1
|
Mary S, Small H, Herse F, Carrick E, Flynn A, Mullen W, Dechend R, Delles C. Preexisting hypertension and pregnancy-induced hypertension reveal molecular differences in placental proteome in rodents. Physiol Genomics 2021; 53:259-268. [PMID: 33969702 PMCID: PMC8616587 DOI: 10.1152/physiolgenomics.00160.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023] Open
Abstract
Preexisting or new onset of hypertension affects pregnancy and is one of the leading causes of maternal and fetal morbidity and mortality. In certain cases, it also leads to long-term maternal cardiovascular complications. The placenta is a key player in the pathogenesis of complicated hypertensive pregnancies, however the pathomechanisms leading to an abnormal placenta are poorly understood. In this study, we compared the placental proteome of two pregnant hypertensive models with their corresponding normotensive controls: a preexisting hypertension pregnancy model (stroke-prone spontaneously hypertensive rats; SHRSP) versus Wistar-Kyoto and the transgenic RAS activated gestational hypertension model (transgenic for human angiotensinogen Sprague-Dawley rats; SD-PE) versus Sprague-Dawley rats, respectively. Label-free proteomics using nano LC-MS/MS was performed for identification and quantification of proteins. Between the two models, we found widespread differences in the expression of placental proteins including those related to hypertension, inflammation, and trophoblast invasion, whereas pathways such as regulation of serine endopeptidase activity, tissue injury response, coagulation, and complement activation were enriched in both models. We present for the first time the placental proteome of SHRSP and SD-PE and provide insight into the molecular make-up of models of hypertensive pregnancy. Our study informs future research into specific preeclampsia and chronic hypertension pregnancy mechanisms and translation of rodent data to the clinic.
Collapse
Affiliation(s)
- Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Heather Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Florian Herse
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Arun Flynn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
2
|
Boieri M, Shah P, Jalapothu D, Zaitseva O, Walter L, Rolstad B, Naper C, Dressel R, Inngjerdingen M. Rat acute GvHD is Th1 driven and characterized by predominant donor CD4 + T-cell infiltration of skin and gut. Exp Hematol 2017; 50:33-45.e3. [PMID: 28238806 DOI: 10.1016/j.exphem.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Acute graft-versus-host disease (aGvHD) remains a significant hurdle to successful treatment of many hematological disorders. The disease is caused by infiltration of alloactivated donor T cells primarily into the gastrointestinal tract and skin. Although cytotoxic T cells mediate direct cellular damage, T helper (Th) cells differentially secrete immunoregulatory cytokines. aGvHD is thought to be initiated primarily by Th1 cells but a consensus is still lacking regarding the role of Th2 and Th17 cells. The aim of this study was to determine the contribution of distinct T-cell subsets to aGvHD in the rat. aGvHD was induced by transplanting irradiated rats with T-cell-depleted major histocompatibility complex-mismatched bone marrow, followed 2 weeks later by donor lymphocyte infusion. Near complete donor T-cell chimerism was achieved in the blood and lymphatic tissues, in contrast to mixed chimerism in the skin and gut. Skin and gut donor T cells were predominantly CD4+, in contrast to T cells in the blood and lymphatic tissues. Genes associated with Th1 cells were upregulated in gut, liver, lung, and skin tissues affected by aGvHD. Increased serum levels of CXCL10 and IL-18 preceded symptoms of aGvHD, accompanied by increased responsiveness to CXCL10 by blood CD4+ T cells. No changes in the expression of Th2- or Th17-associated genes were observed, indicating that aGvHD in this rat model is mainly Th1 driven. The rat model of aGvHD could be instrumental for further investigations of donor T-cell subsets in the skin and gut and for exploring therapeutic options to ameliorate symptoms of aGvHD.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dasaradha Jalapothu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Olena Zaitseva
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Bent Rolstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian Naper
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
3
|
Thiruchelvam-Kyle L, Hoelsbrekken SE, Saether PC, Bjørnsen EG, Pende D, Fossum S, Daws MR, Dissen E. The Activating Human NK Cell Receptor KIR2DS2 Recognizes a β 2-Microglobulin-Independent Ligand on Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2556-2567. [PMID: 28202613 DOI: 10.4049/jimmunol.1600930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β2-microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β2-microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β2-microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β2-microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies.
Collapse
Affiliation(s)
- Lavanya Thiruchelvam-Kyle
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Sigurd E Hoelsbrekken
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Per C Saether
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Elisabeth Gyllensten Bjørnsen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Sigbjørn Fossum
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Michael R Daws
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Erik Dissen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| |
Collapse
|
4
|
Rolstad B. The early days of NK cells: an example of how a phenomenon led to detection of a novel immune receptor system - lessons from a rat model. Front Immunol 2014; 5:283. [PMID: 24982659 PMCID: PMC4058755 DOI: 10.3389/fimmu.2014.00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
In this review, I summarize some of the early research on NK cell biology and function that led to the discovery of a totally new receptor system for polymorphic MHC class I molecules. That NK cells both could recognize and kill tumor cells but also normal hematopoietic cells through expression of MHC class I molecules found a unifying explanation in the “missing self” hypothesis. This initiated a whole new area of leukocyte receptor research. The common underlying mechanism was that NK cells expressed receptors that were inhibited by recognition of unmodified “self” MHC-I molecules. This could explain both the killing of tumor cells with poor expression of MHC-I molecules and hybrid resistance, i.e., that F1 hybrid mice sometimes could reject parental bone marrow cells. However, a contrasting phenomenon termed allogeneic lymphocyte cytotoxicity in rats gave strong evidence that some of these receptors were activated rather than inhibited by recognition of polymorphic MHC-I. This was soon followed by molecular identification of both inhibitory and stimulatory Ly49 receptors in mice and rats and killer cell immunoglobulin-like receptors in humans that could be either inhibited or activated when recognizing their cognate MHC-I ligand. Since most of these receptors now have been molecularly characterized, their ligands and the intracellular pathways leading to activation or inhibition identified, we still lack a more complete understanding of how the repertoire of activating and inhibitory receptors is formed and how interactions between these receptors for MHC-I molecules on a single NK cell are integrated to generate a productive immune response. Although several NK receptor systems have been characterized that recognize MHC-I or MHC-like molecules, I here concentrate on the repertoires of NK receptors encoded by the natural killer cell gene complex and designed to recognize polymorphic MHC-I molecules in rodents, i.e., Ly49 (KLRA) receptors.
Collapse
Affiliation(s)
- Bent Rolstad
- Immunobiological Laboratory, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
5
|
Lacotte S, Oldani G, Slits F, Orci LA, Rubbia-Brandt L, Morel P, Mentha G, Toso C. Alloimmune activation promotes anti-cancer cytotoxicity after rat liver transplantation. PLoS One 2014; 9:e91515. [PMID: 24651497 PMCID: PMC3961266 DOI: 10.1371/journal.pone.0091515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
Liver transplantation for hepatocellular carcinoma (HCC) results in a specific condition where the immune response is potentially directed against both allogeneic and cancer antigens. We have investigated the level of anti-cancer immunity during allogeneic immune response. Dark Agouti-to-Lewis and Lewis-to-Lewis rat liver transplantations were performed and the recipients anti-cancer immunity was analysed at the time of alloimmune activation. The occurrence of rejection in the allogeneic recipients was confirmed by a shorter survival (p<0.01), increased liver function tests (p<0.01), the presence of signs of rejection on histology, and a donor-specific ex vivo mixed lymphocyte reaction. At the time of alloimmune activation, blood mononuclear cells of the allogeneic group demonstrated increased anti-cancer cytotoxicity (p<0.005), which was related to an increased natural killer (NK) cell frequency (p<0.05) and a higher monocyte/macrophage activation level (p<0.01). Similarly, liver NK cell anti-cancer cytotoxicity (p<0.005), and liver monocyte/macrophage activation levels (p<0.01) were also increased. The alloimmune-associated cytotoxicity was mediated through the NKG2D receptor, whose expression was increased in the rejected graft (p<0.05) and on NK cells and monocyte/macrophages. NKG2D ligands were expressed on rat HCC cells, and its inhibition prevented the alloimmune-associated cytotoxicity. Although waiting for in vivo validation, alloimmune-associated cytotoxicity after rat liver transplantation appears to be linked to increased frequencies and levels of activation of NK cells and monocyte/macrophages, and is at least in part mediated through the NKG2D receptor.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- * E-mail: (SL); (CT)
| | - Graziano Oldani
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Lorenzo A. Orci
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Hepato-pancreato-biliary Centre, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Department of Pathology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Gilles Mentha
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Department of Pathology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Department of Pathology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- * E-mail: (SL); (CT)
| |
Collapse
|
6
|
Harbo HF, Lorentzen AR, Lie BA, Celius EG, Spurkland A. [New gene map for multiple sclerosis]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2011; 131:2126-30. [PMID: 22048209 DOI: 10.4045/tidsskr.10.0823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating, inflammatory disease of the central nervous system which affects young adults with a relapsing or progressive disease course. The etiology of the disease is unknown, but both environmental and genetic factors contribute to the risk of developing MS. MATERIAL AND METHODS We give an overview of new knowledge of the genetic risk factors for MS, based on our own work as well as on literature in this field. RESULTS Through genome-wide association studies and subsequent replication studies a series of novel MS genes have recently been identified, in addition to the HLA association previously described. The International MS Genetics Consortium in collaboration with the Wellcome Trust Case Control Consortium recently published a genome-wide study of 9,722 MS patients and 17,376 controls. Genome-wide significant association (p < 10-8) was observed for 29 new as well as 23 previously identified gene regions, in addition to the HLA-DRB1 and -A loci .The majority of these MS-associated regions encode immune-related molecules. CONCLUSION Genetic studies of large patient and control samples obtained through international and national collaborations have identified a list of more than 50 MS risk-gene regions, in addition to HLA-DRB1 and -A loci. The risk associated with each of these loci is low, however, they collectively point to the importance of immune-related pathways in the etiology of MS.
