1
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
3
|
Draveny M, Ghali A, Nüsse O. [The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of Helicobacter pylori in neutrophilic granulocytes]. Med Sci (Paris) 2021; 37:403-405. [PMID: 33908861 DOI: 10.1051/medsci/2021042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Margot Draveny
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Assmaa Ghali
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Oliver Nüsse
- Institut de chimie physique, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
4
|
Abstract
Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils eliminate microbes.
Collapse
Affiliation(s)
- Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine and Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- VA Healthcare System, Iowa City, IA, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
5
|
The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils. mBio 2020; 11:mBio.03256-19. [PMID: 32019805 PMCID: PMC7002351 DOI: 10.1128/mbio.03256-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori, and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori-CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology. The cag type IV secretion system (cag-T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori, via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology.
Collapse
|
6
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Allen LAH, Criss AK. Cell intrinsic functions of neutrophils and their manipulation by pathogens. Curr Opin Immunol 2019; 60:124-129. [PMID: 31302568 DOI: 10.1016/j.coi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are a crucial first line of defense against infection, migrating rapidly into tissues where they deploy granule components and toxic oxidants for efficient phagocytosis and microbe killing. Subsequent apoptosis and clearance of dying neutrophils are essential for control of infection and resolution of the inflammatory response. A subset of microbial pathogens survive exposure to neutrophils by manipulating phagocytosis, phagosome-granule fusion, oxidant production, and lifespan. Elucidating how they accomplish this unusual feat provides new insights into normal neutrophil function. In this review, we highlight recent discoveries about the ways in which neutrophils use cell-intrinsic mechanisms to control infection, and how these defenses are subverted by pathogens.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Microbiology and Immunology and Department of Medicine, University of Iowa, Iowa City, IA 52242, United States; The Iowa City VA Health Care System, Iowa City, IA 52246, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0734, United States.
| |
Collapse
|
8
|
Ren WK, Xu YF, Wei WH, Huang P, Lian DW, Fu LJ, Yang XF, Chen FJ, Wang J, Cao HY, Deng YH. Effect of patchouli alcohol on Helicobacter pylori-induced neutrophil recruitment and activation. Int Immunopharmacol 2018; 68:7-16. [PMID: 30599446 DOI: 10.1016/j.intimp.2018.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
Abstract
Neutrophil infiltration typically occurs in Helicobacter pylori (H. pylori)-induced acute gastritis; however, this immune response fails to eradicate H. pylori in vivo. Moreover, reactive oxygen species (ROS), which are generated by neutrophils, cause severe damage to gastric mucosa. Patchouli alcohol (PA) has been reported to have effective anti-oxidative and anti-H. pylori activities, and we investigated its effects on H. pylori-induced neutrophil recruitment and activation in this research. In neutrophil recruitment experiment, H. pylori was injected into rat air pouch to explore the effects of PA (10, 20 and 40 mg/kg) on acute inflammatory response. The results revealed that PA significantly reduced the weight of exudate and the number of neutrophils in the air pouch. Meanwhile, remarkable decrements in TNF-α and IL-8 levels in exudates were observed. In neutrophil activation experiment, rat neutrophils were isolated and activated by using 50 μg/mL H. pylori water-soluble surface protein with or without the treatment of PA (5, 10 or 20 μmol/L). Results indicated that PA not only significantly inhibited the production of ROS, but also reduced the gene and protein expressions of p22/p47-phoxes, and the binding of p22/p47-phoxes. Furthermore, the influence of PA on the neutrophil activation genes of H. pylori (h-nap and sabA) was investigated, and the results showed that expressions of h-nap and sabA were remarkably decreased after PA treatment. In conclusion, PA reduced the recruitment and activation of neutrophils induced by H. pylori, as shown by its inhibition of pro-inflammatory factor generation, p22/p47-phoxes function and H. pylori neutrophil activation-related gene expression.
Collapse
Affiliation(s)
- Wen-Kang Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yi-Fei Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wen-Hui Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan 523808, PR China
| | - Da-Wei Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Li-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xu-Feng Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fang-Jun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Hong-Ying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yuan-Hui Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Edmisson JS, Tian S, Armstrong CL, Vashishta A, Klaes CK, Miralda I, Jimenez-Flores E, Le J, Wang Q, Lamont RJ, Uriarte SM. Filifactor alocis modulates human neutrophil antimicrobial functional responses. Cell Microbiol 2018; 20:e12829. [PMID: 29377528 PMCID: PMC5980721 DOI: 10.1111/cmi.12829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
Filifactor alocis is a newly appreciated pathogen in periodontal diseases. Neutrophils are the predominant innate immune cell in the gingival crevice. In this study, we examined modulation of human neutrophil antimicrobial functions by F. alocis. Both non-opsonised and serum-opsonised F. alocis were engulfed by neutrophils but were not efficiently eliminated. Challenge of neutrophils with either non-opsonised or serum-opsonised F. alocis induced a minimal intracellular as well as extracellular respiratory burst response compared to opsonised Staphylococcus aureus and fMLF, respectively. However, pretreatment or simultaneous challenge of neutrophils with F. alocis did not affect the subsequent oxidative response to a particulate stimulus, suggesting that the inability to trigger the respiratory response was only localised to F. alocis phagosomes. In addition, although neutrophils engulfed live or heat-killed F. alocis with the same efficiency, heat-killed F. alocis elicited a higher intracellular respiratory burst response compared to viable organisms, along with decreased surface expression of CD35, a marker of secretory vesicles. F. alocis phagosomes remained immature by delayed and reduced recruitment of specific and azurophil granules, respectively. These results suggest that F. alocis withstands neutrophil antimicrobial responses by preventing intracellular ROS production, along with specific and azurophil granule recruitment to the bacterial phagosome.
