraction was performed using a silica column-based system. RNA concentration was measured using fluorescent quantitation and RNA integrity assessed using microfluidic gel electrophoresis. We also processed normal skin biopsies using the same protocol (n=10). The mean RNA integrity score of the tumour and normal samples was 9.5, and the quantity of RNA obtained from the small amounts of tissue used exceeded requirements for RNA-seq library generation. We propose that the method of RNA extraction suggested here allows for transcriptomic profiling from small pieces of human tissue without the need for PCR amplification during library preparation. This protocol could be utilised in healthy and diseased skin to improve mechanistic understanding in a range of human skin diseases.
Collapse
Affiliation(s)
- Marina Danilenko
- Institute of Genetic Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert Stones
- Institute of Genetic Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 3BZ, UK
| | - Neil Rajan
- Institute of Genetic Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 3BZ, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
13
|
Nomura T, Suzuki S, Miyauchi T, Takeda M, Shinkuma S, Fujita Y, Nishie W, Akiyama M, Shimizu H. Chromosomal inversions as a hidden disease-modifying factor for somatic recombination phenotypes. JCI Insight 2018; 3:97595. [PMID: 29563344 DOI: 10.1172/jci.insight.97595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Heterozygous chromosomal inversions suppress recombination. Therefore, they may potentially influence recombination-associated phenotypes of human diseases, but no studies have verified this hypothesis. Here, we describe a 35-year-old man with severe congenital ichthyosis. Mutation analysis revealed a heterozygous splice-site mutation, c.1374-2A>G (p.Ser458Argfs*120), in KRT10 on 17q21.2. This mutation was previously reported in patients with ichthyosis with confetti type I (IWC-I), a prominent skin disease characterized by the frequent occurrence of recombination-induced reversion of pathogenic mutations. Intriguingly, the number of revertant skin areas in this patient is considerably reduced compared with typical IWC-I cases. G-banded karyotyping revealed that the patient harbors a heterozygous nonpathogenic inversion, inv(17)(p13q12), whose long-arm breakpoint was subsequently refined to chromosomal positions (chr17: 36,544,407-36,639,830) via FISH. Collectively, the only chance of revertant mosaicism through somatic recombination appears to involve recombination between the KRT10 mutation and the inversion breakpoint. Indeed, in the examined revertant spot, the KRT10 mutation was diminished by somatic recombination starting from chromosomal positions (chr17: 36,915,505-37,060,285) on 17q12. This study provides the first evidence to our knowledge implicating chromosomal inversions as a potential modifier of clinical phenotypes. Furthermore, the reduced occurrence of revertant spots in the recombination-suppressed patient suggests that somatic recombination is the main mechanism of revertant mosaicism in IWC-I.
Collapse
Affiliation(s)
- Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshinari Miyauchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Swindell WR, Sarkar MK, Liang Y, Xing X, Baliwag J, Elder JT, Johnston A, Ward NL, Gudjonsson JE. RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Sci Rep 2017; 7:18045. [PMID: 29273799 PMCID: PMC5741737 DOI: 10.1038/s41598-017-18404-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Keratinocyte (KC) hyper-proliferation and epidermal thickening are characteristic features of psoriasis lesions, but the specific contributions of KCs to plaque formation are not fully understood. This study used RNA-seq to investigate the transcriptome of primary monolayer KC cultures grown from lesional (PP) and non-lesional (PN) biopsies of psoriasis patients and control subjects (NN). Whole skin biopsies from the same subjects were evaluated concurrently. RNA-seq analysis of whole skin identified a larger number of psoriasis-increased differentially expressed genes (DEGs), but analysis of KC cultures identified more PP- and PN-decreased DEGs. These latter DEG sets overlapped more strongly with genes near loci identified by psoriasis genome-wide association studies and were enriched for genes associated with epidermal differentiation. Consistent with this, the frequency of AP-1 motifs was elevated in regions upstream of PN-KC-decreased DEGs. A subset of these genes belonged to the same co-expression module, mapped to the epidermal differentiation complex, and exhibited differentiation-dependent expression. These findings demonstrate a decreased differentiation gene signature in PP/PN-KCs that had not been identified by pre-genomic studies of patient-derived monolayers. This may reflect intrinsic defects limiting psoriatic KC differentiation capacity, which may contribute to compromised barrier function in normal-appearing uninvolved psoriatic skin.