Collapse
Affiliation(s)
- Hanne F Harbo
- Nevrologisk avdeling, Oslo universitetssykehus, Ullevål, Norway.
| | | | | | | | | |
Collapse
|
7
|
Saether PC, Hoelsbrekken SE, Fossum S, Dissen E. Rat and Mouse CD94 Associate Directly with the Activating Transmembrane Adaptor Proteins DAP12 and DAP10 and Activate NK Cell Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:6365-73. [DOI: 10.4049/jimmunol.1102345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zakharova LA, Khegai II, Sharova NP, Melnikova VI, Karpova YD, Astakhova TM, Popova NA, Ivanova LN. Pattern of MHC class I and immune proteasome expression in Walker 256 tumor during growth and regression in Brattleboro rats with the hereditary defect of arginine-vasopressin synthesis. Cell Immunol 2011; 271:385-91. [PMID: 21889127 DOI: 10.1016/j.cellimm.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/23/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Dynamics of the expression of MHC class I, immune proteasomes and proteasome regulators 19S, PA28, total proteasome pool and proteasome chymotrypsin-like activity in Walker 256 tumor after implantation into Brattleboro rats with the hereditary defect of arginine-vasopressin synthesis was studied. The tumor growth and regression in Brattleboro rats were accompanied by changes in the proteasome subunit level unlike the tumor growth in WAG rats with normal expression of arginine-vasopressin gene. In the tumor implanted into Brattleboro rats the immune proteasome level was maximal between days 14 and 17, when the tumor underwent regression. Conversely, the expression of proteasome regulators tended to decrease during this period. Immune proteasomes are known to produce antigen epitopes for MHC class I to be presented to CD8+ T lymphocytes. Enhanced expression of immune proteasomes coincided with the recovery of MHC class I expression, suggesting the efficient presentation of tumor antigens in Brattleboro rats.
Collapse
Affiliation(s)
- Liudmila A Zakharova
- NK Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang DB, Dayton RD, Zweig RM, Klein RL. Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response. Exp Neurol 2010; 224:197-206. [PMID: 20346943 DOI: 10.1016/j.expneurol.2010.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 03/17/2010] [Indexed: 12/31/2022]
Abstract
Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of 2 weeks. Specific decreases in messages for dopamine-related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression.
Collapse
Affiliation(s)
- David B Wang
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Natural killer (NK) cells are the first line of defense against infection and transformation. Additionally, NK cells can play seemingly opposite roles in autoimmune disease. Here, we summarize the functions of NK cells as both regulators and inducers of autoimmune disease. The role NK cells play depends on which cells become targets for NK cell attack. The activity of NK cells is controlled by inhibitory receptors specific for MHC Class I molecules, and by activating receptors with diverse specificities. The ligands for both activating and inhibitory receptors are present on potential target cells. It is the balance in expression of these different ligands that determines NK cell activation and therefore whether the cell becomes a target for NK cell-mediated killing. We further discuss the roles of NK cell receptors and their ligands in autoimmune disease.
Collapse
Affiliation(s)
- Hyun-Bae Jie
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
11
|
Saether PC, Westgaard IH, Hoelsbrekken SE, Benjamin J, Lanier LL, Fossum S, Dissen E. KLRE/I1 and KLRE/I2: a novel pair of heterodimeric receptors that inversely regulate NK cell cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2008; 181:3177-82. [PMID: 18713988 DOI: 10.4049/jimmunol.181.5.3177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells identify infected, neoplastic, or MHC-disparate target cells via several different receptors. The NK cell receptor KLRE1 lacks known signaling motifs but has nevertheless been shown to regulate NK cell-mediated cytotoxicity. Here we demonstrate that KLRE1 forms functional heterodimers with either KLRI1 or KLRI2. Cotransfection with KLRE1 was necessary for surface expression of the NK cell receptor chains KLRI1 and KLRI2 in 293T cells. Moreover, KLRE1 can be coimmunoprecipitated with KLRI1 or KLRI2 from transfected NK cell lines. By flow cytometry, KLRE1 and KLRI1 showed colinear expression on NK cells, suggesting surface expression as heterodimers. Unlike other killer cell lectin-like receptors, KLRE1/KLRI1 and KLRE1/KLRI2 heterodimers predominantly migrated as single chains in SDS-PAGE, indicating noncovalent association. KLRI1 was coimmunoprecipitated with the tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1. In accordance with an inhibitory function, anti-HA Ab induced reduced killing of FcR-bearing targets by KLRI1-HA-transfected NK cell lines in a redirected cytotoxicity assay. Reciprocally, KLRI2-HA transfectants displayed increased killing in this assay. Finally, Ab to KLRE1 induced inhibition in KLRI1-transfected cells but increased cytotoxicity in KLRI2 transfectants, demonstrating that KLRE/I1 is a functional inhibitory heterodimer in NK cells, whereas KLRE/I2 is an activating heterodimeric receptor.
Collapse
Affiliation(s)
- Per C Saether
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mason LH, Willette-Brown J, Taylor LS, McVicar DW. Regulation of Ly49D/DAP12 Signal Transduction by Src-Family Kinases and CD45. THE JOURNAL OF IMMUNOLOGY 2006; 176:6615-23. [PMID: 16709819 DOI: 10.4049/jimmunol.176.11.6615] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating, DAP12-coupled members of the Ly-49 family of NK cell receptors help control viral infections in mice. However, the kinases and/or phosphatases mediating tyrosine phosphorylation of Ly-49D-associated DAP12 have not been elucidated. In this study, we show for the first time that Src family tyrosine kinases are physically and functionally associated with Ly-49D/DAP12 signaling in murine NK cells. Specifically, we demonstrate the following: 1) inhibition of Src family kinases suppresses DAP12 phosphorylation and downstream DAP12 signals; 2) both Fyn and Lck are capable of phosphorylating DAP12; and 3) both kinases coimmunoprecipitate with the Ly-49D/DAP12 complex in NK cells. Although we detect enhanced phosphorylation of Fyn upon Ly-49D cross-linking in NK cells, Ly-49D-mediated events in both Fyn-/- and Fyn/Lck-/- mice appear normal, reinforcing the theme of redundancy in the ability of Src family kinases to initiate activation events. In contrast to disruption of specific Src family enzymes, Ly-49D/DAP12-mediated calcium mobilization and cytokine production by CD45 null NK cells are defective. Although others have ascribed the effects of CD45 mutation solely on the suppression of Src family activity, we demonstrate in this study that DAP12 is hyperphosphorylated in CD45 null NK cells, resulting in uncoordinated tyrosine-mediated signaling upon Ly-49D ligation. Therefore, although our data are consistent with a Src kinase activity proximally within DAP12 signaling, DAP12 also appears to be a substrate of CD45, suggesting a more complex role for this phosphatase than has been reported previously.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antigens, Ly/physiology
- Cell Line
- Cells, Cultured
- Cross-Linking Reagents/metabolism
- Cytotoxicity Tests, Immunologic
- Down-Regulation/immunology
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/physiology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/physiology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins c-fyn/deficiency
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/physiology
- Pyrimidines/pharmacology
- Receptors, NK Cell Lectin-Like
- Signal Transduction/immunology
- Syk Kinase
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Llewellyn H Mason
- Laboratory of Experimental Immunology, National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
13
|