Collapse
Affiliation(s)
- Jacob S. Edmisson
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shifu Tian
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cortney L. Armstrong
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Christopher K. Klaes
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Irina Miralda
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Emeri Jimenez-Flores
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Junyi Le
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M. Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
10
|
In-vivo evaluation of apocynin for prevention of Helicobacter pylori-induced gastric carcinogenesis. Eur J Cancer Prev 2018; 26:10-16. [PMID: 26938501 DOI: 10.1097/cej.0000000000000233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The emergence of antibiotic-resistant Helicobacter pylori strains impacts the efficacy of eradication therapy and promotes the development of alternative treatment strategies. Apocynin inhibits neutrophil NADPH oxidase and hence may decrease reactive oxygen species-mediated tissue damage in H. pylori-infected stomach tissue. Apocynin was tested in vitro for its cytotoxic and direct antibacterial effects. The therapeutic efficacy of orally administered apocynin (100 mg/kg/day through drinking water or 200 mg/kg/day through combined administration of drinking water and slow-release formulation) was assessed at 9 weeks after infection in the Mongolian gerbil model. Bacterial burdens were quantified by viable plate count and quantitative PCR. Histopathological evaluation of antrum and pylorus provided insight into mucosal inflammation and injury. Apocynin showed no cytotoxic or direct antibacterial effects in vitro or in vivo. Nine weeks of apocynin treatment at 200 mg/kg/day reduced active H. pylori gastritis as neutrophil infiltration in the mucous neck region and pit abscess formation decreased significantly. In our gerbil model, prolonged high-dose apocynin treatment significantly improved H. pylori-induced pit abscess formation without indications of drug toxicity and thus further investigation of the dosage regimen and formulation and the long-term impact on neoplastic development should be carried out.
Collapse
|
11
|
Skyberg JA, Lacey CA. Hematopoietic MyD88 and IL-18 are essential for IFN-γ-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 2017; 102:1441-1450. [PMID: 28951422 DOI: 10.1189/jlb.4a0517-179r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the potentially fatal disease tularemia. We used mice with conditional MyD88 deficiencies to investigate cellular and molecular mechanisms by which MyD88 restricts type A F. tularensis infection. F. tularensis-induced weight loss was predominately dependent on MyD88 signaling in nonhematopoietic cells. In contrast, MyD88 signaling in hematopoietic cells, but not in myeloid and dendritic cells, was essential for control of F. tularensis infection in tissue. Myeloid and dendritic cell MyD88 deficiency also did not markedly impair cytokine production during infection. Although the production of IL-12 or -18 was not significantly reduced in hematopoietic MyD88-deficient mice, IFN-γ production was abolished in these animals. In addition, neutralization studies revealed that control of F. tularensis infection mediated by hematopoietic MyD88 was entirely dependent on IFN-γ. Although IL-18 production was not significantly affected by MyD88 deficiency, IL-18 was essential for IFN-γ production and restricted bacterial replication in an IFN-γ-dependent manner. Caspase-1 was also found to be partially necessary for the production of IL-18 and IFN-γ and for control of F. tularensis replication. Our collective data show that the response of leukocytes to caspase-1-dependent IL-18 via MyD88 is critical, whereas MyD88 signaling in myeloid and dendritic cells is dispensable for IFN-γ-dependent control of type A F. tularensis infection.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and .,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and.,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Kinkead LC, Allen LAH. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 2016; 273:266-81. [PMID: 27558340 PMCID: PMC5000853 DOI: 10.1111/imr.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of bacteria-neutrophil interactions have only recently been studied in detail. Herein, we review current understanding regarding the mechanisms that recruit neutrophils to F. tularensis-infected lungs, opsonization and phagocytosis, evasion and inhibition of neutrophil defense mechanisms, as well as the ability of F. tularensis to prolong neutrophil lifespan. In addition, we discuss distinctive features of the bacterium, including its ability to act at a distance to alter overall neutrophil responsiveness to exogenous stimuli, and the evidence which suggests that macrophages and neutrophils play distinct roles in tularemia pathogenesis, such that macrophages are major vehicles for intracellular growth and dissemination, whereas neutrophils drive tissue destruction by dysregulation of the inflammatory response.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa Iowa City, IA 52242
- VA Medical Center, Iowa City, IA 52242
| |
Collapse
|
13
|
Ozanic M, Gobin I, Brezovec M, Marecic V, Trobonjaca Z, Abu Kwaik Y, Santic M. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice. Front Cell Infect Microbiol 2016; 6:56. [PMID: 27242974 PMCID: PMC4870235 DOI: 10.3389/fcimb.2016.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia.
