1
|
Iriyama S, Ogura Y, Nishikawa S, Hosoi J, Amano S. Regeneration of collagen fibrils at the papillary dermis by reconstructing basement membrane at the dermal-epidermal junction. Sci Rep 2022; 12:795. [PMID: 35039587 PMCID: PMC8764085 DOI: 10.1038/s41598-022-04856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The epidermal basement membrane deteriorates with aging. We previously reported that basement membrane reconstruction not only serves to maintain epidermal stem/progenitor cells in the epidermis, but also increases collagen fibrils in the papillary dermis. Here, we investigated the mechanism of the latter action. Collagen fibrils in the papillary dermis were increased in organotypic human skin culture treated with matrix metalloproteinase and heparinase inhibitors. The expression levels of COL5A1 and COL1A1 genes (encoding collagen type V α 1 chain and collagen type I α 1 chain, respectively) were increased in fibroblasts cultured with conditioned medium from a skin equivalent model cultured with the inhibitors and in keratinocytes cultured on laminin-511 E8 fragment-coated plates. We then examined cytokine expression, and found that the inhibitors increased the expression of PDGF-BB (platelet-derived growth factor consisting of two B subunits) in epidermis. Expression of COL5A1 and COL1A1 genes was increased in cultured fibroblasts stimulated with PDGF-BB. Further, the bifunctional inhibitor hydroxyethyl imidazolidinone (HEI) increased skin elasticity and the thickness of the papillary dermis in the skin equivalent. Taken together, our data suggests that reconstructing the basement membrane promotes secretion of PDGF-BB by epidermal keratinocytes, leading to increased collagen expression at the papillary dermis.
Collapse
Affiliation(s)
- Shunsuke Iriyama
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, 220-0011, Japan.
| | - Yuki Ogura
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Saori Nishikawa
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Satoshi Amano
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
2
|
Iriyama S, Nishikawa S, Hosoi J, Amano S. Basement Membrane Helps Maintain Epidermal Hyaluronan Content. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1010-1019. [PMID: 33753027 DOI: 10.1016/j.ajpath.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix of most mammalian tissues, including the epidermis. It is synthesized in epidermis, and mainly metabolized after transfer to the liver via lymphatic vessels in the dermis following its passage through the basement membrane (BM) at the dermal-epidermal junction. The aim of the present study was to investigate the influence of BM integrity on the level of HA in the epidermis. Epidermal HA content was decreased in sun-exposed skin of older subjects, whose BM structure was impaired, compared with sun-exposed young skin and sun-protected skin, in which BM integrity was well maintained. In an organotypic culture model of sun-exposed facial skin, epidermal HA was increased in the presence of inhibitors of BM-degrading matrix metalloproteinases and heparanase. In a skin equivalent model treated with these inhibitors, HA content was increased in the epidermis, but decreased in conditioned medium. These findings suggest that the BM at the dermal-epidermal junction plays an important role in maintaining epidermal HA levels.
Collapse
|
3
|
Iriyama S, Yasuda M, Nishikawa S, Takai E, Hosoi J, Amano S. Decrease of laminin-511 in the basement membrane due to photoaging reduces epidermal stem/progenitor cells. Sci Rep 2020; 10:12592. [PMID: 32724130 PMCID: PMC7387558 DOI: 10.1038/s41598-020-69558-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Daily sunlight exposure damages the epidermal basement membrane (BM) and disrupts epidermal homeostasis. Inter-follicular epidermal stem cells (IFE-SCs) regulate epidermal proliferation and differentiation, which supports epidermal homeostasis. Here, we examine how photoaging affects the function of IFE-SCs and we identify key components in their cellular environment (niche). We found that sun-exposed skin showed a decrease of MCSP-positive and β1-integrin-positive cells concomitantly with a decrease of laminin-511 at the dermal-epidermal junction (DEJ), as compared with sun-protected skin. Higher levels of laminin-511 were associated with not only increased efficiency of colony formation, but also higher expression levels of MCSP as well as other stem cell markers such as Lrig1, ITGB1, CD44, CD46, DLL1, and K15 in keratinocytes from skin of 12- to 62-year-old subjects. UVB exposure to cultured human skin impaired laminin-511 integrity at the dermal-epidermal junction and reduced MCSP-positive basal epidermal cells as well as K15-positive cells. Combined treatment with matrix metalloproteinase and heparanase inhibitors protected the integrity of laminin-511 and inhibited the reduction of MCSP-positive cells and K15-positive cells. These results suggest that photoaging may reduce the levels of MCSP-positive and K15-positive epidermal stem/progenitor cells in the epidermis via loss of laminin-511 at the dermal-epidermal junction.
Collapse
Affiliation(s)
- Shunsuke Iriyama
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan.