Naper C, Dai KZ, Kveberg L, Rolstad B, Niemi EC, Vaage JT, Ryan JC. Two structurally related rat Ly49 receptors with opposing functions (Ly49 stimulatory receptor 5 and Ly49 inhibitory receptor 5) recognize nonclassical MHC class Ib-encoded target ligands. THE JOURNAL OF IMMUNOLOGY 2005; 174:2702-11. [PMID: 15728478 DOI: 10.4049/jimmunol.174.5.2702] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ly49 family of lectin-like receptors in rodents includes both stimulatory and inhibitory members. Although NK alloreactivity in mice is regulated primarily by inhibitory Ly49 receptors, in rats activating Ly49 receptors are equally important. Previous studies have suggested that activating rat Ly49 receptors are triggered by polymorphic ligands encoded within the nonclassical class Ib region of the rat MHC, RT1-CE/N/M, while inhibitory Ly49 receptors bind to widely expressed classical class Ia molecules encoded from the RT1-A region. To further investigate rat Ly49-mediated regulation of NK alloreactivity, we report in this study the identification and characterization of two novel paired Ly49 receptors that we have termed Ly49 inhibitory receptor 5 (Ly49i5) and Ly49 stimulatory receptor 5 (Ly49s5). Using a new mAb (mAb Fly5), we showed that Ly49i5 is an inhibitory receptor that recognizes ligands encoded within the class Ib region of the u and l haplotypes, while the structurally related Ly49s5 is an activating receptor that recognizes class Ib ligands of the u haplotype. Ly49s5 is functionally expressed in the high NK-alloresponder PVG strain, but not in the low alloresponder BN strain, in which it is a pseudogene. Ly49s5 is hence not responsible for the striking anti-u NK alloresponse previously described in BN rats (haplotype n), which results from repeated alloimmunizations with u haplotype cells. The present studies support the notion of a complex regulation of rat NK alloreactivity by activating and inhibitory Ly49 members, which may be highly homologous in the extracellular region and bind similar class Ib-encoded target ligands.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/analysis
- Antibodies, Monoclonal/biosynthesis
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/isolation & purification
- Antigens, Ly/metabolism
- Cloning, Molecular/methods
- Female
- Haplotypes
- Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Immunophenotyping
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- Oligopeptides
- Peptides/genetics
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Inbred Lew
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Sequence Homology, Amino Acid
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Christian Naper
- Institute of Immunology, Rikshospitalet University Hospital, University of Oslo, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
14
|
Schanoski AS, Cavalcanti TC, Campos CBL, Viera-Matos AN, Rettori O, Guimarães F. Walker 256 tumor MHC class I expression during the shift from A variant to the immunogenic AR variant. Cancer Lett 2004; 211:119-27. [PMID: 15194224 DOI: 10.1016/j.canlet.2004.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 01/28/2004] [Accepted: 01/30/2004] [Indexed: 11/29/2022]
Abstract
Novel tumor cell variants can be obtained by serially passaging tumor cells in different media and/or environments. Serial intraperitoneal (ip) passages of the Walker 256 tumor A variant was followed for studying the generation of its regressive AR variant. MHC class I molecule expression was assessed since variations in this molecule would explain changes in tumor cell immunogenicity and therefore, the shift from progressive A variant to the regressive AR variant. Within 25 ip passages all serial repetitions shifted from A to AR variant, which was characterized by a significant increase in red blood cell (RBC) osmotic fragility with marked spleen hypertrophy in the host. In one serial repetition AR tumor cells were rejected (ip passage number 36) and immunity against the AR and A variants was conferred. Flow cytometry analysis showed a significant increase in the number MHC class I positive cells in AR variant (n = 15, 14.21 +/- 1.32) compared with A variant (n = 10, 9.10 +/- 1.22). These data provide evidence that the generation of the AR variant could result from factors present in the ip environment leading to an increase in the number of Walker 256 MHC class I positive tumor cells, probably due to immune selection of MHC class I negative tumor cells.
Collapse
Affiliation(s)
- Alessandra Soares Schanoski
- Laboratório de Pesquisas Bioquímicas, Centro de Assistência Integral à Saúde da Mulher, Universidade Estadual de Campinas, P O Box 6081, CEP 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Lavender KJ, Ma BJ, Silver ET, Kane KP. The Rat RT1-A1cMHC Molecule Is a Xenogeneic Ligand Recognized by the Mouse Activating Ly-49W and Inhibitory Ly-49G Receptors. THE JOURNAL OF IMMUNOLOGY 2004; 172:3518-26. [PMID: 15004152 DOI: 10.4049/jimmunol.172.6.3518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse Ly-49 receptors are known to recognize xenogeneic ligands from hamster and rat. However, until now, there has been no description of a specific rat xenogeneic ligand for any mouse Ly-49 receptor. In this report, we identify RT1-A1c, a rat classical class I MHC molecule, as a ligand for the Ly-49G(BALB/c) inhibitory receptor and the closely related activating receptor, Ly-49W. Xenogeneic class I recognition of targets from PVG but not DA strain rats was mapped to the classical region of the RT1c haplotype by using Con A blasts from RT1c/RT1av1 intra-MHC recombinant rats as targets for RNK-16 cells expressing either Ly-49W or Ly-49G(BALB/c) receptors. Individual expression of class I molecules from PVG and DA rat strains in YB2/0 target cells demonstrate the xenogeneic recognition to be allele specific, because other class I molecules of the RT1c haplotype, RT1-A2c and RT1-U2c, and a classical class I molecule encoded by the RT1av1 haplotype, RT1-Aa, are not recognized by Ly-49W and -G(BALB/c). Furthermore, specificity for RT1-Ac can be transferred from Ly-49W to Ly-49P, which is normally unable to recognize RT1-Ac, by substitution of three residues shared by Ly-49W and -G(BALB/c) but not Ly-49P. These residues are located in the Ly-49 beta4-beta5 loop, which can determine class I allele specificity in mouse Ly-49 receptor interactions with mouse class I ligands, suggesting that mouse Ly-49 recognition of rat class I molecules follows similar principles of interaction. These findings have implications for xenotransplantation studies and for discerning Ly-49 recognition motifs present in MHC molecules.
Collapse
MESH Headings
- Alleles
- Animals
- Antigen Presentation/genetics
- Antigens, Heterophile/genetics
- Antigens, Heterophile/metabolism
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Antigens, Ly/physiology
- Cell Line, Tumor
- Concanavalin A/pharmacology
- Cytotoxicity, Immunologic/genetics
- Female
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Lectins, C-Type
- Ligands
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, NK Cell Lectin-Like
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection
Collapse
Affiliation(s)
- Kerry J Lavender
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
16
|
Hsieh CL, Ogura Y, Obara H, Ali UA, Rodriguez GM, Nepomuceno RR, Martinez OM, Krams SM. Identification, cloning, and characterization of a novel rat natural killer receptor, RNKP30: a molecule expressed in liver allografts. Transplantation 2004; 77:121-8. [PMID: 14724446 DOI: 10.1097/01.tp.0000110423.27977.6f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As a component of the innate immune system, natural killer (NK) cells may play a significant role in the early events after solid-organ transplantation. Activated NK cells have been shown to infiltrate allografts in transplant models. To better understand NK cells and the role of NK cell receptors in transplantation, we have cloned and begun characterizing a novel rat molecule, rNKp30. METHODS RNKp30 cDNA was cloned by 5' rapid amplification of cDNA ends polymerase chain reaction (PCR) and reverse transcriptase (RT)-PCR from mononuclear cells infiltrating a rejecting liver allograft. Southern blot analysis was used to determine the rNKp30 gene copy number. RT-PCR and Northern blotting were used to examine rNKp30 RNA expression in NK cells, multiple tissues, and liver grafts. Immunocytochemistry, immunoprecipitation, and Western blot analysis with two anti-rNKp30 polyclonal antibodies, CA680 and CA1071, were performed. Tunicamycin and endoglycosidase treatments determined the extent of rNKp30 glycosylation. RESULTS RNKp30 is homologous to human and macaque NKp30. It is a single copy gene with five identified single-nucleotide polymorphisms. RNKp30 is expressed by NK cells and is detectable as a single transcript by Northern blot in normal spleen, lymph node, and lung tissues. RNKp30 is a variably N-glycosylated cell surface molecule with a protein backbone of approximately 21 kDa. Elevated transcript expression of rNKp30 is detected in both rejected and spontaneously accepted liver allografts, but not in syngeneic or cyclosporine A-treated allografts. CONCLUSIONS RNKp30 is a glycosylated surface NK cell receptor with limited polymorphism. This putative activation receptor is expressed in liver allografts and may participate in the innate immune response after transplantation.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Antigens, Surface/metabolism