Collapse
Affiliation(s)
- Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Martin Brezovec
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Zlatko Trobonjaca
- Department of Physiology and Immunology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of LouisvilleLouisville, KY, USA
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| |
Collapse
|
14
|
Rabadi SM, Sanchez BC, Varanat M, Ma Z, Catlett SV, Melendez JA, Malik M, Bakshi CS. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines. J Biol Chem 2015; 291:5009-21. [PMID: 26644475 DOI: 10.1074/jbc.m115.681478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.
Collapse
Affiliation(s)
- Seham M Rabadi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Belkys C Sanchez
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Mrudula Varanat
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Zhuo Ma
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Sally V Catlett
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Juan Andres Melendez
- the Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203
| | - Meenakshi Malik
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Chandra Shekhar Bakshi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595,
| |
Collapse
|
15
|
Ma Z, Banik S, Rane H, Mora VT, Rabadi SM, Doyle CR, Thanassi DG, Bakshi CS, Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol Microbiol 2014; 91:976-95. [PMID: 24397487 DOI: 10.1111/mmi.12509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant-sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild-type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox(-/-)) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox(-/-) mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Francisella tularensis intracellular survival: to eat or to die. Microbes Infect 2013; 15:989-997. [PMID: 24513705 DOI: 10.1016/j.micinf.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.
Collapse
|
17
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
18
|
Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect Immun 2013; 81:3099-105. [PMID: 23774604 DOI: 10.1128/iai.00203-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.
Collapse
|
19
|
Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol 2013; 94:657-70. [PMID: 23610146 DOI: 10.1189/jlb.1012544] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the phagocytosis field, ROS production by the phagocyte NOX has been associated with pathogen killing for the last 50 years. Since the discovery of nonphagocyte NOX, numerous other roles for ROS production have been identified. Oxidative stress and ROS-mediated signaling have received much attention in recent years. Much lower concentrations of ROS may be required for signaling compared with microbial killing. Based on the discoveries in nonphagocytic cells, it became logical to look for ROS functions distinct from pathogen killing, even in phagocytes. ROS are now linked to various forms of cell death, to chemotaxis, and to numerous modifications of cellular processes, including the NOX itself. ROS functions are clearly concentration-dependent over a wide range of concentrations. How much is required for which function? Which species are required for how much time? Is ROS signaling only a side effect of bactericidal ROS production? One major obstacle to answer these questions is the difficulty of reliable quantitative ROS detection. Signal transduction often takes place on a subcellular scale over periods of seconds or minutes, so the detection methods need to provide appropriate time and space resolution. We present examples of local ROS production, decreased degradation, signaling events, and potentially ROS-sensitive functions. We attempt to illustrate the current limitations for quantitative spatiotemporal ROS detection and point out directions for ongoing development. Probes for localized ROS detection and for combined detection of ROS, together with protein localization or other cellular parameters, are constantly improved.
Collapse
|
20
|
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a010314. [PMID: 23545572 DOI: 10.1101/cshperspect.a010314] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a zoonotic intracellular pathogen and the causative agent of the debilitating febrile illness tularemia. Although natural infections by F. tularensis are sporadic and generally localized, the low infectious dose, with the ability to be transmitted to humans via multiple routes and the potential to cause life-threatening infections, has led to concerns that this bacterium could be used as an agent of bioterror and released intentionally into the environment. Recent studies of F. tularensis and other closely related Francisella species have greatly increased our understanding of mechanisms used by this organism to infect and cause disease within the host. Here, we review the intracellular life cycle of Francisella and highlight key genetic determinants and/or pathways that contribute to the survival and proliferation of this bacterium within host cells.
Collapse
Affiliation(s)
- Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | | |
Collapse
|
21
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
22
|
Moradin N, Descoteaux A. Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2012; 2:121. [PMID: 23050244 PMCID: PMC3445913 DOI: 10.3389/fcimb.2012.00121] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/04/2012] [Indexed: 12/16/2022] Open
Abstract
Upon their internalization by macrophages, Leishmania promastigotes inhibit phagolysosome biogenesis. The main factor responsible for this inhibition is the promastigote surface glycolipid lipophosphoglycan (LPG). This glycolipid has a profound impact on the phagosome, causing periphagosomal accumulation of F-actin and disruption of phagosomal lipid microdomains. Functionally, this LPG-mediated inhibition of phagosome maturation is characterized by an impaired assembly of the NADPH oxidase and the exclusion of the vesicular proton-ATPase from phagosomes. In this chapter, we review the current knowledge concerning the nature of the intra-macrophage compartment in which Leishmania donovani promastigotes establish infection. We also describe how LPG enables this parasite to remodel the parasitophorous vacuole.