Collapse
Affiliation(s)
- William R Swindell
- Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA. .,University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA.
| | - Mrinal K Sarkar
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Yun Liang
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Xianying Xing
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Jaymie Baliwag
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - James T Elder
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Andrew Johnston
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.,The Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH, USA
| | - Johann E Gudjonsson
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
15
|
Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis. J Invest Dermatol 2017; 138:1088-1093. [PMID: 29247660 DOI: 10.1016/j.jid.2017.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/27/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one-third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability. Epigenetic modifications have been linked to psoriasis and altered DNA methylation patterns in psoriatic versus healthy skin have been reported in whole-skin biopsies. In this study, focusing on epigenetic modifications in the psoriatic uninvolved skin, we compared the lesional and non-lesional epidermis from psoriasis patients with epidermis from healthy controls. We performed an exhaustive genome-wide DNA methylation profiling using reduced representation bisulfite sequencing, which interrogates the methylation status of approximately 3-4 million CpG sites. More than 2,000 strongly differentially methylated sites were identified and a striking overrepresentation of the Wnt and cadherin pathways among the differentially methylated sites was found. In particular, we observe a strong differential methylation in several psoriasis candidate genes. A substantial number of differentially methylated sites present in the uninvolved versus healthy epidermis suggests the presence of a pre-psoriatic state in the clinically healthy skin type. Our exploratory study represents a starting point for identifying biomarkers for psoriasis-prone skin before disease onset.
Collapse
|
16
|
Nakamizo S, Honda T, Adachi A, Nagatake T, Kunisawa J, Kitoh A, Otsuka A, Dainichi T, Nomura T, Ginhoux F, Ikuta K, Egawa G, Kabashima K. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci Rep 2017; 7:14076. [PMID: 29074858 PMCID: PMC5658347 DOI: 10.1038/s41598-017-14292-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a common, chronic inflammatory skin disease characterized by epidermal hyperplasia via the IL-23/IL-17 axis. Various studies have indicated the association between obesity and psoriasis, however, the underlying mechanisms remains unclarified. To this end, we focused on high-fat diet (HFD) in this study, because HFD is suggested as a contributor to obesity, and HFD-fed mice exhibit exacerbated psoriatic dermatitis. Using murine imiquimod (IMQ)-induced psoriasis and HFD-induced obesity models, we have revealed a novel mechanism of HFD-induced exacerbation of psoriatic dermatitis. HFD-fed mice exhibited aggravated psoriatic dermatitis, which was accompanied with increased accumulation of IL-17A-producing Vγ4+ γδ T cells in the skin. HFD also induced the increase of Vγ4+ γδ T cells in other organs such as skin draining lymph nodes, which preceded the increase of them in the skin. In addition, HFD-fed mice displayed increased expression of several γδ T cell-recruiting chemokines in the skin. On the other hand, ob/ob mice, another model of murine obesity on normal diet, did not exhibit aggravated psoriatic dermatitis nor accumulation of γδ T cells in the dermis. These results indicate that HFD is a key element in exacerbation of IMQ-induced psoriatic dermatitis, and further raise the possibility of HFD as a factor that links obesity and psoriasis.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building, Biopolis, 138648, Singapore
| | - Tetsuya Honda
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Akimasa Adachi
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Akihiko Kitoh
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Atsushi Otsuka
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Teruki Dainichi
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Takashi Nomura
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN) and Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building, Biopolis, 138648, Singapore
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Gyohei Egawa
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building, Biopolis, 138648, Singapore. .,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
17
|
Teye K, Numata S, Ishii N, Krol RP, Tsuchisaka A, Hamada T, Koga H, Karashima T, Ohata C, Tsuruta D, Saya H, Haftek M, Hashimoto T. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents. PLoS One 2016; 11:e0160952. [PMID: 27505250 PMCID: PMC4978388 DOI: 10.1371/journal.pone.0160952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways.