- Base Sequence/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Lectins, C-Type/metabolism
- Liver/metabolism
- Liver Transplantation
- Male
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily B
- Natural Cytotoxicity Triggering Receptor 3
- Rats
- Rats, Inbred Strains
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Transcription, Genetic/physiology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Christine L Hsieh
- Department of Surgery and Program in Immunology, Stanford University School of Medicine, Stanford, California 94305-5492, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lau P, Amadou C, Brun H, Rouillon V, McLaren F, Le Rolle AF, Graham M, Butcher GW, Joly E. Characterisation of RT1-E2, a multigenic family of highly conserved rat non-classical MHC class I molecules initially identified in cells from immunoprivileged sites. BMC Immunol 2003; 4:7. [PMID: 12837137 PMCID: PMC183868 DOI: 10.1186/1471-2172-4-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 07/01/2003] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND So-called "immunoprivileged sites" are tissues or organs where slow allograft rejection correlates with low levels of expression of MHC class I molecules. Whilst classical class I molecules are recognised by cytotoxic T lymphocytes (CTL), some MHC class I molecules are called "non-classical" because they exhibit low polymorphism and are not widely expressed. These last years, several studies have shown that these can play different, more specialised roles than their classical counterparts. In the course of efforts to characterise MHC class I expression in rat cells obtained from immunoprivileged sites such as the central nervous system or the placenta, a new family of non-classical MHC class I molecules, which we have named RT1-E2, has been uncovered. RESULTS Members of the RT1-E2 family are all highly homologous to one another, and the number of RT1-E2 loci varies from one to four per MHC haplotype among the six rat strains studied so far, with some loci predicted to give rise to soluble molecules. The RT1n MHC haplotype (found in BN rats) carries a single RT1-E2 locus, which lies in the RT1-C/E region of the MHC and displays the typical exon-intron organisation and promoter features seen in other rat MHC class I genes. We present evidence that: i) RT1-E2 molecules can be detected at the surface of transfected mouse L cells and simian COS-7 cells, albeit at low levels; ii) their transport to the cell surface is dependent on a functional TAP transporter. In L cells, their transport is also hindered by protease inhibitors, brefeldin A and monensin. CONCLUSIONS These findings suggest that RT1-E2 molecules probably associate with ligands of peptidic nature. The high homology between the RT1-E2 molecules isolated from divergent rat MHC haplotypes is particularly striking at the level of their extra-cellular portions. Compared to other class I molecules, this suggests that RT1-E2 molecules may associate with well defined sets of ligands. Several characteristics point to a certain similarity to the mouse H2-Qa2 and human HLA-G molecules.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Cloning, Molecular
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Flow Cytometry
- Gene Expression
- Green Fluorescent Proteins
- Histocompatibility Antigens/genetics
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Molecular Sequence Data
- Multigene Family/genetics
- Neostriatum/cytology
- Neostriatum/metabolism
- Phylogeny
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Pierre Lau
- IFR Claude de Préval, INSERM U563, CHU Purpan, 31300 Toulouse, France
| | - Claire Amadou
- IFR Claude de Préval, INSERM U563, CHU Purpan, 31300 Toulouse, France
| | - Hélène Brun
- IFR Claude de Préval, INSERM U563, CHU Purpan, 31300 Toulouse, France
| | - Virginie Rouillon
- IFR Claude de Préval, INSERM U563, CHU Purpan, 31300 Toulouse, France
| | - Fiona McLaren
- The Functional Immunogenetics Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Anne-France Le Rolle
- The Functional Immunogenetics Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Margaret Graham
- The Functional Immunogenetics Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Geoffrey W Butcher
- The Functional Immunogenetics Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Etienne Joly
- IFR Claude de Préval, INSERM U563, CHU Purpan, 31300 Toulouse, France
- The Functional Immunogenetics Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK
| |
Collapse
|
18
|
Westgaard IH, Dissen E, Torgersen KM, Lazetic S, Lanier LL, Phillips JH, Fossum S. The lectin-like receptor KLRE1 inhibits natural killer cell cytotoxicity. J Exp Med 2003; 197:1551-61. [PMID: 12782717 PMCID: PMC2193914 DOI: 10.1084/jem.20021253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the cloning and functional characterization in the mouse and the rat of a novel natural killer (NK) cell receptor termed KLRE1. The receptor is a type II transmembrane protein with a COOH-terminal lectin-like domain, and constitutes a novel KLR family. Rat Klre1 was mapped to the NK gene complex. By Northern blot and flow cytometry using newly generated monoclonal antibodies, KLRE1 was shown to be expressed by NK cells and a subpopulation of CD3+ cells, with pronounced interstrain variation. Western blot analysis indicated that KLRE1 can be expressed on the NK cell surface as a disulphide-linked dimer. The predicted proteins do not contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or a positively charged amino acid in the transmembrane domain. However, in a redirected lysis assay, the presence of whole IgG, but not of F(ab')2 fragments of a monoclonal anti-KLRE1 antibody inhibited lysis of Fc-receptor bearing tumor target cells. Moreover, the tyrosine phosphatase SHP-1 was coimmunoprecipitated with KLRE1 from pervanadate-treated interleukin 2-activated NK cells. Together, our results indicate that KLRE1 may form a functional heterodimer with an as yet unidentified ITIM-bearing partner that recruits SHP-1 to generate an inhibitory receptor complex.
Collapse
|
19
|
Luo D, Vermijlen D, Kuppen PJK, Wisse E. MHC class I expression protects rat colon carcinoma cells from hepatic natural killer cell-mediated apoptosis and cytolysis, by blocking the perforin/granzyme pathway. COMPARATIVE HEPATOLOGY 2002; 1:2. [PMID: 12495445 PMCID: PMC149428 DOI: 10.1186/1476-5926-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Accepted: 11/20/2002] [Indexed: 01/28/2023]
Abstract
BACKGROUND: Hepatic natural killer (NK) cells, the most cytotoxic cells of the natural occurring NK cells, are located in the liver sinusoids and are thus in a strategic position to kill arriving metastasising tumour cells, like colon carcinoma cells. It is known that major histocompatibility complex (MHC) class I on tumour cells negatively regulates NK cell-mediated cytolysis, but this is found using blood- or spleen-derived NK cells. Therefore, using isolated rat hepatic NK cells and the syngeneic colon carcinoma cell line CC531s, we investigated whether this protective role of MHC class I is also operative in hepatic NK cells, and addressed the mechanism of MHC class I protection. RESULTS: When MHC class I on CC531s cells was masked by preincubation with monoclonal antibody OX18, hepatic NK cell-mediated cytolysis (51Cr release) as well as apoptosis (DNA fragmentation, nucleus condensation and fragmentation) increased. When hepatic NK cells were preincubated with the granzyme inhibitor 3,4-dichloroisocoumarin, or when extracellular Ca2+ was chelated by ethylene glycol-bis(beta-aminoethyl ether)-N, N-tetraacetic acid, the enhanced cytolysis and apoptosis were completely inhibited. The involvement of the perforin/granzyme pathway was confirmed by showing that the enhanced cytolysis was caspase-independent. CONCLUSIONS: MHC class I expression protects CC531s colon carcinoma cells from hepatic NK cell-mediated apoptosis and cytolysis, by blocking the perforin/granzyme pathway.