Collapse
Affiliation(s)
- Neda Moradin
- INRS - Institut Armand-Frappier and Center for Host-Parasite Interactions Laval, QC, Canada
| | | |
Collapse
|
23
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zarember KA, Marshall-Batty KR, Cruz AR, Chu J, Fenster ME, Shoffner AR, Rogge LS, Whitney AR, Czapiga M, Song HH, Shaw PA, Nagashima K, Malech HL, DeLeo FR, Holland SM, Gallin JI, Greenberg DE. Innate immunity against Granulibacter bethesdensis, an emerging gram-negative bacterial pathogen. Infect Immun 2012; 80:975-81. [PMID: 22184421 PMCID: PMC3294668 DOI: 10.1128/iai.05557-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/29/2011] [Indexed: 12/17/2022] Open
Abstract
Acetic acid bacteria were previously considered nonpathogenic in humans. However, over the past decade, five genera of Acetobacteraceae have been isolated from patients with inborn or iatrogenic immunodeficiencies. Here, we describe the first studies of the interactions of the human innate immune system with a member of this bacterial family, Granulibacter bethesdensis, an emerging pathogen in patients with chronic granulomatous disease (CGD). Efficient phagocytosis of G. bethesdensis by normal and CGD polymorphonuclear leukocytes (CGD PMN) required heat-labile serum components (e.g., C3), and binding of C3 and C9 to G. bethesdensis was detected by immunoblotting. However, this organism survived in human serum concentrations of ≥90%, indicating a high degree of serum resistance. Consistent with the clinical host tropism of G. bethesdensis, CGD PMN were unable to kill this organism, while normal PMN, in the presence of serum, reduced the number of CFU by about 50% after a 24-h coculture. This finding, together with the observations that G. bethesdensis was sensitive to H(2)O(2) but resistant to LL-37, a human cationic antimicrobial peptide, suggests an inherent resistance to O(2)-independent killing. Interestingly, 10 to 100 times greater numbers of G. bethesdensis were required to achieve the same level of reactive oxygen species (ROS) production induced by Escherichia coli in normal PMN. In addition to the relative inability of the organism to elicit production of PMN ROS, G. bethesdensis inhibited both constitutive and FAS-induced PMN apoptosis. These properties of reduced PMN activation and resistance to nonoxidative killing mechanisms likely play an important role in G. bethesdensis pathogenesis.
Collapse
Affiliation(s)
- Kol A. Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly R. Marshall-Batty
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anna R. Cruz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Chu
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael E. Fenster
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - Adam R. Shoffner
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - Larissa S. Rogge
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adeline R. Whitney
- Laboratory of Human Bacterial Pathogenesis, NIAID/NIH, Hamilton, Montana, USA
| | - Meggan Czapiga
- Research Technologies Branch, NIAID/NIH, Bethesda, Maryland, USA
| | - Helen H. Song
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela A. Shaw
- Biostatistics Research Branch, NIAID/NIH, Bethesda, Maryland, USA
| | | | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, NIAID/NIH, Hamilton, Montana, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - John I. Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David E. Greenberg
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
- Research Technologies Branch, NIAID/NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Nüsse O. Biochemistry of the phagosome: the challenge to study a transient organelle. ScientificWorldJournal 2011; 11:2364-81. [PMID: 22194668 PMCID: PMC3236389 DOI: 10.1100/2011/741046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Phagocytes are specialized cells of the immune system, designed to engulf and destroy harmful microorganisms inside the newly formed phagosome. The latter is an intracellular organelle that is transformed into a toxic environment within minutes and disappears once the pathogen is destroyed. Reactive oxygen species and reactive nitrogen species are produced inside the phagosome. Intracellular granules or lysosomes of the phagocyte fuse with the phagosome and liberate their destructive enzymes. This process of phagocytosis efficiently protects against most infections; however, some microorganisms avoid their destruction and cause severe damage. To understand such failure of phagosomal killing, we need to learn more about the actual destruction process in the phagosome. This paper summarizes methods to investigate the biochemistry of the phagosome and discusses some of their limitations. In accordance with the nature of the phagosome, the issue of localization and temporal dynamics is emphasized, and recent developments are highlighted.
