1
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
2
|
Lovell AR, Jammal N, Bose P. Selecting the optimal BTK inhibitor therapy in CLL: rationale and practical considerations. Ther Adv Hematol 2022; 13:20406207221116577. [PMID: 35966045 PMCID: PMC9373150 DOI: 10.1177/20406207221116577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors have dramatically changed the treatment of newly diagnosed and relapsed/refractory chronic lymphocytic leukemia (CLL). Ibrutinib, acalabrutinib, and zanubrutinib are Food and Drug Administration (FDA)-approved BTK inhibitors that have all demonstrated progression-free survival (PFS) benefit compared with chemoimmunotherapy. The efficacy of these agents compared to one another is under study; however, current data suggest they provide similar efficacy. Selectivity for BTK confers different adverse effect profiles, and longer follow-up and real-world use have characterized side effects over time. The choice of BTK inhibitor is largely patient-specific, and this review aims to highlight the differences among the agents and guide the choice of BTK inhibitor in clinical practice.
Collapse
Affiliation(s)
- Alexandra R. Lovell
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Nadya Jammal
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
3
|
Thelen F, Wissmann S, Ruef N, Stein JV. The Tec Kinase Itk Integrates Naïve T Cell Migration and In Vivo Homeostasis. Front Immunol 2021; 12:716405. [PMID: 34566971 PMCID: PMC8458560 DOI: 10.3389/fimmu.2021.716405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Naïve T cells (TN) constitutively recirculate through secondary lymphatic organs (SLOs), where they scan dendritic cells (DCs) for cognate peptide-loaded major histocompatibility complexes (pMHC). Continuous trafficking between SLOs not only enables rapid clonal selection but also ensures TN homeostasis by providing access to prosurvival signals from TCR, IL-7R, and the chemokine receptor CCR7. Inside the lymphoid tissue, CCR7-mediated TN motility is mainly driven by the Rac activator DOCK2, with a separate contribution by a phosphoinositide-3-kinase γ (PI3Kγ)-dependent pathway. Tec tyrosine kinases and the Rac activator Tiam1 constitute prominent downstream effectors of PI3K signaling. Yet, the precise role of Tec kinase versus Tiam1 signaling during CCR7-mediated TN migration and homeostasis remains incompletely understood. Here, we examined the function of the Tec family member interleukin-2-inducible T-cell kinase (Itk) and Tiam1 during TN migration in vitro and in vivo using intravital microscopy. Itk deficiency caused a mild decrease in CCR7-triggered TN migration, mirroring observations made with PI3Kγ;-/- T cells, while lack of Tiam1 did not affect TN motility. In silico modeling suggested that reduced migration in the absence of Itk does not result in a substantial decrease in the frequency of TN encounters with DCs within the lymphoid tissue. In contrast, Itk was important to maintain in vivo homeostasis of CD4+ TN, also in MHCII-deficient hosts. Taken together, our data suggest that Itk contributes to TN migration and survival by integrating chemokine receptor and TCR signaling pathways.
Collapse
Affiliation(s)
- Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Failler M, Giro-Perafita A, Owa M, Srivastava S, Yun C, Kahler DJ, Unutmaz D, Esteva FJ, Sánchez I, Dynlacht BD. Whole-genome screen identifies diverse pathways that negatively regulate ciliogenesis. Mol Biol Cell 2020; 32:169-185. [PMID: 33206585 PMCID: PMC8120696 DOI: 10.1091/mbc.e20-02-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.