Collapse
Affiliation(s)
- Dianzhong Luo
- Laboratory for Cell Biology and Histology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
20
|
Silver ET, Lavender KJ, Gong DE, Hazes B, Kane KP. Allelic variation in the ectodomain of the inhibitory Ly-49G2 receptor alters its specificity for allogeneic and xenogeneic ligands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4752-60. [PMID: 12391184 DOI: 10.4049/jimmunol.169.9.4752] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ly-49 multigene receptor family regulates mouse NK cell functions. A number of Ly-49 genes exhibit allelic variation, but the functional significance of allelic differences in extracellular domains of Ly-49 receptors regarding ligand specificity is largely unknown. Amino acid differences exist in the extracellular domains of the B6 and BALB/c allele products of the inhibitory Ly-49G receptor. We constructed chimeric Ly-49 receptors consisting of common cytoplasmic and transmembrane regions of the activating Ly-49W receptor fused with the ectodomains of the B6 and BALB/c alleles of Ly-49G. Expression of these chimeras in the RNK-16 rat NK cell line allowed us to study the specificity of inhibitory receptor ectodomains as they stimulated NK lytic activity. We found that the ectodomain of the BALB/c allele of Ly-49G recognizes both H-2D(d) and D(k) class I MHC alleles, whereas the ectodomain of the B6 allele of Ly-49G recognizes D(d), and not D(k). The specificity for D(k) as well as D(d) of the wild-type Ly-49G(BALB/c) allele product was confirmed with RNK-16 transfectants of this inhibitory receptor. Furthermore, the ectodomain of the Ly-49G(BALB/c) allele recognizes a distinct repertoire of xenogeneic ligands that only partially overlaps with that recognized by Ly-49G(B6). Our results indicate that allelic variation in Ly-49 extracellular domains can have functional significance by altering Ly-49 receptor specificity for mouse class I MHC and xenogeneic ligands.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antigens, Heterophile/metabolism
- Antigens, Ly/metabolism
- CHO Cells
- Cricetinae
- Cytotoxicity, Immunologic/genetics
- Extracellular Space/genetics
- Extracellular Space/immunology
- Female
- Genetic Variation/immunology
- H-2 Antigens/metabolism
- Isoantigens/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Inbred F344
- Rats, Inbred Lew
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemical synthesis
- Species Specificity
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Elizabeth T Silver
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
21
|
Naper C, Hayashi S, Kveberg L, Niemi EC, Lanier LL, Vaage JT, Ryan JC. Ly-49s3 is a promiscuous activating rat NK cell receptor for nonclassical MHC class I-encoded target ligands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:22-30. [PMID: 12077224 DOI: 10.4049/jimmunol.169.1.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of the rapid rejection of MHC-disparate lymphocytes in rats, named allogeneic lymphocyte cytotoxicity, have indicated that rat NK cells express activating receptors for nonclassical MHC class I allodeterminants from the RT1-C/E/M region. Using an expression cloning system that identifies activating receptors associated with the transmembrane adapter molecule DAP12, we have cloned a novel rat Ly-49 receptor that we have termed Ly-49 stimulatory receptor 3 (Ly-49s3). A newly generated anti-Ly-49s3 Ab, mAb DAR13, identified subpopulations of resting and IL-2-activated NK cells, but not T or B lymphocytes. Depletion of Ly-49s3-expressing NK cells drastically reduced alloreactivity in vitro, indicating that this subpopulation is responsible for a major part of the observed NK alloreactivity. DAR13-mediated blockade of Ly-49s3 inhibited killing of MHC-congenic target cells from the av1, n, lv1, and c haplotypes, but not from the u or b haplotypes. A putative ligand was mapped to the nonclassical MHC class I region (RT1-C/E/M) using intra-MHC recombinant strains. Relative numbers of Ly-49s3(+) NK cells were reduced, and surface levels of Ly-49s3 were lower, in MHC congenic strains expressing the putative Ly-49s3 ligand(s). In conclusion, we have identified a novel Ly-49 receptor that triggers rat NK cell-mediated responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antigens, Ly
- Cell Line
- Cloning, Molecular
- Cytotoxicity Tests, Immunologic
- DNA, Complementary/isolation & purification
- Dimerization
- Female
- Genetic Complementation Test
- Haplotypes/immunology
- Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Testing
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Lymphocyte Activation
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Male
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- Peptide Mapping
- Rats
- Rats, Inbred BN
- Rats, Inbred BUF
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
Collapse
Affiliation(s)
- Christian Naper
- Veterans Affairs Medical Center, Northern California Institute for Research and Education, and University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Naper C, Hayashi S, Løvik G, Kveberg L, Niemi EC, Rolstad B, Dissen E, Ryan JC, Vaage JT. Characterization of a novel killer cell lectin-like receptor (KLRH1) expressed by alloreactive rat NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5147-54. [PMID: 11994469 DOI: 10.4049/jimmunol.168.10.5147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells have the ability to recognize and kill MHC-mismatched hemopoietic cells. In the present study, strain-specific differences in the rat NK allorecognition repertoire were exploited to generate Abs against receptors that may be involved in allogeneic responses. A mAb termed STOK9 was selected, and it reacted with subsets of NK cells and NKR-P1(+) T cells from certain rat strains possessing highly alloreactive NK cells. The STOK9(+) NK subset was broadly alloreactive and lysed Con A lymphoblast targets from a range of MHC-mismatched strains. The mAb STOK9 precipitated a 75-kDa dimeric glycoprotein from NK lysates. Expression cloning revealed that each monomer consisted of 231 aa with limited homology to other previously characterized killer cell lectin-like receptors (KLRs). This glycoprotein therefore constitutes a novel KLR branch, and it has been termed KLRH1. A gene in the central region of the natural killer gene complex on rat chromosome 4 encodes KLRH1. A mouse homolog appears to be present as deduced from analyses of genomic trace sequences. The function of KLRH1 is unknown, but it contains an immunoreceptor tyrosine-based inhibitory motif, suggesting an inhibitory function. The MHC haplotype of the host appears to influence KLRH1 expression, suggesting that it may function as an MHC-binding receptor on subsets of NK cells and T lymphocytes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Ly
- Chromosome Mapping
- Cloning, Molecular
- Cytotoxicity, Immunologic/genetics
- Dimerization
- Haplotypes/immunology
- Hybridomas
- Isoantigens/genetics
- Isoantigens/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins/biosynthesis
- Lectins/chemistry
- Lectins, C-Type
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Major Histocompatibility Complex/genetics
- Major Histocompatibility Complex/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Molecular Sequence Data
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Inbred Lew
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, NK Cell Lectin-Like
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christian Naper
- Department of Anatomy, University of Oslo, and Institute of Immunology, Rikshospitalet, University Hospital, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Matsumoto N, Yokoyama WM, Kojima S, Yamamoto K. The NK cell MHC class I receptor Ly49A detects mutations on H-2Dd inside and outside of the peptide binding groove. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4422-8. [PMID: 11254697 DOI: 10.4049/jimmunol.166.7.4422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NK cell inhibitory receptor Ly49A recognizes the mouse MHC class I molecule H-2D(d) and participates in the recognition of missing self. Previous studies indicated that the determinant recognized by Ly49A exists in alpha1/alpha2 domain of H-2D(d). Here we have substituted polymorphic as well as conserved residues of H-2D(d) alpha1/alpha2 domain (when compared with H-2K(d), which does not interact with Ly49A). We then tested the ability of the H-2D(d) mutants to interact with Ly49A by soluble Ly49A tetramer binding and NK cell cytotoxicity inhibition assays. Individual introduction of mutations converting the H-2D(d) residue into the corresponding H-2K(d) residue (N30D, D77S, or A99F) in H-2D(d) partially abrogated the interaction between Ly49A and H-2D(d). Introduction of the three mutations into H-2D(d) completely abolished Ly49A recognition. Individual introduction of D29N or R35A mutation into the residues of H-2D(d) that are conserved among murine MHC class I severely impaired the interaction. The crystal structure of H-2D(d) reveals that D77 and A99 are located in the peptide binding groove and that N30, D29, and R35 are in the interface of the three structural domains of MHC class I: alpha1/alpha2, alpha3, and beta(2)-microglobulin. These data suggest that Ly49A can monitor mutations in MHC class I inside and outside of the peptide binding groove and imply that inhibitory MHC class I-specific receptors are sensitive to mutations in MHC class I as well as global loss of MHC class I. Our results also provide insight into the molecular basis of Ly49A to distinguish MHC class I polymorphism.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Antigens, Ly
- Binding Sites/genetics
- Binding Sites/immunology
- Carrier Proteins/metabolism
- Conserved Sequence
- Cytotoxicity Tests, Immunologic
- Epitopes/genetics
- Epitopes/metabolism
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- NK Cell Lectin-Like Receptor Subfamily A
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Point Mutation
- Polymorphism, Genetic/genetics
- Polymorphism, Genetic/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N Matsumoto
- Laboratory of Molecular Medicine, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
24
|
Stevens J, Jones RC, Bordoli RS, Trowsdale J, Gaskell SJ, Butcher GW, Joly E. Peptide specificity of RT1-A1(c), an inhibitory rat major histocompatibility complex class I natural killer cell ligand. J Biol Chem 2000; 275:29217-24. [PMID: 10856297 DOI: 10.1074/jbc.m002565200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat major histocompatibility complex class Ia allelomorph RT1-A1(c) is a potent ligand for the recently identified inhibitory rLy-49 receptor, STOK-2. With the ultimate objective of studying the interactions of these molecules using structural and functional methods, we undertook a detailed study of its peptide specificity. The study revealed that designing an "ideal peptide" by choosing the most abundant residues in the "binding motif" obtained by pool sequencing does not necessarily yield an optimal binding peptide. For RT1-A1(c), as many as four positions, P2, P4, P5, and P9, were detected as putative anchors. Since this molecule displays a preference for highly hydrophobic peptides, we tested binding of peptides derived from the known leader peptide sequences of other rat histocompatibility complex class I molecules. One such peptide, found to bind well, requiring 1.6 microm peptide to achieve 50% stabilization, was searched for in vivo. Natural RT1-A1(c) binding peptides were purified from rat splenocytes and characterized by mass spectrometry using a combined matrix-assisted laser desorption ionization/time-of-flight and quadrupole time-of-flight approach. Results showed that the signal sequence-derived peptide was not detectable in the purified peptide pool, which was composed of a complex spectrum of peptides. Seven of these self-peptides were successfully sequenced.