Collapse
Affiliation(s)
- Oliver Nüsse
- Département de Biologie, Université Paris-Sud, Bâtiment 443, rue des Adeles, 91405 Orsay, France.
| |
Collapse
|
26
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
27
|
Borlace GN, Jones HF, Keep SJ, Butler RN, Brooks DA. Helicobacter pylori phagosome maturation in primary human macrophages. Gut Pathog 2011; 3:3. [PMID: 21426584 PMCID: PMC3071326 DOI: 10.1186/1757-4749-3-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/23/2011] [Indexed: 01/18/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a micro-aerophilic, spiral-shaped, motile bacterium that is the principal cause of gastric and duodenal ulcers in humans and is a major risk factor for the development of gastric cancer. Despite provoking a strong innate and adaptive immune response in the host, H. pylori persists in the gastric mucosa, avoiding eradication by macrophages and other phagocytic cells, which are recruited to the site of infection. Here we have characterised the critical degradative process of phagosome maturation in primary human macrophages for five genotypically and phenotypically distinct clinical strains of H. pylori. Results All of the H. pylori strains examined showed some disruption to the phagosome maturation process, when compared to control E. coli. The early endosome marker EEA1 and late endosome marker Rab7 were retained on H. pylori phagosomes, while the late endosome-lysosome markers CD63, LAMP-1 and LAMP-2 were acquired in an apparently normal manner. Acquisition of EEA1 by H. pylori phagosomes appeared to occur by two distinct, strain specific modes. H. pylori strains that were negative for the cancer associated virulence factor CagA were detected in phagosomes that recruited large amounts of EEA1 relative to Rab5, compared to CagA positive strains. There were also strain specific differences in the timing of Rab7 acquisition which correlated with differences in the rate of intracellular trafficking of phagosomes and the timing of megasome formation. Megasomes were observed for all of the H. pylori strains examined. Conclusions H. pylori appeared to disrupt the normal process of phagosome maturation in primary human macrophages, appearing to block endosome fission. This resulted in the formation of a hybrid phagosome-endosome-lysosome compartment, which we propose has reduced degradative capacity. Reduced killing by phagocytes is consistent with the persistence of H. pylori in the host, and would contribute to the chronic stimulation of the inflammatory immune response, which underlies H. pylori-associated disease.
Collapse
Affiliation(s)
- Glenn N Borlace
- Mechanisms in Cell Biology and Disease Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia.
| | | | | | | | | |
Collapse
|
28
|
Tlili A, Dupré-Crochet S, Erard M, Nüsse O. Kinetic analysis of phagosomal production of reactive oxygen species. Free Radic Biol Med 2011; 50:438-47. [PMID: 21111807 DOI: 10.1016/j.freeradbiomed.2010.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 01/23/2023]
Abstract
Phagocytes produce large quantities of reactive oxygen species for pathogen killing; however, the kinetics and amplitude of ROS production on the level of individual phagosomes are poorly understood. This is mainly due to the lack of appropriate methods for quantitative ROS detection with microscopic resolution. We covalently attached the ROS-sensitive dye dichlorodihydrofluorescein (DCFH(2)) to yeast particles and investigated their fluorescence due to oxidation in vitro and in live phagocytes. In vitro, the dye was oxidized by H(2)O(2) plus horseradish peroxidase but also by HOCl. The latter produced a previously unrecognized oxidation product with red-shifted excitation and emission spectra and a characteristic difference in the shape of the excitation spectrum near 480 nm. Millimolar HOCl bleached the DCFH(2) oxidation products. Inside phagosomes, DCFH(2)-labeled yeast were oxidized for several minutes in a strictly NADPH oxidase-dependent manner as shown by video microscopy. Inhibition of the NADPH oxidase rapidly stopped the fluorescence increase of the particles. At least two characteristic kinetics of oxidation were distinguished and the variability of DCFH(2) oxidation in phagosomes was much larger than the variability upon oxidation in vitro. We conclude that DCFH(2)-yeast is a valuable tool to investigate the kinetics and amplitude of ROS production in individual phagosomes.
Collapse
|
29
|
KuoLee R, Harris G, Conlan JW, Chen W. Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice. Microbes Infect 2011; 13:447-56. [PMID: 21277990 DOI: 10.1016/j.micinf.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 02/04/2023]
Abstract
Francisella tularensis subspecies (subsp.) tularensis is a CDC Category A biological warfare agent and inhalation of as few as 15 bacilli can initiate severe disease. Relatively little is known about the cellular and molecular mechanisms of host defense against respiratory infection with subsp. tularensis. In this study, we examined the role of neutrophils and NADPH phagocyte oxidase in host resistance to pulmonary infection in a mouse intranasal infection model. We found that despite neutrophil recruitment to the lungs and increased concentrations of neutrophil-chemotactic chemokines (KC, MIP-2 and RANTES) in the bronchoalveolar lavage fluid following intranasal inoculation of the pathogen, neither depletion of neutrophils nor enhancement of their recruitment into the lungs had any impact on bacterial burdens or survival rate/time. Nevertheless, mice deficient in NADPH phagocyte oxidase (gp91(phox⁻/⁻)) did exhibit higher tissue and blood bacterial burdens and succumbed to infection one day earlier than wild-type C57BL/6 mice. These results imply that although neutrophils are not a major effector cell in defense against subsp. tularensis infection, NADPH phagocyte oxidase does play a marginal role.