Collapse
Affiliation(s)
- Marion Failler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Ariadna Giro-Perafita
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Mikito Owa
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shalini Srivastava
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Chi Yun
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, Farmington, CT 06031
| | - Francisco J Esteva
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Irma Sánchez
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Brian D Dynlacht
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
5
|
Shao B, Yago T, Panicker SR, Zhang N, Liu Z, McEver RP. Th1 Cells Rolling on Selectins Trigger DAP12-Dependent Signals That Activate Integrin αLβ2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:37-48. [PMID: 31757864 PMCID: PMC6920551 DOI: 10.4049/jimmunol.1900680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022]
Abstract
During inflammation, both neutrophils and effector T cells use selectins to roll and integrins to arrest in postcapillary venules. In both cell types, chemokines can transduce signals that convert integrin αLβ2 to a high-affinity conformation, which interacts with ICAM-1 to mediate arrest. In neutrophils, selectins also trigger an immunoreceptor-like signaling cascade that converts integrin αLβ2 to an intermediate-affinity conformation, which interacts with ICAM-1 to slow rolling. It is not known whether selectins induce similar signaling events in T cells. Ag engagement causes phosphorylation of ITAMs on the TCR; these motifs recruit kinases and adaptors that lead to the activation of αLβ2. We found that mouse Th1 cells rolling on P- or E-selectin triggered signals that promoted αLβ2-dependent slow rolling on ICAM-1 in vitro and in vivo. The selectin signaling cascade resembled that used by the TCR, except that unexpectedly, Th1 cells employed the ITAM-bearing protein DAP12, which was not known to be expressed in these cells. Importantly, outside-in signaling through ligand-occupied αLβ2 also required DAP12. Cooperative selectin and chemokine signaling in Th1 cells promoted αLβ2-dependent slow rolling and arrest in vitro and in vivo and migration into Ag-challenged tissues in vivo. Our findings reveal an important function for DAP12 in Th1 cells and a new mechanism to recruit effector T cells to sites of inflammation.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
6
|
Howe MK, Dowdell K, Roy A, Niemela JE, Wilson W, McElwee JJ, Hughes JD, Cohen JI. Magnesium Restores Activity to Peripheral Blood Cells in a Patient With Functionally Impaired Interleukin-2-Inducible T Cell Kinase. Front Immunol 2019; 10:2000. [PMID: 31507602 PMCID: PMC6718476 DOI: 10.3389/fimmu.2019.02000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/07/2019] [Indexed: 12/02/2022] Open
Abstract
Interleukin-2-inducible T cell kinase (ITK) is critical for T cell signaling and cytotoxicity, and control of Epstein-Barr virus (EBV). We identified a patient with a novel homozygous missense mutation (D540N) in a highly conserved residue in the kinase domain of ITK who presented with EBV-positive lymphomatoid granulomatosis. She was treated with interferon and chemotherapy and her disease went into remission; however, she has persistent elevation of EBV DNA in the blood, low CD4 T cells, low NK cells, and nearly absent iNKT cells. Molecular modeling predicts that the mutation increases the flexibility of the ITK kinase domain impairing phosphorylation of the protein. Stimulation of her T cells resulted in reduced phosphorylation of ITK, PLCγ, and PKC. The CD8 T cells were moderately impaired for cytotoxicity and degranulation. Importantly, addition of magnesium to her CD8 T cells in vitro restored cytotoxicity and degranulation to levels similar to controls. Supplemental magnesium in patients with mutations in another protein important for T cell signaling, MAGT1, was reported to restore EBV-specific cytotoxicity. Our findings highlight the critical role of ITK for T cell activation and suggest the potential for supplemental magnesium to treat patients with ITK deficiency.
Collapse
Affiliation(s)
- Matthew K Howe
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, United States
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Wyndham Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Fujisawa M, Chiba S, Sakata-Yanagimoto M. Recent Progress in the Understanding of Angioimmunoblastic T-cell Lymphoma. J Clin Exp Hematop 2018; 57:109-119. [PMID: 29279549 DOI: 10.3960/jslrt.17019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) has been classified as a subtype of mature T-cell neoplasms. The recent revision of the WHO classification proposed a new category of nodal T-cell lymphoma with follicular helper T (TFH)-cell phenotype, which was classified into three diseases: AITL, follicular T-cell lymphoma, and nodal peripheral T-cell lymphoma with TFH phenotype. These lymphomas are defined by the expression of TFH-related antigens, CD279/PD-1, CD10, BCL6, CXCL13, ICOS, SAP, and CXCR5. Although recurrent mutations in TET2, IDH2, DNMT3A, RHOA, and CD28, as well as gene fusions, such as ITK-SYK and CTLA4-CD28, were not diagnostic criteria, they may be considered as novel criteria in the near future. Notably, premalignant mutations, tumor-specific mutations, and mutations specific to tumor-infiltrating B cells were identified in AITL. Thus, multi-step and multi-lineage genetic events may lead to the development of AITL.
Collapse
Affiliation(s)
- Manabu Fujisawa
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| |
Collapse
|
8
|
Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur J Med Chem 2018; 145:96-112. [DOI: 10.1016/j.ejmech.2017.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
9
|
Park H, Park CH, Kang ST, Jeon JH, Archary R, Lee JY, Kim P, Jung H, Yun CS, Hwang JY, Ryu DH, Cho SY. Design and Synthesis of Novel Pyrazolo[3,4-d]pyrimidin-1-yl piperidine Derivatives as Bruton's Tyrosine Kinase Inhibitors. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hyebin Park
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Chi Hoon Park
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Seung-Tae Kang
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Jeong Hee Jeon
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
| | - Raghavendra Archary
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Joo-Youn Lee
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
| | - Pilho Kim
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Heejung Jung
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Chang-Soo Yun
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Jong Yeon Hwang
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| | - Do Hyun Ryu
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Sung Yun Cho
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 Korea
| |
Collapse
|
10
|
Zhang Q, Zhang L, Yu J, Li H, He S, Tang W, Zuo J, Lu W. Discovery of new BTK inhibitors with B cell suppression activity bearing a 4,6-substituted thieno[3,2-d]pyrimidine scaffold. RSC Adv 2017. [DOI: 10.1039/c7ra04261b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Seventeen compounds with 4,6-substituted thieno[3,2-d]pyrimidine scaffold were prepared as new Bruton's tyrosine kinase inhibitors. Compound 8 exhibits anti-BTK activity, immunosuppressive activity, enzymatic selectivity and low toxicity.