Collapse
Affiliation(s)
- J Stevens
- Molecular Immunology Programme, Babraham Institute, Cambridge CB2 4AT, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bäckman-Petersson E, Butcher GW, Hedlund G. Self-MHC class Ia (RT1-A(n)) protects cells co-expressing the activatory allogeneic MHC class Ib molecule (RT1-E(u)) from NK lysis. Int Immunol 2000; 12:843-50. [PMID: 10837412 DOI: 10.1093/intimm/12.6.843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously shown activation of NK cells via recognition of an allogeneic, non-classical MHC class I molecule, RT1-E(u). In this study we investigated whether a self-MHC class I molecule could protect the allogeneic targets from being recognized and killed by the alloreactive NK (allo NK) cells. NK cells from BN (RT1 n) rats, primed in vivo by immunization with RT1(u)-expressing cells, manifested cytolytic activity against RT1(u)- as well as RT1(u/lv1)-expressing targets, but not against RT1(u/n)-expressing targets. The absence of cytolytic activity against semiallogeneic targets, i.e. targets expressing self-allotypes, was also valid for allo NK cells from alloimmunized F344 (RT1 (lv1)) rats. To analyze the ability of a distinct MHC class I molecule to protect target cells from NK lysis, Rat2 cells transfected with the activating allogeneic MHC class Ib, RT1-E(u) molecule were also transfected with the self-MHC class Ia, RT1-A1(n) molecule. The allo NK cells from BN rats immunized with RT1(u)-expressing cells were cytolytic against Rat2 transfected with the RT1-E(u) molecule. However, the allo NK cells manifested no cytolytic activity against double-transfected Rat2 cells, expressing the RT1-E(u) as well as the RT1-A1(n) molecule. We conclude that expression of a self-MHC class Ia (RT1-A) molecule protects targets from allo NK killing. Furthermore, the NK inhibition via recognition of the self-MHC class Ia molecule dominates over the activation via recognition of the allogeneic MHC class Ib molecule, RT1-E.
Collapse
Affiliation(s)
- E Bäckman-Petersson
- Department of Tumor Immunology, Immunobiology, BMC, Lund University, Sölvegatan 21, 223 62 Lund, Sweden
| | | | | |
Collapse
|
26
|
Petersson E, Holmdahl R, Butcher GW, Hedlund G. Activation and selection of NK cells via recognition of an allogeneic, non-classical MHC class I molecule, RT1-E. Eur J Immunol 1999; 29:3663-73. [PMID: 10556822 DOI: 10.1002/(sici)1521-4141(199911)29:11<3663::aid-immu3663>3.0.co;2-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have established that NK cells express both inhibitory and activatory receptors. The inhibitory receptors have been shown to recognize major MHC class I molecules, but the physiological ligands for the activatory receptors have been only partly characterized. In this study we investigated whether NK cells could be activated by recognizing specific non-classical MHC class Ib molecules. NK cells from BN (RT1(n)) rats immunized in vivo with MHC-incompatible WF (RT1(u)) cells displayed cytolytic activity specific for product(s) of the MHC class Ib RT1-E(u) / C(u) region. These cells were shown to kill Rat2 fibroblast cells transfected with cDNA for RT1-E(u) but neither untransfected Rat2 nor a transfectant with the class Ia allele, RT1-A(u). Cytolysis of Rat2-RT1-E(u) was inhibited by the anti-RT1-E(u) antibody 70-3-C2. In addition, NK cells cytolytic against PVG (RT1(c)) targets, but not against WF (RT1(u)) or other allogeneic targets were activated after PVG immunization of BN rats. The generation of NK populations cytolytic for target cells of the same haplotype as the immunizing cells, but not for third-party targets, strongly suggests the existence of a selective NK-mediated response in vivo. We conclude that recognition of an allogeneic MHC class Ib RT1-E molecule activates NK cells and the specific cytolytic response could be regarded as adaptive.
Collapse
Affiliation(s)
- E Petersson
- Section of Tumor Immunology, Department of Cell and Molecular Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
27
|
Xia G, Ji P, Rutgeerts O, Waer M. Maintenance and reversibility of natural killer cell- and T cell-independent B lymphocyte xenotolerance in athymic nude rats. Transplantation 1999; 68:1181-8. [PMID: 10551648 DOI: 10.1097/00007890-199910270-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously described that a tolerogeneic regimen (TR) including (1) the infusion of a minced hamster heart suspension (MHH), (2) a single injection of an anti-natural killer (NK) cell serum (rabbit anti-asialo GM1 serum), and (3) a 4-week course of the B cell immunosuppressant leflunomide (20 mg/kg/ day) induced T cell-independent (T-I) B lymphocyte and NK cell tolerance for hamster xenoantigens in T-deficient athymic nude rats. In addition, the TR allowed for long-term hamster cardiac xenograft (Xg) survival when Xgs were transplanted 2 weeks (Day 0) after the initiation of the TR (started on Day - 14). The present study was undertaken to investigate some of the characteristics of this T-I xenotolerance in more detail. METHODS To investigate the duration of the effect of the TR on the T-I xenotolerance, hamster Xgs were transplanted at various times after initiation of the TR. To investigate whether the maintenance of the T-I xenotolerance depended on the presence of the graft, tolerated Xgs were removed on Day +28, and the subsequent evolution of the T-I xenotolerance as well as of second hamster Xg was followed. In addition, the reversibility of NK cell nonresponsiveness by recombinant interleukin-2 was investigated in vitro. RESULTS Xgs transplanted on day 0 or Day +7 showed long-term survival. However, all Xgs transplanted on Day +15, +30, and +60 were rapidly rejected. The latter rejection occurred in the absence of formation of anti-hamster immunoglobulin (Ig)M xenoreactive antibodies (xAbs) but correlated with the recovery of anti-hamster NK cell reactivity from day +14 on. Rejected Xgs showed infiltration of NK cells but absence of IgM xAbs or complement factor deposition. When tolerated first Xgs (transplanted on Day 0) were removed on Day +28, second hamster Xgs survived without treatment when transplanted 1 or 2 weeks later. However, second hamster Xgs transplanted 3 weeks after removal of the first Xgs were all rapidly rejected. Again, the latter rejection was characterized by the infiltration of the Xgs with NK cells and by the absence of anti-hamster IgM xAbs formation. Xenoreactive NK cell nonresponsiveness was not only shorter than xenoreactive B cell nonresponsiveness, but was also more fragile. This was evident from the fact that after addition of recombinant interleukin-2 in vitro, specific anti-hamster NK nonresponsiveness was easily broken. CONCLUSIONS NK cell and T-I B cell xenotolerance can be induced in T-deficient rats. Compared with B cell xenotolerance, the maintenance of NK cell xenotolerance is much shorter, more dependent on the presence of the graft, and easily reversible in vitro.
Collapse
Affiliation(s)
- G Xia
- Laboratory for Experimental Transplantation, University of Leuven, Belgium
| | | | | | | |
Collapse
|
28
|
George TC, Ortaldo JR, Lemieux S, Kumar V, Bennett M. Tolerance and Alloreactivity of the Ly49D Subset of Murine NK Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Class I-specific stimulatory and inhibitory receptors expressed by NK cell subsets contribute to the alloreactive potential of the self-tolerant murine NK cell repertoire. In this report, we have studied potential mechanisms of tolerance to the function of the positive signaling Ly49D receptor in mice that express one of its ligands, H2-Dd. Our results demonstrate that H2-Dd-expressing mice possess a large Ly49D+ subset of NK cells that is functionally capable of rejecting bone marrow cell (BMC) allografts in vivo and lysing allogeneic Con A lymphoblasts in vitro. Also, we show that the Ly49D receptor is responsible for the ability of H2b/d F1 hybrid mice to reject H2d/d parental BMC (hybrid resistance). Thus, deletion or anergy of Ly49D+ cells in H2-Dd+ hosts cannot explain self tolerance. Our functional studies revealed that coexpression of the Dd-specific Ly49A or Ly49G2 inhibitory receptors by Ly49D+ cells resulted in tolerance to Dd+ targets, while coexpression of Kb-specific inhibitory receptors Ly49C/I resulted in tolerance to Kb+ targets. Only in H2d/d cells did Ly49C/I dominantly inhibit Ly49D-Dd stimulation. This correlated with an increased mean fluorescence intensity of Ly49C expression, as well as an increased percentage of Ly49C+ cells in the Ly49D+A/G2− compartment. Therefore, we conclude that self tolerance of the Ly49D subset can be achieved through coexpression of a sufficient level of self-specific inhibitory receptors.
Collapse
Affiliation(s)
- Thaddeus C. George
- *Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - John R. Ortaldo
- †Laboratory of Experimental Immunology, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702; and
| | - Suzanne Lemieux
- ‡Human Health Research Center, Institut National de la Reserche Scientifique-Institute Armand-Frappier, University of Quebec, Laval, Canada
| | - Vinay Kumar
- *Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Michael Bennett
- *Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
29
|
Abstract
Major histocompatibility complex class I-specific inhibitory receptors on natural killer cells prevent the lysis of healthy autologous cells. The outcome of this negative signal is not anergy or apoptosis of natural killer cells but a transient abortion of activation signals. The natural killer inhibitory receptors fulfill this function by recruiting the tyrosine phosphatase SHP-1 through a cytoplasmic immunoreceptor tyrosine-based inhibition motif. This immunoreceptor tyrosine-based inhibition motif has become the hallmark of a growing family of receptors with inhibitory potential, which are expressed in various cell types such as monocytes, macrophages, dendritic cells, leukocytes, and mast cells. Most of the natural killer inhibitory receptors and two members of a monocyte inhibitory-receptor family bind major histocompatibility complex class I molecules. Ligands for many of the other receptors have yet to be identified. The inhibitory-receptor superfamily appears to regulate many types of immune responses by blocking cellular activation signals.