Collapse
Affiliation(s)
- Rhonda KuoLee
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A0R6, Canada
| | | | | | | |
Collapse
|
30
|
Gabriel C, McMaster WR, Girard D, Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. THE JOURNAL OF IMMUNOLOGY 2010; 185:4319-27. [PMID: 20826753 DOI: 10.4049/jimmunol.1000893] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Upon their recruitment to a site of infection and their subsequent activation, neutrophils release DNA and a subset of their granule content to form filamentous structures, known as neutrophil extracellular traps, which capture and kill microorganisms. In this study, we show that Leishmania promastigotes induced the rapid release of neutrophil extracellular traps from human neutrophils and were trapped by these structures. The use of Leishmania mutants defective in the biosynthesis of either lipophosphoglycan or GP63 revealed that these two major surface promastigote virulence determinants were not responsible for inducing the release of the surface protease neutrophil extracellular traps. We also demonstrate that this induction was independent of superoxide production by neutrophils. Finally, in contrast to wild-type Leishmania donovani promastigotes, mutants defective in lipophosphoglycan biosynthesis were highly susceptible to the antimicrobial activity of neutrophil extracellular traps. Altogether, our data suggest that neutrophil extracellular traps may contribute to the containment of L. donovani promastigotes at the site of inoculation, thereby facilitating their uptake by mononuclear phagocytes.
Collapse
Affiliation(s)
- Christelle Gabriel
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Quebec, Canada
| | | | | | | |
Collapse
|
31
|
Lam GY, Huang J, Brumell JH. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 2010; 32:415-30. [DOI: 10.1007/s00281-010-0221-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/08/2010] [Indexed: 12/27/2022]
|
32
|
Miller JL, Velmurugan K, Cowan MJ, Briken V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 2010; 6:e1000864. [PMID: 20421951 PMCID: PMC2858756 DOI: 10.1371/journal.ppat.1000864] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/18/2010] [Indexed: 01/01/2023] Open
Abstract
The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persisting, intracellular pathogens such as the human pathogen Mycobacterium tuberculosis (Mtb) to inhibit infection-induced apoptosis of macrophages is important for virulence. The nuoG gene of Mtb, which encodes the NuoG subunit of the type I NADH dehydrogenase, NDH-1, is important in Mtb-mediated inhibition of host macrophage apoptosis, but the molecular mechanism of this host pathogen interaction remains elusive. Here we show that the apoptogenic phenotype of MtbDeltanuoG was significantly reduced in human macrophages treated with caspase-3 and -8 inhibitors, TNF-alpha-neutralizing antibodies, and also after infection of murine TNF(-/-) macrophages. Interestingly, incubation of macrophages with inhibitors of reactive oxygen species (ROS) reduced not only the apoptosis induced by the nuoG mutant, but also its capacity to increase macrophage TNF-alpha secretion. The MtbDeltanuoG phagosomes showed increased ROS levels compared to Mtb phagosomes in primary murine and human alveolar macrophages. The increase in MtbDeltanuoG induced ROS and apoptosis was abolished in NOX-2 deficient (gp91(-/-)) macrophages. These results suggest that Mtb, via a NuoG-dependent mechanism, can neutralize NOX2-derived ROS in order to inhibit TNF-alpha-mediated host cell apoptosis. Consistently, an Mtb mutant deficient in secreted catalase induced increases in phagosomal ROS and host cell apoptosis, both of which were dependent upon macrophage NOX-2 activity. In conclusion, these results serendipitously reveal a novel connection between NOX2 activity, phagosomal ROS, and TNF-alpha signaling during infection-induced apoptosis in macrophages. Furthermore, our study reveals a novel function of NOX2 activity in innate immunity beyond the initial respiratory burst, which is the sensing of persistent intracellular pathogens and subsequent induction of host cell apoptosis as a second line of defense.
Collapse
Affiliation(s)
- Jessica L. Miller
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Kamalakannan Velmurugan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Mark J. Cowan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J, Guglani L, Alcorn JF, Strawbridge H, Park SM, Onishi R, Nyugen N, Walter MJ, Pociask D, Randall TD, Gaffen SL, Iwakura Y, Kolls JK, Khader SA. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 2009; 31:799-810. [PMID: 19853481 DOI: 10.1016/j.immuni.2009.08.025] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 02/06/2023]
Abstract
The importance of T helper type 1 (Th1) cell immunity in host resistance to the intracellular bacterium Francisella tularensis is well established. However, the relative roles of interleukin (IL)-12-Th1 and IL-23-Th17 cell responses in immunity to F. tularensis have not been studied. The IL-23-Th17 cell pathway is critical for protective immunity against extracellular bacterial infections. In contrast, the IL-23-Th17 cell pathway is dispensable for protection against intracellular pathogens such as Mycobacteria. Here we show that the IL-23-Th17 pathway regulates the IL-12-Th1 cell pathway and was required for protective immunity against F.tularensis live vaccine strain. We show that IL-17A, but not IL-17F or IL-22, induced IL-12 production in dendritic cells and mediated Th1 responses. Furthermore, we show that IL-17A also induced IL-12 and interferon-gamma production in macrophages and mediated bacterial killing. Together, these findings illustrate a biological function for IL-17A in regulating IL-12-Th1 cell immunity and host responses to an intracellular pathogen.