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Saori Nishikawa
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Eisuke Takai
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Satoshi Amano
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
4
|
Shin JW, Choi HR, Nam KM, Yang SH, Kim SA, Joe HJ, Hwang YJ, Na JI, Huh CH, Park KC. The Expression of Epidermal Stem Cell Marker and SIRT1 in Atopic Dermatitis: A Discussion of Regenerative Potential. Ann Dermatol 2019; 31:476-478. [PMID: 33911634 PMCID: PMC7992753 DOI: 10.5021/ad.2019.31.4.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyung-Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Hye Yang
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung-Ae Kim
- Department of Dermatology, Keimyung University School of Medicine, Daegu, Korea
| | - Hyun-Jae Joe
- Department of Dermatology, Keimyung University School of Medicine, Daegu, Korea
| | | | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
5
|
Keene DR, Tufa SF. Connective Tissue Ultrastructure: A Direct Comparison between Conventional Specimen Preparation and High-Pressure Freezing/Freeze-Substitution. Anat Rec (Hoboken) 2019; 303:1514-1526. [PMID: 31251834 DOI: 10.1002/ar.24211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 11/11/2022]
Abstract
It is generally agreed within the microscopy community that the quality of ultrastructure within the connective tissue matrix resulting from high-pressure freezing followed by freeze-substitution (HPF/FS) far exceeds that gained following the "conventional" preparation method, which includes aqueous fixation, dehydration, and embedding. Exposure to cryogen at high pressure is the only cryopreservation method capable of vitrifying tissue structure to a depth exceeding 200 μm. Cells within connective tissues prepared by HPF/FS are universally larger, filling the commonly seen void at the juncture between cell and matrix. Without significant shrinkage of cells and the coincident extraction of the cytosolic components, well-resolved organelles are less clustered within an expanded cytosol. Much of the artifact from "conventional" methods occurs as large space filling and also smaller fibril-associated proteoglycans are extracted during fixation. However, the visualization of some matrix features by electron microscopy is actually dependent on the collapse or extraction of these "masking" components. Herein, we argue that an impression of ultrastructure within commonly studied matrices, in particular skin, is best gained following the evaluation of both conventional preparations and tissue prepared by HPF/FS. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Douglas R Keene
- Shriners Hospital for Children Micro-Imaging Center, Portland, Oregon.,Department of Biomechanical Engineering, Oregon Health Sciences University, Portland, Oregon.,Department of Medical Genetics, Oregon Health Sciences University, Portland, Oregon
| | - Sara F Tufa
- Shriners Hospital for Children Micro-Imaging Center, Portland, Oregon
| |
Collapse
|
6
|
Iriyama S, Yamanishi H, Kunizawa N, Hirao T, Amano S. 1-(2-Hydroxyethyl)-2-imidazolidinone, a heparanase and matrix metalloproteinase inhibitor, improves epidermal basement membrane structure and epidermal barrier function. Exp Dermatol 2019; 28:247-253. [DOI: 10.1111/exd.13876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
|
7
|
Iriyama S, Matsuura-Hachiya Y, Tsunenaga M. Influence of epidermal basement membrane integrity on cutaneous permeability barrier function. J Dermatol Sci 2018; 91:110-112. [DOI: 10.1016/j.jdermsci.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/22/2023]
|
8
|
Hara Y, Ogura Y, Yamashita T, Furukawa D, Saeki S. Visualization of viscoelastic behavior in skin equivalent using optical coherence tomography-based straingraphy. Skin Res Technol 2018; 24:334-339. [PMID: 29368351 DOI: 10.1111/srt.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE The relationships between the skin components and these mechanical roles are still unclear. To clarify these relationships, we investigated spatial mapping of the mechanical behavior of cultured skin equivalents (SEs) using optical coherence tomography (OCT)-based straingraphy. METHODS We built a strain relaxation test system combined with OCT and developed an algorithm that could visualize a time-dependent strain distribution, named dynamic-optical coherence straingraphy (D-OCSA). Using this system, we analyzed how the spatial mechanical changes in the SEs depended on the culture duration. For quantitative analysis of viscoelastic behavior, we defined a relaxation attenuation coefficient of strain rate, which indicates the ratio of viscosity and elasticity in the Klevin-Voight model. RESULTS By culturing for 4 days in comparison to culturing for 1 day, the strain relaxation attenuation coefficient of the whole skin, especially at the region of the dermal-epidermal junction (DEJ), significantly increased in the negative direction. In tissue slices taken for microscopy, several cracks were observed in the SEs cultured for 4 days. CONCLUSION This study is the first to provide quantified evidence that the DEJ is a dynamically specialized region. An OCT-based straingraphy system (D-OCSA) would be beneficial for evaluating the quality of SEs, as well as functional analysis of their mechanics.