Collapse
Affiliation(s)
- Qiumeng Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Luyao Zhang
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Jie Yu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Heng Li
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Shijun He
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Wei Tang
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Jianping Zuo
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Wei Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
11
|
Sebé-Pedrós A, Peña MI, Capella-Gutiérrez S, Antó M, Gabaldón T, Ruiz-Trillo I, Sabidó E. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation. Dev Cell 2016; 39:186-197. [PMID: 27746046 DOI: 10.1016/j.devcel.2016.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 07/17/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Cell-specific regulation of protein levels and activity is essential for the distribution of functions among multiple cell types in animals. The finding that many genes involved in these regulatory processes have a premetazoan origin raises the intriguing possibility that the mechanisms required for spatially regulated cell differentiation evolved prior to the appearance of animals. Here, we use high-throughput proteomics in Capsaspora owczarzaki, a close unicellular relative of animals, to characterize the dynamic proteome and phosphoproteome profiles of three temporally distinct cell types in this premetazoan species. We show that life-cycle transitions are linked to extensive proteome and phosphoproteome remodeling and that they affect key genes involved in animal multicellularity, such as transcription factors and tyrosine kinases. The observation of shared features between Capsaspora and metazoans indicates that elaborate and conserved phosphosignaling and proteome regulation supported temporal cell-type differentiation in the unicellular ancestor of animals.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Marcia Ivonne Peña
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 LT Utrecht, the Netherlands
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain; Departament de Genètica, Microbilogia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
12
|
Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach. Arch Pharm Res 2015; 39:328-39. [PMID: 26699616 DOI: 10.1007/s12272-015-0698-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
Abstract
Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.
Collapse
|
13
|
Buhl T, Sulk M, Nowak P, Buddenkotte J, McDonald I, Aubert J, Carlavan I, Déret S, Reiniche P, Rivier M, Voegel JJ, Steinhoff M. Molecular and Morphological Characterization of Inflammatory Infiltrate in Rosacea Reveals Activation of Th1/Th17 Pathways. J Invest Dermatol 2015; 135:2198-2208. [PMID: 25848978 DOI: 10.1038/jid.2015.141] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Rosacea is a common chronic inflammatory skin disease of unknown etiology. Our knowledge about an involvement of the adaptive immune system is very limited. We performed detailed transcriptome analysis, quantitative real-time reverse-transcriptase-PCR, and quantitative immunohistochemistry on facial biopsies of rosacea patients, classified according to their clinical subtype. As controls, we used samples from patients with facial lupus erythematosus and healthy controls. Our study shows significant activation of the immune system in all subtypes of rosacea, characterizing erythematotelangiectatic rosacea (ETR) already as a disease with significant influx of proinflammatory cells. The T-cell response is dominated by Th1/Th17-polarized immune cells, as demonstrated by significant upregulation of IFN-γ or IL-17, for example. Chemokine expression patterns support a Th1/Th17 polarization profile of the T-cell response. Macrophages and mast cells are increased in all three subtypes of rosacea, whereas neutrophils reach a maximum in papulopustular rosacea. Our studies also provide evidence for the activation of plasma cells with significant antibody production already in ETR, followed by a crescendo pattern toward phymatous rosacea. In sum, Th1/Th17 polarized inflammation and macrophage infiltration are an underestimated hallmark in all subtypes of rosacea. Therapies directly targeting the Th1/Th17 pathway are promising candidates in the future treatment of this skin disease.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland; Department of Dermatology and Surgery, University of California, San Francisco, California, USA
| | - Mathias Sulk
- Department of Dermatology and Surgery, University of California, San Francisco, California, USA; Department of Dermatology, University of Münster, Münster, Germany
| | - Pawel Nowak
- Department of Dermatology, University of Münster, Münster, Germany
| | - Jörg Buddenkotte
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ian McDonald
- Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - Jérôme Aubert
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France
| | - Isabelle Carlavan
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France
| | - Sophie Déret
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France
| | - Pascale Reiniche
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France
| | - Michel Rivier
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France
| | - Johannes J Voegel
- Molecular Dermatology, Research Department, Galderma R&D, Sophia Antipolis, France.
| | - Martin Steinhoff
- Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland; Department of Dermatology and Surgery, University of California, San Francisco, California, USA; Department of Dermatology, University of San Diego, USA.
| |
Collapse
|
14
|
Abstract
Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS.