Collapse
Affiliation(s)
- E O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| |
Collapse
|
30
|
Naper C, Ryan JC, Kirsch R, Butcher GW, Rolstad B, Vaage JT. Genes in two major histocompatibility complex class I regions control selection, phenotype, and function of a rat Ly-49 natural killer cell subset. Eur J Immunol 1999; 29:2046-53. [PMID: 10382768 DOI: 10.1002/(sici)1521-4141(199906)29:06<2046::aid-immu2046>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have generated a monoclonal antibody (STOK2) which reacts with an inhibitory MHC receptor on a subset of alloreactive NK cells in the rat. This receptor, termed the STOK2 antigen (Ag), belongs to the Ly-49 family of lectin-like molecules and displays specificity for the classical MHC class I molecule RT1-A1c of PVG rats. Here, we have investigated the influence of the MHC on the selection, phenotype and function of the STOK2+ NK subset in a panel of MHC congenic and intra-MHC recombinant strains. STOK2 receptor density was influenced by the presence of its classical MHC I ligand RT1-A1c, as evidenced by a reduction of STOK2 Ag on the surface of NK cells from RT1-A1c+, as compared with RT1-A1c-, strains. In addition, a role for nonclassical MHC I RT1-C/E/M alleles in the selection of the STOK2 Ag was demonstrated. The relative number of STOK2+ NK cells was fivefold higher in rats expressing the RT1-C/E/M(av1) as compared with those expressing the RT1-C/E/M(u) class Ib haplotype. The STOK2 ligand RT1-A1c inhibited cytotoxicity of STOK2+ NK cells regardless of effector cell MHC haplotype. Allospecificity of STOK2+ NK cells varied markedly with effector cell MHC, however, and suggested that inhibitory MHC I receptors apart from STOK2 were variably co-expressed by these cells. These data provide evidence for the MHC-dependent regulation of the allospecific repertoire within a subset of potentially autoreactive Ly-49+ rat NK cells.
Collapse
Affiliation(s)
- C Naper
- Department of Anatomy, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
31
|
Bellón T, Heredia ABD, Llano M, Minguela A, Rodriguez A, López-Botet M, Aparicio P. Triggering of Effector Functions on a CD8+ T Cell Clone Upon the Aggregation of an Activatory CD94/kp39 Heterodimer. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Some T lymphocytes express the CD94 Ag, which is known to form heterodimers with members of the NKG2 family. We have studied the expression pattern and function of CD94 heterodimers in different αβ or γδ T cell clones. Most of the CD94+NKG2A− T cells have a low to intermediate expression of CD94 Ag. The cross-linking of the CD94/NKG2 heterodimer in one of these CD8 αβ CD94+NKG2A− T cell clones (K14B06) was able to: 1) increase the intracellular concentration of Ca2+, 2) induce the up-regulation of CD25 Ag expression and the secretion of IFN-γ, and 3) trigger redirected cytotoxicity in a TCR-independent manner. This activatory property was not shared by any other costimulatory molecule expressed by the K14B06 T cell clone, including CD8, CD28, CD45, CD69, or CD2 Ags. The immunoprecipitation of CD94 heterodimer showed a 39-kDa band with a similar m.w. to the activatory heterodimer found on some NK clones. A novel form of the NKG2 family (NKG2H) was identified in K14B06. NKG2H protein represents an alternative spliced form of the NKG2E gene, displaying a charged residue in the transmembrane portion and a cytoplasmic tail that lacks immunoreceptor tyrosine-based inhibitory motifs. The expression of NKG2H in the cell membrane through its association to CD94 and DAP-12 molecules supports that it could form part of the activatory CD94/Kp39 heterodimer present on K14B06 cells.
Collapse
Affiliation(s)
- Teresa Bellón
- *Sección de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Agustín B. de Heredia
- †Departamento de Bioquímica B e Inmunología, Universidad de Murcia, Murcia, Spain; and
| | - Manuel Llano
- *Sección de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Alfredo Minguela
- ‡Sección de Inmunología, Hospital Vírgen de la Arrixaca, Murcia, Spain
| | | | | | - Pedro Aparicio
- †Departamento de Bioquímica B e Inmunología, Universidad de Murcia, Murcia, Spain; and
| |
Collapse
|
32
|
Sato T, Deiwick A, Raddatz G, Koyama K, Schlitt HJ. Interactions of allogeneic human mononuclear cells in the two-way mixed leucocyte culture (MLC): influence of cell numbers, subpopulations and cyclosporin. Clin Exp Immunol 1999; 115:301-8. [PMID: 9933457 PMCID: PMC1905169 DOI: 10.1046/j.1365-2249.1999.00784.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With organ allografts considerable numbers of donor-type mononuclear cells are transferred to the recipient, leading to bilateral immunological interactions between donor and recipient lymphocytes. To study such bilateral immune reactions in detail, human two-way MLC were performed. In this model proliferation kinetics, patterns of activation, and survival of the two populations were analysed, and the relevance of initial cell subset composition, relative cell numbers, and the effect of immunosuppression on this co-culture were evaluated. It could be demonstrated that with an initial 50:50 ratio of two populations of allogeneic cells one population dominated after 21 days of co-culture in 78 out of 80 combinations (97%) tested; the other population decreased markedly after an initially stable phase of 6-7 days. With unequal starting conditions the larger population dominated when resting cells were used, but small populations of preactivated cells or separated CD8+ cells could also dominate. Depletion of CD16+ natural killer (NK) cells and of CD2- cells (B cell and monocytes) had no effect on domination. Addition of cyclosporin delayed or blocked the domination process while addition of IL-2 accelerated it. Disappearance of one population was associated with detection of apoptotic cells. The findings indicate that co-cultures of allogeneic mononuclear cells are generally not stable for more than 1 week, but lead to active elimination of one population. CD8+ cells and particularly preactivated cells seem to play the most important role in that process, while NK cells are of less importance. Cyclosporin can prolong survival of allogeneic cells in co-culture. These observations suggest that under the conditions of clinical organ transplantation even small amounts of immunocompetent donor cells transferred by the graft may persist for some time and may, thereby, have the chance to exert immunomodulatory functions.
Collapse
Affiliation(s)
- T Sato
- Klinik für Abdominal- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
33
|
Nakamura MC, Linnemeyer PA, Niemi EC, Mason LH, Ortaldo JR, Ryan JC, Seaman WE. Mouse Ly-49D recognizes H-2Dd and activates natural killer cell cytotoxicity. J Exp Med 1999; 189:493-500. [PMID: 9927511 PMCID: PMC2192910 DOI: 10.1084/jem.189.3.493] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D-ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti- Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor- bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab')2 anti-Ly-49D (12A8) and F(ab')2 anti-H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2(d) mice (BALB/c, B10.D2, and DBA/2) but not from H-2(b) or H-2(k) mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells.
Collapse
Affiliation(s)
- M C Nakamura
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Leong LYW, Le Rolle AF, Deverson EV, Powis SJ, Larkins AP, Vaage JT, Stokland A, Lambracht-Washington D, Rolstad B, Joly E, Butcher GW. RT1-U: Identification of a Novel, Active, Class Ib Alloantigen of the Rat MHC. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In common with other mammalian species, the laboratory rat (Rattus norvegicus) expresses MHC class I molecules that have been categorized as either classical (class Ia) or nonclassical (class Ib). This distinction separates the class Ia molecules that play a conventional role in peptide Ag presentation to CD8 T cells from the others, whose function is unconventional or undefined. The class Ia molecules are encoded by the RT1-A region of the rat MHC, while the RT1-C/E/M region encodes up to 60 other class I genes or gene fragments, a number of which are known to be expressed (or to be expressible). Here we report upon novel MHC class Ib genes of the rat that we have expression cloned using new monoclonal alloantibodies and which we term RT1-U. The products detected by these Abs were readily identifiable by two-dimensional analysis of immunoprecipitates and were shown to be distinct from the class Ia products. Cellular studies of these molecules indicate that they function efficiently as targets for cytotoxic killing by appropriately raised polyclonal alloreactive CTL populations. The sequences of these class Ib genes group together in phylogenetic analysis, suggesting a unique locus or family. The combined serological, CTL, and sequence data all indicate that these products are genetically polymorphic.