Collapse
Affiliation(s)
- Y Hara
- Shiseido Research Center, Kanagawa, Japan.,Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Y Ogura
- Shiseido Research Center, Kanagawa, Japan
| | | | - D Furukawa
- Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - S Saeki
- Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
9
|
Perlecan expression influences the keratin 15-positive cell population fate in the epidermis of aging skin. Aging (Albany NY) 2017; 8:751-68. [PMID: 26996820 PMCID: PMC4925826 DOI: 10.18632/aging.100928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
The epidermis is continuously renewed by stem cell proliferation and differentiation. Basal keratinocytes append the dermal‐epidermal junction, a cell surface‐associated, extracellular matrix that provides structural support and influences their behaviour. It consists of laminins, type IV collagen, nidogens, and perlecan, which are necessary for tissue organization and structural integrity. Perlecan is a heparan sulfate proteoglycan known to be involved in keratinocyte survival and differentiation. Aging affects the dermal epidermal junction resulting in decreased contact with keratinocytes, thus impacting epidermal renewal and homeostasis. We found that perlecan expression decreased during chronological skin aging. Our in vitro studies revealed reduced perlecan transcript levels in aged keratinocytes. The production of in vitro skin models revealed that aged keratinocytes formed a thin and poorly organized epidermis. Supplementing these models with purified perlecan reversed the phenomenon allowing restoration of a well‐differentiated multi‐layered epithelium. Perlecan down‐regulation in cultured keratinocytes caused depletion of the cell population that expressed keratin 15. This phenomenon depended on the perlecan heparan sulphate moieties, which suggested the involvement of a growth factor. Finally, we found defects in keratin 15 expression in the epidermis of aging skin. This study highlighted a new role for perlecan in maintaining the self‐renewal capacity of basal keratinocytes.
Collapse
|
10
|
Matsuura-Hachiya Y, Arai KY, Muraguchi T, Sasaki T, Nishiyama T. Type IV collagen aggregates promote keratinocyte proliferation and formation of epidermal layer in human skin equivalents. Exp Dermatol 2017; 27:443-448. [PMID: 28266764 DOI: 10.1111/exd.13328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 01/20/2023]
Abstract
Type IV collagen isolated from lens capsule without enzymatic treatment is known to form a gel under physiological condition and influences cellular activities. In case of human keratinocytes, the suppression of proliferation on reconstituted type IV collagen gels was reported in monolayer culture. In this study, we examined effects of type IV collagen isolated from porcine lens capsule on epidermal formation in human skin equivalents (HSEs). Type IV collagen aggregates were prepared under the culture condition and the aggregates suppressed keratinocyte proliferation in monolayer culture as well as the culture on the gels. In HSEs, type IV collagen aggregates were reconstituted on the surface of contracted collagen gels containing human dermal fibroblasts and the keratinocytes were then cultured on the aggregates for 14 days. Interestingly, in HSEs with type IV collagen aggregates, the BrdU-positive keratinocytes were increased and the thickness of the epidermal layer was around twice than that of control culture. Epidermal differentiation markers were expressed in the upper layer of the epidermis and the defined deposition of human basement membrane components were increased at the dermal-epidermal junction. These results indicate that the type IV collagen aggregates stimulate the proliferation of basal keratinocytes and improve the stratification of epidermal layers in HSEs.
Collapse
Affiliation(s)
- Yuko Matsuura-Hachiya
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Koji Y Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Taichi Muraguchi
- Pharmaceutical and Healthcare Research Laboratories, Fuji Film Co., Kaisei, Kanagawa, Japan
| | - Tasuku Sasaki
- Pharmaceutical and Healthcare Research Laboratories, Fuji Film Co., Kaisei, Kanagawa, Japan
| | - Toshio Nishiyama
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
11
|
Lord MS, Ellis AL, Farrugia BL, Whitelock JM, Grenett H, Li C, O'Grady RL, DeCarlo AA. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J Control Release 2017; 250:48-61. [DOI: 10.1016/j.jconrel.2017.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
12
|
Tsunenaga M. Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin. ACTA ACUST UNITED AC 2016; 5:113-122. [PMID: 27853671 PMCID: PMC5070419 DOI: 10.2174/2211542005666160725154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
13
|
Amano S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol 2016; 25 Suppl 3:14-9. [DOI: 10.1111/exd.13085] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 11/28/2022]
|
14
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
15
|
Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Koźma EM, Wisowski G, Stojko J, Klimek K, Olczyk K. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing. J Zhejiang Univ Sci B 2013; 13:932-41. [PMID: 23125086 DOI: 10.1631/jzus.b1100310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was aimed at assessing the dynamics of vitronectin (VN), laminin (LN), and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing. METHODS VN, LN, and HS/HP were isolated and purified from normal and injured skin of domestic pigs, on the 3rd, 5th, 10th, 15th, and 21st days following thermal damage. The wounds were treated with apitherapeutic agent (propolis), silver sulfadiazine (SSD), physiological salt solution, and propolis vehicle. VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis. RESULTS Propolis treatment stimulated significant increases in VN, LN, and HS/HP contents during the initial phase of study, followed by a reduction in the estimated extracellular matrix molecules. Similar patterns, although less extreme, were observed after treatment with SSD. CONCLUSIONS The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.
Collapse
Affiliation(s)
- Paweł Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Iriyama S, Ono T, Aoki H, Amano S. Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal–epidermal junction. J Dermatol Sci 2011; 64:223-8. [DOI: 10.1016/j.jdermsci.2011.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/31/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
|