Collapse
|
15
|
Lougaris V, Baronio M, Vitali M, Tampella G, Cattalini M, Tassone L, Soresina A, Badolato R, Plebani A. Bruton tyrosine kinase mediates TLR9-dependent human dendritic cell activation. J Allergy Clin Immunol 2014; 133:1644-50.e4. [PMID: 24612681 DOI: 10.1016/j.jaci.2013.12.1085] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bruton tyrosine kinase (BTK) plays an essential role in various biologic functions of different cell types. Mutations in BTK lead to X-linked agammaglobulinemia (XLA) in humans. BTK was recently linked to the innate immune system, in particular, the Toll-like receptor (TLR) pathway; however, the TLR9 pathway has never been studied in dendritic cells (DCs) of patients with XLA. OBJECTIVE The aim of this study was to investigate the role of BTK in human DC activation upon TLR9 stimulation. METHODS DCs of patients with XLA and healthy donors were stimulated via TLR4/9 and evaluated for cell activation and cytokine production. RESULTS We showed that BTK plays an essential role in DC responses to unmethylated CpG oligodeoxynucleotide: although responses to lipopolysaccaride/TLR4 induce normal DC activation in terms of upregulation of specific markers (CD86, CD83, CD80, HLA-DR), the CpG/TLR9 pathway is completely impaired in patients with XLA. Furthermore, cytokine production upon TLR9 activation in patients with XLA is radically impaired in terms of IL-6, IL-12, TNF-α, and IL-10 production. Interestingly, BTK mediated STAT1/3 upregulation in a TLR9-dependent manner. The important role of BTK in human DC activation was confirmed after incubation of healthy DCs with ibrutinib, the specific BTK inhibitor, which resulted in impairment of TLR9 responses as seen in patients with XLA. CONCLUSION Analysis of these data suggests that BTK regulates human DC responses upon TLR9 engagement in terms of activation, cytokine production, and STAT1/3 upregulation. These findings may be of important significance for better understanding and managing different clinical conditions, such as agammaglobulinemia and lymphoid malignancies.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy.
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Massimiliano Vitali
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Giacomo Tampella
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Marco Cattalini
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Laura Tassone
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Annarosa Soresina
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di Brescia, Italy
| |
Collapse
|
16
|
López-Herrera G, Vargas-Hernández A, González-Serrano ME, Berrón-Ruiz L, Rodríguez-Alba JC, Espinosa-Rosales F, Santos-Argumedo L. Bruton's tyrosine kinase--an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol 2013; 95:243-50. [PMID: 24249742 DOI: 10.1189/jlb.0513307] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Btk is the protein affected in XLA, a disease identified as a B cell differentiation defect. Btk is crucial for B cell differentiation and activation, but its role in other cells is not fully understood. This review focuses on the function of Btk in monocytes, neutrophils, and platelets and the receptors and signaling cascades in such cells with which Btk is associated.
Collapse
Affiliation(s)
- Gabriela López-Herrera
- 1.Col. Insurgentes Cuicuilco, Torre de Investigación 9o. piso, Mexico, D.F., Mexico 04530.
| | | | | | | | | | | | | |
Collapse
|
17
|
Molecular dynamic simulation to explore the molecular basis of Btk-PH domain interaction with Ins(1,3,4,5)P4. ScientificWorldJournal 2013; 2013:580456. [PMID: 24307874 PMCID: PMC3836457 DOI: 10.1155/2013/580456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/07/2013] [Indexed: 02/04/2023] Open
Abstract
Bruton's tyrosine kinase contains a pleckstrin homology domain, and it specifically binds inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), which is involved in the maturation of B cells. In this paper, we studied 12 systems including the wild type and 11 mutants, K12R, S14F, K19E, R28C/H, E41K, L11P, F25S, Y40N, and K12R-R28C/H, to investigate any change in the ligand binding site of each mutant. Molecular dynamics simulations combined with the method of molecular mechanics/Poisson-Boltzmann solvent-accessible surface area have been applied to the twelve systems, and reasonable mutant structures and their binding free energies have been obtained as criteria in the final classification. As a result, five structures, K12R, K19E, R28C/H, and E41K mutants, were classified as “functional mutations,” whereas L11P, S14F, F25S, and Y40N were grouped into “folding mutations.” This rigorous study of the binding affinity of each of the mutants and their classification provides some new insights into the biological function of the Btk-PH domain and related mutation-causing diseases.
Collapse
|
18
|
Klieger Y, Almogi-Hazan O, Ish-Shalom E, Pato A, Pauker MH, Barda-Saad M, Wang L, Baniyash M. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation. Eur J Immunol 2013; 44:58-68. [PMID: 24185712 DOI: 10.1002/eji.201243099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 11/07/2022]
Abstract
TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance.
Collapse
Affiliation(s)
- Yair Klieger
- The Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
20
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
21
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
23
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
24
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
25
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013; 36:105-11. [PMID: 23807045 PMCID: PMC3887950 DOI: 10.1007/s10059-013-0154-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 01/05/2023] Open
Abstract
The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system.