Collapse
Affiliation(s)
- Louise Y. W. Leong
- *Department of Immunology, The Babraham Institute, Cambridge, United Kingdom
| | | | - Edward V. Deverson
- *Department of Immunology, The Babraham Institute, Cambridge, United Kingdom
| | - Simon J. Powis
- †Department of Biochemistry, University of Dundee, Dundee, United Kingdom
| | - Audrey P. Larkins
- *Department of Immunology, The Babraham Institute, Cambridge, United Kingdom
| | - John T. Vaage
- ‡Department of Anatomy, University of Oslo, Blindern, Norway; and
| | - Aasa Stokland
- ‡Department of Anatomy, University of Oslo, Blindern, Norway; and
| | | | - Bent Rolstad
- ‡Department of Anatomy, University of Oslo, Blindern, Norway; and
| | - Etienne Joly
- *Department of Immunology, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W. Butcher
- *Department of Immunology, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
35
|
Wonigeit K, Washington D, Hundrieser J. Lessons from rat models on the genetic basis of interindividual differences in lymphocyte phenotype. Transplant Proc 1998; 30:2341-3. [PMID: 9723496 DOI: 10.1016/s0041-1345(98)00645-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K Wonigeit
- Transplantationslabor, Klinik für Abdominal- und Transplantationschirurgie, Medizinische Hochschule, Hannover, Germany
| | | | | |
Collapse
|
36
|
Smith KM, Wu J, Bakker ABH, Phillips JH, Lanier LL. Cutting Edge: Ly-49D and Ly-49H Associate with Mouse DAP12 and Form Activating Receptors. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Several members of the Ly-49 receptor family inhibit NK cell-mediated lysis of targets expressing appropriate MHC class I molecules. Ly-49D and Ly-49H, two Ly-49 molecules that lack immunoreceptor tyrosine-based inhibitory motifs (ITIM) in their cytoplasmic domains, associate with mouse DAP12, a molecule that possesses an immunoreceptor tyrosine-based activation motif (ITAM). Cotransfection of either Ly-49D or Ly-49H with DAP12 induces surface expression of both Ly-49 and DAP12. The Ly-49/DAP12 complex was coimmunoprecipitated from the transfected cells, demonstrating a physical association of DAP12 with Ly-49D or Ly-49H in the plasma membrane. Stimulation of transfectants with Abs recognizing either Ly-49D or Ly-49H results in cellular activation, as assessed by induction of tyrosine phosphorylation of multiple cellular substrates.
Collapse
Affiliation(s)
| | - Jun Wu
- DNAX Research Institute, Palo Alto, CA 94304
| | | | | | | |
Collapse
|
37
|
Abstract
NK cells are regulated by opposing signals from receptors that activate and inhibit effector function. While positive stimulation may be initiated by an array of costimulatory receptors, specificity is provided by inhibitory signals transduced by receptors for MHC class I. Three distinct receptor families, Ly49, CD94/NKG2, and KIR, are involved in NK cell recognition of polymorphic MHC class I molecules. A common pathway of inhibitory signaling is provided by ITIM sequences in the cytoplasmic domains of these otherwise structurally diverse receptors. Upon ligand binding and activation, the inhibitory NK cell receptors become tyrosine phosphorylated and recruit tyrosine phosphatases, SHP-1 and possibly SHP-2, resulting in inhibition of NK cell-mediated cytotoxicity and cytokine expression. Recent studies suggest these inhibitory NK cell receptors are members of a larger superfamily containing ITIM sequences, the inhibitory receptor superfamily (IRS).
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, Ly
- Antigens, Surface/physiology
- Cytotoxicity, Immunologic
- GTP-Binding Proteins/physiology
- Humans
- Immediate-Early Proteins/physiology
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/physiology
- Lectins, C-Type
- Membrane Glycoproteins/physiology
- Monomeric GTP-Binding Proteins
- NK Cell Lectin-Like Receptor Subfamily D
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/physiology
- Receptors, Immunologic/physiology
- Receptors, NK Cell Lectin-Like
- Signal Transduction/physiology
- beta 2-Microglobulin/physiology
Collapse
Affiliation(s)
- L L Lanier
- DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304, USA.
| |
Collapse
|
38
|
Rolstad B, Seaman WE. Natural killer cells and recognition of MHC class I molecules: new perspectives and challenges in immunology. Scand J Immunol 1998; 47:412-25. [PMID: 9627124 DOI: 10.1046/j.1365-3083.1998.00358.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- B Rolstad
- Immunology/Arthritis Section, Veterans Administration Medical Center, University of California, San Francisco 94121, USA
| | | |
Collapse
|
39
|
Engh E, Benestad HB, Strøm-Gundersen I, Vaage JT, Bell EB, Rolstad B. Role of classical (RT1.A) and nonclassical (RT1.C) MHC class I regions in natural killer cell-mediated bone marrow allograft rejection in rats. Transplantation 1998; 65:319-24. [PMID: 9484746 DOI: 10.1097/00007890-199802150-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We have studied the role of the different MHC (RT1) subregions in acute natural killer (NK) cell-mediated bone marrow allograft rejection in lethally irradiated, bone marrow cell (BMC) reconstituted rats. METHODS We employed a series of MHC congenic and intra-MHC recombinant rat strains so that effects of mismatches in defined RT1 subregions could be studied systematically. BMC allograft survival was measured as 125IUdR uptake in the spleen between day 5 and day 7 after irradiation and BMC reconstitution. RESULTS We found that in certain RT1 haplotype combinations, nonclassical RT1.C disparities by themselves could determine graft rejection (i.e., in the u/av1 recombinant haplotypes), whereas in another combination (between the av1 and c haplotypes) a mismatch for an isolated classical RT1.A region was decisive for engraftment. Thus, PVG.R1 BMC failed to proliferate in PVG rats, differing in the RT1.A region only, whereas in PVG.1U rats rejection could be determined by isolated differences in the RT1.C region (LEW.1WR1). Also, RT1 homozygous rats (RT1.U) rejected semi-allogeneic F1 hybrid BMC. The acute rejection of BMC was mediated by NK cells, as athymic nude rats, lacking alloreactive T cells but with normal alloreactive NK cells, showed the same patterns of rejection as did normal rats. Nude rats also rejected allogeneic lymphocytes, a previously documented NK-mediated phenomenon, with identical requirements of MHC disparity. CONCLUSIONS This investigation shows that rat effector NK cells are radioresistant, independent of the thymus, and capable of recognizing and rejecting MHC mismatched transplanted BMC on the basis of mismatches in both classical and nonclassical class I regions in vivo. The studies underline the importance also of NK cells in determining BMC allograft survival.
Collapse
Affiliation(s)
- E Engh
- Laboratory Animal Department, University of Oslo, Blindern, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Alkhatib G, Murata K, Roder JC. Cellular distribution of a natural killer cell tumour recognition-related surface antigen in purified human lymphocytes. Immunology 1997; 92:173-9. [PMID: 9415023 PMCID: PMC1364055 DOI: 10.1046/j.1365-2567.1997.00332.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes capable of human leucocyte antigen (HLA) unrestricted killing of tumour cells. A putative NK cell tumour-recognition molecule (NK-TR) was previously isolated and cloned. The predicted primary structure of the NK-TR revealed that the amino terminus of the protein shared high homology with cyclophilin proteins. In this study, we used rabbit antibodies directed against synthetic peptides corresponding to amino acids 476-497 of the NK-TR protein, to examine the expression of the NK-TR antigen in freshly purified human lymphocytes. Cell-surface staining experiments using these peptide antibodies indicated the presence of the NK-TR protein on the surface of human CD3+ T-cell populations purified from peripheral blood. There were individual donor differences in the levels of cell-surface expression of this antigen ranging from 35 to 90% in T lymphocytes and, NK cells purified from different healthy volunteers. The immunoreactivity of our peptide antibodies in immunoprecipitation showed that the NK-TR-related protein expressed in purified T cells is similar to that expressed in NK cells in terms of its electrophoretic mobility. Cell-surface staining experiments using the peptide antibodies revealed that the NK-TR-related protein is more abundantly expressed on the surface of purified T cells compared with NK cells. Northern blot analysis of the mRNA species transcribed in human lymphocytes revealed abundant expression of NK-TR-specific mRNA species in purified T cells. Furthermore, another mRNA species smaller than 7 kb was detected in both NK and T-cell populations of lymphocytes freshly isolated from peripheral blood. Expression at the cell surface of a cyclophilin-homologous protein in purified human T lymphocytes may indicate another function for the reported NK-TR protein, that is, distinct from tumour-cell recognition and cytosis.
Collapse
Affiliation(s)
- G Alkhatib
- Laboratory of Viral Diseases, NIAID National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Rolstad B, Vaage JT. The role of natural killer cells in allograft responses to MHC antigens in the rat. RESEARCH IN IMMUNOLOGY 1997; 148:159-64. [PMID: 9255867 DOI: 10.1016/s0923-2494(97)84218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B Rolstad
- Department of Anatomy, University of Oslo
| | | |
Collapse
|