Collapse
Affiliation(s)
- Yinyao Lin
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Meibom KL, Barel M, Charbit A. Loops and networks in control of Francisella tularensis virulence. Future Microbiol 2009; 4:713-29. [PMID: 19659427 DOI: 10.2217/fmb.09.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a highly infectious, Gram-negative bacterium responsible for the disease tularemia in a broad variety of animals, including humans. F. tularensis intracellular multiplication occurs mainly in macrophages. However, F. tularensis is able to infect many other cell types, including other phagocytic (dendritic cells, polymorphonuclear leukocytes) and nonphagocytic (alveolar epithelial cells, hepatocytes, endothelial cells and fibroblasts) cells. The ability of professional phagocytic cells to engulf and kill microbes is an essential component of innate defense. The ability of F. tularensis to impair phagocyte function and survive in the cytosol of infected cells thus constitutes a central aspect of its virulence. The F. tularensis intracellular lifecycle relies on the tightly regulated expression of a series of genes. The unraveling secrets of the regulatory cascades governing the regulation of virulence of F. tularensis will be discussed along with future challenges yet to be solved.
Collapse
Affiliation(s)
- Karin L Meibom
- INSERM U570, Université Paris Descartes, Faculté de Médecine Necker Enfants-Malades, 75730, Paris Cedex 15, France.
| | | | | |
Collapse
|
35
|
Francisella tularensis induces extensive caspase-3 activation and apoptotic cell death in the tissues of infected mice. Infect Immun 2009; 77:4827-36. [PMID: 19703976 DOI: 10.1128/iai.00246-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Francisella tularensis subsp. tularensis is known to cause extensive tissue necrosis, the pathogenesis of tissue injury has not been elucidated. To characterize cell death in tularemia, C57BL/6 mice were challenged by the intranasal route with type A F. tularensis, and the pathological changes in infected tissues were characterized over the next 4 days. At 3 days postinfection, well-organized inflammatory infiltrates developed in the spleen and liver following the spread of infection from the lungs. By the next day, extensive cell death, characterized by the presence of pyknotic cells containing double-strand DNA breaks, was apparent throughout these inflammatory foci. Cell death was not mediated by activated caspase-1, as has been reported for cells infected with other Francisella subspecies. Mouse macrophages and dendritic cells that had been stimulated with type A F. tularensis did not release interleukin-18 in vitro, a response that requires the activation of procaspase-1. Dying cells within type A F. tularensis-infected tissues expressed activated caspase-3 but very little activated caspase-1. When caspase-1-deficient mice were challenged with type A F. tularensis, pathological changes, including extensive cell death, were similar to those seen in infected wild-type mice. In contrast, type A F. tularensis-infected caspase-3-deficient mice showed much less death among their F4/80+ spleen cells than did infected wild-type mice, and they retained the ability to express tumor necrosis factor alpha and inducible NO synthase. These findings suggest that type A F. tularensis induces caspase-3-dependent macrophage apoptosis, resulting in the loss of potentially important innate immune responses to the pathogen.
Collapse
|
36
|
Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species. J Bacteriol 2009; 191:6447-56. [PMID: 19684141 DOI: 10.1128/jb.00534-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O(2)(-)). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodC (DeltasodC) and a F. tularensis DeltasodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB DeltasodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-gamma)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis DeltasodC and sodB DeltasodC mutants showed attenuated intramacrophage survival in IFN-gamma-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the DeltasodC mutant or inhibiting the IFN-gamma-dependent production of O(2)(-) or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The DeltasodC and sodB DeltasodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the DeltasodC mutant was restored in ifn-gamma(-/-), inos(-/-), and phox(-/-) mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.
Collapse
|
37
|
Peters NC, Sacks DL. The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis. Cell Microbiol 2009; 11:1290-6. [PMID: 19545276 DOI: 10.1111/j.1462-5822.2009.01348.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamic process of pathogen transmission by the bite of an insect vector combines several biological processes that have undergone extensive co-evolution. Whereas the host response to an insect bite is only occasionally confronted with the parasitic pathogens that competent vectors might transmit, the transmitted parasites will always be confronted with the acute, wound-healing response that is initiated by the bite itself. Invariably, this response involves neutrophils. In the case of Leishmania, infection is initiated in the skin following the bite of an infected sand fly, suggesting that Leishmania must possess some means to survive their early encounter with recruited neutrophils at the bite site. Here, we review the literature regarding the impact of neutrophils on the outcome of infection with Leishmania, with special attention to the role of the sand fly bite.