Collapse
Affiliation(s)
- Inkyu Hwang
- Research Center for Chemical Biology, KRIBB-RIKEN Global R&D Center Program, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 363-883, Korea.
| |
Collapse
|
26
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
27
|
Schiralli Lester GM, Akiyama H, Evans E, Singh J, Gummuluru S, Henderson AJ. Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology 2013; 436:235-43. [PMID: 23260110 PMCID: PMC3598624 DOI: 10.1016/j.virol.2012.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/18/2012] [Accepted: 11/25/2012] [Indexed: 12/18/2022]
Abstract
Interleukin 2-inducible T cell kinase (ITK) influences T cell signaling by coordinating actin polymerization and polarization as well as recruitment of kinases and adapter proteins. ITK regulates multiple steps of HIV-1 replication, including virion assembly and release. Fluorescent microscopy was used to examine the functional interactions between ITK and HIV-1 Gag during viral particle release. ITK and Gag colocalized at the plasma membrane and were concentrated at sites of F-actin accumulation and membrane lipid rafts in HIV-1 infected T cells. There was polarized staining of ITK, Gag, and actin towards sites of T cell conjugates. Small molecule inhibitors of ITK disrupted F-actin capping, perturbed Gag-ITK colocalization, inhibited virus like particle release, and reduced HIV replication in primary human CD4+ T cells. These data provide insight as to how ITK influences HIV-1 replication and suggest that targeting host factors that regulate HIV-1 egress provides an innovative strategy for controlling HIV infection.
Collapse
Affiliation(s)
- Gillian M. Schiralli Lester
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Erica Evans
- Celgene Avilomics Research, Bedford, MA, United States
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Andrew J. Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
28
|
Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling. Blood 2013; 121:2301-10. [PMID: 23343834 DOI: 10.1182/blood-2012-09-457085] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin activation is essential for the function of leukocytes. Impaired integrin activation on leukocytes is the hallmark of the leukocyte adhesion deficiency syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. In inflammation, leukocytes collect different signals during the contact with the microvasculature, which activate signaling pathways leading to integrin activation and leukocyte recruitment. We report the role of P-Rex1, a Rac-specific guanine nucleotide exchanging factor, in integrin activation and leukocyte recruitment. We find that P-Rex1 is required for inducing selectin-mediated lymphocyte function-associated antigen-1 (LFA-1) extension that corresponds to intermediate affinity and induces slow leukocyte rolling, whereas P-Rex1 is not involved in the induction of the high-affinity conformation of LFA-1 obligatory for leukocyte arrest. Furthermore, we demonstrate that P-Rex1 is involved in Mac-1-dependent intravascular crawling. In vivo, both LFA-1-dependent slow rolling and Mac-1-dependent crawling are defective in P-Rex1(-/-) leukocytes, whereas chemokine-induced arrest and postadhesion strengthening remain intact in P-Rex1-deficient leukocytes. Rac1 is involved in E-selectin-mediated slow rolling and crawling. In vivo, in an ischemia-reperfusion-induced model of acute kidney injury, abolished selectin-mediated integrin activation contributed to decreased neutrophil recruitment and reduced kidney damage in P-Rex1-deficient mice. We conclude that P-Rex1 serves distinct functions in LFA-1 and Mac-1 activation.
Collapse
|
29
|
Hey F, Czyzewicz N, Jones P, Sablitzky F. DEF6, a novel substrate for the Tec kinase ITK, contains a glutamine-rich aggregation-prone region and forms cytoplasmic granules that co-localize with P-bodies. J Biol Chem 2012; 287:31073-84. [PMID: 22829599 DOI: 10.1074/jbc.m112.346767] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Localization of DEF6 (SLAT/IBP), a Rho-family guanine nucleotide exchange factor, to the center of the immune synapse is dependent upon ITK, a Tec-family kinase that regulates the spatiotemporal organization of components of T cell signaling pathways and Cdc42-dependent actin polymerization. Here we demonstrate that ITK both interacts with DEF6 and phosphorylates DEF6 at tyrosine residues Tyr(210) and Tyr(222). Expression of a GFP-tagged Y210E-Y222E phosphomimic resulted in the formation of DEF6 cytoplasmic granules that co-localized with decapping enzyme 1 (DCP1), a marker of P-bodies; sites of mRNA degradation. Similarly treatment of cells with puromycin or sodium arsenite, reagents that arrest translation, also resulted in the accumulation of DEF6 in cytoplasmic granules. Bioinformatics analysis identified a glutamine-rich, heptad-repeat region; a feature of aggregating proteins, within the C-terminal region of DEF6 with the potential to promote granule formation through a phosphorylation-dependent unmasking of this region. These data suggest that in addition to its role as a GEF, DEF6 may also function in regulating mRNA translation.