Collapse
Affiliation(s)
- Kwesi Teye
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Sanae Numata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Rafal P Krol
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Atsunari Tsuchisaka
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Takahiro Hamada
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Tadashi Karashima
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Chika Ohata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Marek Haftek
- University of Lyon 1, EA 4169 and CNRS, Lyon, France
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
18
|
Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, Meunier J, Rezzonico R, Brembilla NC, Hohl D, Kolios A, Hofbauer G, Xenarios I, Michalik L. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med 2016; 8:919-36. [PMID: 27250636 PMCID: PMC4967944 DOI: 10.15252/emmm.201505384] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Collapse
Affiliation(s)
- Gwendoline Degueurce
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilenia D'Errico
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Pich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- INRA ToxAlim, Integrative Toxicology and Metabolism, UMR1331, Toulouse, France
| | - Marie Sgandurra
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lionel Mury
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paris Jafari
- Department of Musculoskeletal Medicine, Service of Plastic and Reconstructive Surgery CHUV, Epalinges, Switzerland
| | - Akash Boda
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Meunier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roger Rezzonico
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France
| | - Nicolò Costantino Brembilla
- Dermatology, University Hospital and School of Medicine, Geneva, Switzerland Immunology and Allergy, University Hospital and School of Medicine, Geneva Switzerland
| | - Daniel Hohl
- Service de dermatologie et venereology, Hôpital de Beaumont CHUV, Lausanne, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital, University of Zürich, Zürich, Switzerland Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Montagner A, Delgado MB, Tallichet-Blanc C, Chan JSK, Sng MK, Mottaz H, Degueurce G, Lippi Y, Moret C, Baruchet M, Antsiferova M, Werner S, Hohl D, Al Saati T, Farmer PJ, Tan NS, Michalik L, Wahli W. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer. EMBO Mol Med 2014; 6:80-98. [PMID: 24203162 PMCID: PMC3936491 DOI: 10.1002/emmm.201302666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023] Open
Abstract
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Collapse
Affiliation(s)
- Alexandra Montagner
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Maria B Delgado
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Corinne Tallichet-Blanc
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Jeremy S K Chan
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
| | - Ming K Sng
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
| | - Hélène Mottaz
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Gwendoline Degueurce
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Yannick Lippi
- GeT-TRiX Facility, INRA ToxAlim, UMR1331Chemin de Tournefeuille, Toulouse Cedex, France
| | - Catherine Moret
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Michael Baruchet
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichSchafmattstrasse, Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichSchafmattstrasse, Zurich, Switzerland
| | - Daniel Hohl
- Department of Dermatology, University Hospital of Lausanne (CHUV)Lausanne, Switzerland
| | - Talal Al Saati
- INSERM/UPS, US006/CREFRE, Histopathology Facility, Place du Docteur BaylacCHU Purpan, Toulouse Cedex, France
| | - Pierre J Farmer
- Exploratory Biomarker Analysis, Biomarker Technologies, Bioinformatics, Non Clinical Development, Merck Serono International S.A. SwitzerlandChemin des Mines, Geneva, Switzerland
| | - Nguan S Tan
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
- Institute of Molecular and Cell Biology, Biopolis DriveProteos, Singapore, Singapore
| | - Liliane Michalik
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
- *Corresponding author: Tel: +41 21 692 41 10; Fax: +41 21 692 41 15; E-mail:
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
- Lee Kong Chian School of Medicine, Imperial College London, Nanyang Technological UniversitySingapore, Singapore
- **Corresponding author: Tel: +41 21 692 41 10; Fax: +41 21 692 41 15; E-mail:
| |
Collapse
|
20
|
Percoco G, Bénard M, Ramdani Y, Lati E, Lefeuvre L, Driouich A, Follet-Gueye ML. Isolation of human epidermal layers by laser capture microdissection: application to the analysis of gene expression by quantitative real-time PCR. Exp Dermatol 2012; 21:531-4. [PMID: 22716249 DOI: 10.1111/j.1600-0625.2012.01509.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe, for the first time, an efficient protocol based on laser capture microdissection (LCM) for the isolation of human epidermal layers for gene expression profiling using quantitative real-time PCR. Two areas enriched either in basal or granular layers were isolated by LCM. Skin biopsies were fixed in dry ice-cooled isopentane, cryosectioned and stained before the laser procedure. High-quality total RNA was extracted from each microdissected sample, which allowed the analysis of the spatial distribution of mRNA transcripts from 10 innate immunity-related genes within the epidermal layers. Using integrin alpha-6/integrin beta-4 and corneodesmosin/filaggrin-2 sets as gene markers for the basal and granular layers, respectively, we showed that Toll-like receptor 2, RNase 7, human beta-defensin-2 and -3, psoriasin and nucleotide-binding oligomerization domain 1 are upregulated in the suprabasal layer of normal human epidermis. Our protocol, which is based on the rapid isolation of epidermal layers, can be used to follow transcriptional processes in specific areas of the epidermis and is a very promising tool to use in the study of numerous aspects of dermatology.