Collapse
Affiliation(s)
- Nathan C Peters
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
38
|
Buchan BW, McCaffrey RL, Lindemann SR, Allen LAH, Jones BD. Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun 2009; 77:2517-29. [PMID: 19349423 PMCID: PMC2687360 DOI: 10.1128/iai.00229-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is capable of infecting a wide range of animals and causes a severe, lethal disease in humans. The pathogen evades killing by cells of the innate immune system utilizing genes encoding a pathogenicity island, including iglABCD, and instead utilizes these cells as a niche for replication and dissemination to other organs within the host. Regulators of the igl genes (e.g., MglA, SspA, FevR and PmrA) have been identified, but environmental stimuli and mechanisms of regulation are as yet unknown and are likely to involve additional gene products. In this work, we more closely examine the roles that environmental iron and the ferric uptake repressor protein (Fur) play in the regulation of the iglABCD operon. We also used a genetic approach to identify and characterize a new regulator of the igl operon, designated migR (macrophage intracellular growth regulator; FTL_1542). Quantitative real-time reverse transcription-PCR in a site-directed migR mutant confirmed the reduction in the number of iglC transcripts in this strain and also demonstrated reduced expression of fevR. Comparison of the migR and fevR mutants in monocyte-derived macrophages (MDMs) and epithelial cell lines revealed a reduced ability for each mutant to grow in MDMs, yet only the fevR mutant exhibited impaired replication in epithelial cell lines. Confocal analysis of infected MDMs revealed that although neither mutant reached the MDM cytosol, the fevR mutant was trapped in lamp-1-positive phagosomes, whereas the migR mutant resided in mature phagolysosomes enriched with both lamp-1 and cathepsin D. Disruption of migR and fevR also impaired the ability of F. tularensis to prevent neutrophil oxidant production. Thus, we have identified migR, a gene that regulates expression of the iglABCD operon and is essential for bacterial growth in MDMs and also contributes to the blockade of neutrophil NADPH oxidase activity.
Collapse
Affiliation(s)
- Blake W Buchan
- Department of Microbiology, Roy J. and Lucille A. Carver School of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | | | | | |
Collapse
|
39
|
Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS. Infect Immun 2009; 77:1324-36. [PMID: 19204089 DOI: 10.1128/iai.01318-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. We have shown that F. tularensis subspecies holarctica strain LVS prevents NADPH oxidase assembly and activation in human neutrophils, but how this is achieved is unclear. Herein, we used random transposon mutagenesis to identify LVS genes that affect neutrophil activation. Our initial screen identified carA, carB, and pyrB, which encode the small and large subunits of carbamoylphosphate synthase and aspartate carbamoyl transferase, respectively. These strains are uracil auxotrophs, and their growth was attenuated on cysteine heart agar augmented with sheep blood (CHAB) or in modified Mueller-Hinton broth. Phagocytosis of the uracil auxotrophic mutants triggered a respiratory burst in neutrophils, and ingested bacteria were killed and fragmented in phagosomes that contained superoxide. Conversely, phagocytosis did not trigger a respiratory burst in blood monocytes or monocyte-derived macrophages (MDM), and phagosomes containing wild-type or mutant bacteria lacked NADPH oxidase subunits. Nevertheless, the viability of mutant bacteria declined in MDM, and ultrastructural analysis revealed that phagosome egress was significantly inhibited despite synthesis of the virulence factor IglC. Other aspects of infection, such as interleukin-1beta (IL-1beta) and IL-8 secretion, were unaffected. The cultivation of carA, carB, or pyrB on uracil-supplemented CHAB was sufficient to prevent neutrophil activation and intramacrophage killing and supported escape from MDM phagosomes, but intracellular growth was not restored unless uracil was added to the tissue culture medium. Finally, all mutants tested grew normally in both HepG2 and J774A.1 cells. Collectively, our data demonstrate that uracil auxotrophy has cell type-specific effects on the fate of Francisella bacteria.
Collapse
|
40
|
Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 2008; 76:5843-52. [PMID: 18852251 DOI: 10.1128/iai.01176-08] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Francisella tularensis causes systemic disease in humans and other mammals, with high morbidity and mortality associated with inhalation-acquired infection. F. tularensis is a facultative intracellular pathogen, but the scope and significance of cell types infected during disease is unknown. Using flow cytometry, we identified and quantified infected-cell types and assessed the impact of infection on cell populations following inhalation of F. tularensis strains U112, LVS, and Schu S4. Initially, alveolar macrophages comprised over 70% of Schu S4- and LVS-infected cells, whereas approximately 51% and 27% of U112-infected cells were alveolar macrophages and neutrophils, respectively. After 3 days, roughly half of Schu S4- and LVS- and nearly 80% of U112-infected cells were neutrophils. All strains infected CD11b(high) macrophages, dendritic cells, monocytes, and alveolar type II cells throughout infection. Macrophage, monocyte, and dendritic-cell populations were reduced during U112 infection but not Schu S4 or LVS infection. These results demonstrate directly that F. tularensis is a promiscuous intracellular pathogen in the lung that invades and replicates within cell types ranging from migratory immune cells to structural tissue cells. However, the proportions of cell types infected and the cellular immune response evoked by the human pathogenic strain Schu S4 differ from those of the human avirulent U112.
Collapse
|
41
|
Affiliation(s)
- Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|