Collapse
Affiliation(s)
- Fiona Hey
- School of Biology, Molecular Cell and Developmental Biology, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
30
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|
31
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Vargas-Hernández A, López-Herrera G, Maravillas-Montero JL, Vences-Catalán F, Mogica-Martínez D, Rojo-Domínguez A, Espinosa-Rosales FJ, Santos-Argumedo L. Consequences of two naturally occurring missense mutations in the structure and function of Bruton agammaglobulinemia tyrosine kinase. IUBMB Life 2012; 64:346-53. [DOI: 10.1002/iub.1009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/19/2012] [Indexed: 11/06/2022]
|
33
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
34
|
Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, Barr KA, Meng F, Luster AD, Bendelac A. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. ACTA ACUST UNITED AC 2011; 208:1179-88. [PMID: 21624939 PMCID: PMC3173247 DOI: 10.1084/jem.20102630] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PLZF-expressing NKT cells establish residence at intravascular locations, failing to enter the circulation because of constitutive interactions with LFA-1 and ICAM-1. Innate-like NKT cells conspicuously accumulate within the liver microvasculature of healthy mice, crawling on the luminal side of endothelial cells, but their general recirculation pattern and the mechanism of their intravascular behavior have not been elucidated. Using parabiotic mice, we demonstrated that, despite their intravascular location, most liver NKT cells failed to recirculate. Antibody blocking experiments established that they were retained locally through constitutive LFA-1–intercellular adhesion molecule (ICAM) 1 interactions. This unprecedented lifelong intravascular residence could be induced in conventional CD4 T cells by the sole expression of promyelocytic leukemia zinc finger (PLZF), a transcription factor specifically expressed in the NKT lineage. These findings reveal the unique genetic and biochemical pathway that underlies the innate intravascular surveillance program of NKT cells.
Collapse
Affiliation(s)
- Seddon Y Thomas
- Committee on Immunology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Second messenger molecules relay, amplify, and diversify cell surface receptor signals. Two important examples are phosphorylated D-myo-inositol derivatives, such as phosphoinositide lipids within cellular membranes, and soluble inositol phosphates. Here, we review how phosphoinositide metabolism generates multiple second messengers with important roles in T-cell development and function. They include soluble inositol(1,4,5)trisphosphate, long known for its Ca(2+)-mobilizing function, and phosphatidylinositol(3,4,5)trisphosphate, whose generation by phosphoinositide 3-kinase and turnover by the phosphatases PTEN and SHIP control a key "hub" of TCR signaling. More recent studies unveiled important second messenger functions for diacylglycerol, phosphatidic acid, and soluble inositol(1,3,4,5)tetrakisphosphate (IP(4)) in immune cells. Inositol(1,3,4,5)tetrakisphosphate acts as a soluble phosphatidylinositol(3,4,5)trisphosphate analog to control protein membrane recruitment. We propose that phosphoinositide lipids and soluble inositol phosphates (IPs) can act as complementary partners whose interplay could have broadly important roles in cellular signaling.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
36
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
37
|
Xia M, Qi Q, Jin Y, Wiest DL, August A, Xiong N. Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6807-14. [PMID: 20483745 DOI: 10.4049/jimmunol.1000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-specific innate-like gammadelta T cells are important components of the immune system critical for the first line of defense, but mechanisms underlying their tissue-specific development are poorly understood. Our study with prototypical skin-specific intraepithelial gammadeltaT lymphocytes (sIELs) found that among different thymic gammadelta T cell subsets fetal thymic precursors of sIELs specifically acquire a unique skin-homing property after positive selection, suggesting an important role of the TCR selection signaling in "programming" them for tissue-specific development. In this study, we identified IL-2-inducible T cell kinase (ITK) as a critical signal molecule regulating the acquirement of the skin-homing property by the fetal thymic sIEL precursors. In ITK knockout mice, the sIEL precursors could not undergo positive selection-associated upregulation of thymus-exiting and skin-homing molecules sphingosine-1-phosphate receptor 1 and CCR10 and accumulated in the thymus. However, the survival and expansion of sIELs in the skin did not require ITK-transduced TCR signaling, whereas its persistent activation impaired sIEL development by inducing apoptosis. These findings provide insights into molecular mechanisms underlying differential requirements of TCR signaling in peripheral localization and maintenance of the tissue-specific T cells.
Collapse
Affiliation(s)
- Mingcan Xia
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
38
|
E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin alphaLbeta2-mediated slow leukocyte rolling. Blood 2010; 116:485-94. [PMID: 20299514 DOI: 10.1182/blood-2009-12-259556] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.
Collapse
|
39
|
Ebert AD, Laussmann M, Wegehingel S, Kaderali L, Erfle H, Reichert J, Lechner J, Beer HD, Pepperkok R, Nickel W. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic 2010; 11:813-26. [PMID: 20230531 DOI: 10.1111/j.1600-0854.2010.01059.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.