Collapse
Affiliation(s)
- Giuseppe Percoco
- Glycobiology and Plant Extracellular Matrix (GlycoMEV) Laboratory, UPRES EA 4358, IFRMP 23, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol 2012; 132:1615-26. [PMID: 22402443 PMCID: PMC3352975 DOI: 10.1038/jid.2012.33] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psoriasis vulgaris is a complex disease characterized by alterations in growth and differentiation of epidermal keratinocytes as well as marked increase in leukocyte populations. Lesions are known to contain alterations in mRNAs encoding more than 1000 products, but only a very small number of these transcripts have been localized to specific cell types or skin regions. In this study, we used laser capture microdissection (LCM) and gene array analysis to study the gene expression of cells in lesional epidermis and dermis, compared with corresponding non-lesional resions. Using this approach, we detected >1800 differentially expressed gene products in the epidermis or dermis of psoriasis lesions. These results established sets of genes that are differentially expressed between epidermal and dermal compartments, as well as between non-lesional and lesional psoriasis skin. One of our findings involved the local production of CCL19, a lymphoid organizing chemokine, and its receptor CCR7 in psoriatic dermal aggregates, along with the presence of gene products LAMP3/DC-LAMP and CD83, which typify mature DCs. Gene expression patterns obtained with LCM and microarray analysis along with T cell and DC detection by immune staining suggest a possible mechanism for lymphoid organization via CCL19/CCR7 in diseased skin.
Collapse
|
22
|
Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. THE JOURNAL OF INVESTIGATIVE DERMATOLOGY 2012. [PMID: 22402443 DOI: 10.1038/jid.2012.1633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Psoriasis vulgaris is a complex disease characterized by alterations in growth and differentiation of epidermal keratinocytes, as well as a marked increase in leukocyte populations. Lesions are known to contain alterations in messenger RNAs encoding more than 1,000 products, but only a very small number of these transcripts has been localized to specific cell types or skin regions. In this study, we used laser capture microdissection (LCM) and gene array analysis to study the gene expression of cells in lesional epidermis (EPI) and dermis, compared with the corresponding non-lesional regions. Using this approach, we detected >1,800 differentially expressed gene products in the EPI or dermis of psoriasis lesions. These results established sets of genes that are differentially expressed between epidermal and dermal compartments, as well as between non-lesional and lesional psoriasis skin. One of our findings involved the local production of CCL19, a lymphoid-organizing chemokine, and its receptor CCR7 in psoriatic dermal aggregates, along with the presence of gene products LAMP3/DC-LAMP and CD83, which typify mature dendritic cells (DCs). Gene expression patterns obtained with LCM and microarray analysis along with T-cell and DC detection by immune staining suggest a possible mechanism for lymphoid organization via CCL19/CCR7 in diseased skin.
Collapse
|
23
|
Bruning O, Rodenburg W, Radonic T, Zwinderman AH, de Vries A, Breit TM, de Jong M. RNA isolation for transcriptomics of human and mouse small skin biopsies. BMC Res Notes 2011; 4:438. [PMID: 22023775 PMCID: PMC3221605 DOI: 10.1186/1756-0500-4-438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies. Findings We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms. Conclusions Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.
Collapse
Affiliation(s)
- Oskar Bruning
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS); Faculty of Science (FNWI), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Clemmensen A, Andersen KE, Clemmensen O, Tan Q, Petersen TK, Kruse TA, Thomassen M. Genome-Wide Expression Analysis of Human In Vivo Irritated Epidermis: Differential Profiles Induced by Sodium Lauryl Sulfate and Nonanoic Acid. J Invest Dermatol 2010; 130:2201-10. [DOI: 10.1038/jid.2010.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|