Collapse
Affiliation(s)
- Antje D Ebert
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schmidt U, Abramova A, Boucheron N, Eckelhart E, Schebesta A, Bilic I, Kneidinger M, Unger B, Hammer M, Sibilia M, Valent P, Ellmeier W. The protein tyrosine kinase Tec regulates mast cell function. Eur J Immunol 2010; 39:3228-38. [PMID: 19688741 DOI: 10.1002/eji.200838839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mast cells play crucial roles in a variety of normal and pathophysiological processes and their activation has to be tightly controlled. Here, we demonstrate that the protein tyrosine kinase Tec is a crucial regulator of murine mast cell function. Tec was activated upon Fc epsilon RI stimulation of BM-derived mast cells (BMMC). The release of histamine in the absence of Tec was normal in vitro and in vivo; however, leukotriene C(4) levels were reduced in Tec(-) (/) (-) BMMC. Furthermore, the production of IL-4 was severely impaired, and GM-CSF, TNF-alpha and IL-13 levels were also diminished. Finally, a comparison of WT, Tec(-) (/) (-), Btk(-) (/) (-) and Tec(-) (/) (-)Btk(-) (/) (-) BMMC revealed a negative role for Btk in the regulation of IL-4 production, while for the efficient production of TNF-alpha, IL-13 and GM-CSF, both Tec and Btk were required. Our results demonstrate a crucial role for Tec in mast cells, which is partially different to the function of the well-characterized family member Btk.
Collapse
Affiliation(s)
- Uwe Schmidt
- Division of Immunobiology, Institute of Immunology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gomez-Rodriguez J, Sahu N, Handon R, Davidson TS, Anderson SM, Kirby MR, August A, Schwartzberg PL. Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 2009; 31:587-97. [PMID: 19818650 DOI: 10.1016/j.immuni.2009.07.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/11/2009] [Accepted: 07/15/2009] [Indexed: 01/29/2023]
Abstract
T helper 17 (Th17) cells play major roles in autoimmunity and bacterial infections, yet how T cell receptor (TCR) signaling affects Th17 cell differentiation is relatively unknown. We demonstrate that CD4(+) T cells lacking Itk, a tyrosine kinase required for full TCR-induced phospholipase C-gamma (PLC-gamma1) activation, exhibit decreased interleukin-17A (IL-17A) expression in vitro and in vivo, despite relatively normal expression of retinoic acid receptor-related orphan receptor-gammaT (ROR-gammaT) and IL-17F. IL-17A expression was rescued by pharmacologically induced Ca(2+) influx or constitutively activated nuclear factor of activated T cells (NFAT). Conversely, decreased TCR stimulation or calcineurin inhibition preferentially reduced IL-17A expression. We further found that the promoter of Il17a but not Il17f has a conserved NFAT binding site that bound NFATc1 in wild-type but not Itk-deficient cells, even though both exhibited open chromatin conformations. Finally, Itk(-/-) mice also showed differential regulation of IL-17A and IL-17F in vivo. Our results suggest that Itk specifically couples TCR signaling to Il17a expression and the differential regulation of Th17 cell cytokines through NFATc1.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Horn J, Wang X, Reichardt P, Stradal TE, Warnecke N, Simeoni L, Gunzer M, Yablonski D, Schraven B, Kliche S. Src homology 2-domain containing leukocyte-specific phosphoprotein of 76 kDa is mandatory for TCR-mediated inside-out signaling, but dispensable for CXCR4-mediated LFA-1 activation, adhesion, and migration of T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5756-67. [PMID: 19812192 DOI: 10.4049/jimmunol.0900649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.
Collapse
Affiliation(s)
- Jessica Horn
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kogina K, Shoda H, Yamaguchi Y, Tsuno NH, Takahashi K, Fujio K, Yamamoto K. Tacrolimus differentially regulates the proliferation of conventional and regulatory CD4(+) T cells. Mol Cells 2009; 28:125-30. [PMID: 19714314 DOI: 10.1007/s10059-009-0114-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/02/2009] [Indexed: 01/09/2023] Open
Abstract
Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on CD4(+) T cells have yet to be elucidated. This study investigated the effects of tacrolimus on CD4(+) T cell subsets. Mouse or human CD4(+) T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of CD4(+) T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional CD4(+) T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory CD4(+) T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.
Collapse
Affiliation(s)
- Kazue Kogina
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Miletic AV, Graham DB, Sakata-Sogawa K, Hiroshima M, Hamann MJ, Cemerski S, Kloeppel T, Billadeau DD, Kanagawa O, Tokunaga M, Swat W. Vav links the T cell antigen receptor to the actin cytoskeleton and T cell activation independently of intrinsic Guanine nucleotide exchange activity. PLoS One 2009; 4:e6599. [PMID: 19672294 PMCID: PMC2719804 DOI: 10.1371/journal.pone.0006599] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/09/2009] [Indexed: 12/19/2022] Open
Abstract
Background T cell receptor (TCR) engagement leads to formation of signaling microclusters and induction of rapid and dynamic changes in the actin cytoskeleton, although the exact mechanism by which the TCR initiates actin polymerization is incompletely understood. The Vav family of guanine nucleotide exchange factors (GEF) has been implicated in generation of TCR signals and immune synapse formation, however, it is currently not known if Vav's GEF activity is required in T cell activation by the TCR in general, and in actin polymerization downstream of the TCR in particular. Methodology/Principal Findings Here, we report that Vav1 assembles into signaling microclusters at TCR contact sites and is critical for TCR-initiated actin polymerization. Surprisingly, Vav1 functions in TCR signaling and Ca++ mobilization via a mechanism that does not appear to strictly depend on the intrinsic GEF activity. Conclusions/Significance We propose here a model in which Vav functions primarily as a tyrosine phosphorylated linker-protein for TCR activation of T cells. Our results indicate that, contrary to expectations based on previously published studies including from our own laboratory, pharmacological inhibition of Vav1's intrinsic GEF activity may not be an effective strategy for T cell-directed immunosuppressive therapy.
Collapse
Affiliation(s)
- Ana V. Miletic
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Daniel B. Graham
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Kumiko Sakata-Sogawa
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Michio Hiroshima
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Michael J. Hamann
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Saso Cemerski
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Tracie Kloeppel
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
| | - Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Osami Kanagawa
- Laboratory for Autoimmune Regulation, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Makio Tokunaga
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Wojciech Swat
- Department of Pathology and Immunology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
Rigby S, Huang Y, Streubel B, Chott A, Du MQ, Turner SD, Bacon CM. The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation. J Biol Chem 2009; 284:26871-81. [PMID: 19535334 DOI: 10.1074/jbc.m109.034272] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ITK-SYK, a novel fusion tyrosine kinase (FTK) resulting from a recurrent t(5;9)(q33;q22), was recently identified in a poorly understood subset of peripheral T-cell lymphomas. However, the biochemical and functional properties of ITK-SYK are unknown. Here we demonstrate that ITK-SYK is a catalytically active tyrosine kinase that is sensitive to an established inhibitor of SYK. The expression of ITK-SYK, but not SYK, transformed NIH3T3 cells, inducing loss of contact inhibition and formation of anchorage-independent colonies in soft agar, in a kinase activity-dependent manner. ITK-SYK is unusual among FTKs in having an N-terminal phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology (PH) domain. Introduction of a well characterized loss-of-function mutation (R29C) into the PH domain of ITK-SYK inhibited its phosphorylation, markedly reduced its catalytic activity, and abrogated its ability to activate the ERK signaling pathway and to transform NIH3T3 cells. Although ITK-SYK was membrane-associated, ITK-SYK-R29C was not. However, each of these properties could be recovered by retargeting ITK-SYK-R29C back to the plasma membrane by the addition of an N-terminal myristylation sequence. Consistent with a model in which ITK-SYK requires PH domain-mediated binding to phosphatidylinositol 3,4,5-trisphosphate generated by phosphatidylinositol 3-kinase (PI3K), ITK-SYK activity was reduced by pharmacological inhibition of PI3K and increased by co-expression with a constitutively active form of PI3K. Together, these findings identify ITK-SYK as an active, transforming FTK dependent upon PH domain-mediated membrane localization, identify a novel mechanism for activation of an oncogenic FTK, and suggest ITK-SYK as a rational therapeutic target for t(5;9)(q33;q22)-positive lymphomas.
Collapse
Affiliation(s)
- Sue Rigby
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Blomberg KEM, Boucheron N, Lindvall JM, Yu L, Raberger J, Berglöf A, Ellmeier W, Smith CE. Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics 2009; 10:233. [PMID: 19450280 PMCID: PMC2689280 DOI: 10.1186/1471-2164-10-233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. RESULTS The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. CONCLUSION Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Collapse
Affiliation(s)
- K Emelie M Blomberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | | |
Collapse
|
48
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Stimulation of the T-cell antigen receptor (TCR) leads to the activation of signaling pathways that are essential for T-cell development and the response of mature T cells to antigens. The TCR has no intrinsic catalytic activity, but TCR engagement results in tyrosine phosphorylation of downstream targets by non-receptor tyrosine kinases. Three families of tyrosine kinases have long been recognized to play critical roles in TCR-dependent signaling. They are the Src, zeta-associated protein of 70 kDa, and Tec families of kinases. More recently, the Abelson (Abl) tyrosine kinases have been shown to be activated by TCR engagement and to be required for maximal TCR signaling. Using T-cell conditional knockout mice deficient for Abl family kinases, Abl (Abl1) and Abl-related gene (Arg) (Abl2), it was recently shown that loss of Abl kinases results in defective T-cell development and a partial block in the transition to the CD4(+)CD8(+) stage. Abl/Arg double null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Moreover, conditional knockout mice lacking Abl and Arg in T cells exhibit impaired CD8(+) T-cell expansion in vivo upon Listeria monocytogenes infection. Thus, Abl kinase signaling is required for both T-cell development and mature T-cell function.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
50
|
Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 2009; 228:93-114. [PMID: 19290923 DOI: 10.1111/j.1600-065x.2008.00757.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.
Collapse
Affiliation(s)
- Julie A Readinger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|