1
|
Kumar R, Gaur S, Agarwal M, Menon B, Goel N, Mrigpuri P, Spalgais S, Priya A, Kumar K, Meena R, Sankararaman N, Verma A, Gupta V, Sonal, Prakash A, Safwan MA, Behera D, Singh A, Arora N, Prasad R, Padukudru M, Kant S, Janmeja A, Mohan A, Jain V, Nagendra Prasad K, Nagaraju K, Goyal M. Indian Guidelines for diagnosis of respiratory allergy. INDIAN JOURNAL OF ALLERGY, ASTHMA AND IMMUNOLOGY 2023. [DOI: 10.4103/0972-6691.367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2
|
Zahradnik E, Raulf M. Respiratory Allergens from Furred Mammals: Environmental and Occupational Exposure. Vet Sci 2017; 4:vetsci4030038. [PMID: 29056697 PMCID: PMC5644656 DOI: 10.3390/vetsci4030038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
Furry mammals kept as pets, farm and laboratory animals are important allergen sources. The prevalence of sensitization to furred mammals appears to be increasing worldwide. Several mammalian allergens from diverse species are well characterized with regard to their molecular structure and immunogenicity, and some are already available for component-resolved allergy diagnostics. The distribution of various mammalian allergens has been extensively studied during the past few decades. Animal allergens were found to be ubiquitous in the human environment, even in places where no animals reside, with concentrations differing considerably between locations and geographical regions. This review presents an overview of identified mammalian respiratory allergens classified according to protein families, and compiles the results of allergen exposure assessment studies conducted in different public and occupational environments.
Collapse
Affiliation(s)
- Eva Zahradnik
- Center of Allergology/Immunology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Monika Raulf
- Center of Allergology/Immunology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
3
|
Abstract
Furry mammals kept as pets, farm and laboratory animals are important allergen sources. The prevalence of sensitization to furred mammals appears to be increasing worldwide. Several mammalian allergens from diverse species are well characterized with regard to their molecular structure and immunogenicity, and some are already available for component-resolved allergy diagnostics. The distribution of various mammalian allergens has been extensively studied during the past few decades. Animal allergens were found to be ubiquitous in the human environment, even in places where no animals reside, with concentrations differing considerably between locations and geographical regions. This review presents an overview of identified mammalian respiratory allergens classified according to protein families, and compiles the results of allergen exposure assessment studies conducted in different public and occupational environments.
Collapse
|
4
|
Abstract
OBJECTIVES To investigate the role of storage mites in the development of allergic diseases among ham production workers, and to search for early alterations in lung function tests and early inflammation markers in exhaled air. Respiratory allergies due to storage mites have been reported in people with various occupations but, although such mites are unavoidable when curing ham, there are no published data concerning ham production workers. SETTING Secondary care. DESIGN Experimental cross-sectional study. PARTICIPANTS 220 participants (110 ham production workers and 110 controls) were recruited. PRIMARY AND SECONDARY OUTCOME MEASURES Workers answered a medical questionnaire, and underwent spirometry and fraction of exhaled nitric oxide at 50 mL/s (FeNO₅₀) measurements. Those with allergic symptoms also underwent skin prick tests to determine their sensitisation to airborne allergens. A methacholine test was performed in symptomatic participants when spirometry was normal to assess airways hyper-responsiveness. RESULTS Symptomatic storage mite sensitisation was observed in 16 workers (14.5%) (rhinoconjunctivitis in 15 (63%) and asthma in (4%)) and 2 controls (1.8%; p=0.001). Higher FeNO₅₀ values in exposed symptomatic workers compared with healthy control participants (34.65±7.49 vs 13.29±4.29 ppb; p<0.001) suggested bronchial and nasal involvement, although their lung function parameters were normal. Regardless of exposure, a FeNO₅₀ value of 22.5 ppb seems to be 100% sensitive and 99.4% specific in distinguishing allergic and non-allergic participants. Multivariate analysis of FeNO₅₀ values in the symptomatic participants showed that they were positively influenced by IgE-mediated allergy (p=0.001) and reported symptom severity (p=0.041), and negatively by smoking status (p=0.049). CONCLUSIONS Ham processing workers, as well as workers involved in any meat processing work that includes curing, should be informed about the occupational risk of sensitisation to mites.
Collapse
Affiliation(s)
- Federica Tafuro
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Marcello Montagni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Massimo Corradi
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Abstract
Pyroglyphid mites are primarily associated with allergen exposure at home; hence the name house dust mites. However, we have found numerous studies reporting pyroglyhid mite levels in public and occupational settings. This review presents the findings of house dust mite allergens (family Pyroglyphidae, species Dermatophagoides) as potential work-related risk factors and proposes occupations at risk of house dust mite-related diseases. Pyroglyphid mites or their allergens are found in various workplaces, but clinically relevant exposures have been observed in hotels, cinemas, schools, day-care centres, libraries, public transportation (buses, trains, taxies, and airplanes), fishing-boats, submarines, poultry farms, and churches. Here we propose a classification of occupational risk as low (occasional exposure to mite allergen levels up to 2 μg g(-1)), moderate (exposure between 2 μg g(-1) and 10 μg g(-1)), and high (exposure >10 μg g(-1)). The classification of risk should include factors relevant for indoor mite population (climate, building characteristics, and cleaning schedule). To avoid development or aggravation of allergies associated with exposure to house dust mites at work, occupational physicians should assess exposure risk at work, propose proper protection, provide vocational guidance to persons at risk and conduct pre-employment and periodic examinations to diagnose new allergy cases. Protection at work should aim to control dust mite levels at work. Measures may include proper interior design and regular cleaning and building maintenance.
Collapse
|
6
|
Norbäck D, Cai GH. Fungal DNA in hotel rooms in Europe and Asia--associations with latitude, precipitation, building data, room characteristics and hotel ranking. ACTA ACUST UNITED AC 2011; 13:2895-903. [PMID: 21897974 DOI: 10.1039/c1em10439j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is little information on the indoor environment in hotels. Analysis of fungal DNA by quantitative PCR (qPCR) is a new method which can detect general and specific sequences. Dust was collected through swab sampling of door frames in 69 hotel rooms in 20 countries in Europe and Asia (2007-2009). Five sequences were detected by qPCR: total fungal DNA, Aspergillus and Penicillium DNA (Asp/Pen DNA), Aspergillus versicolor (A. versicolor DNA), Stachybotrys chartarum (S. chartarum DNA) and Streptomyces spp. (Streptomyces DNA). Associations were analysed by multiple linear regression. Total fungal DNA (GM = 1.08 × 10(8) cell equivalents m(-2); GSD = 6.36) and Asp/Pen DNA (GM = 1.79 × 10(7) cell equivalents m(-2); GSD = 10.12) were detected in all rooms. A. versicolor DNA, S. chartarum DNA and Streptomyces DNA were detected in 84%, 28% and 47% of the samples. In total, 20% of the rooms had observed dampness/mould, and 30% had odour. Low latitude (range 1.5-64.2 degrees) was a predictor of Asp/Pen DNA. Seaside location, lack of mechanical ventilation, and dampness or mould were other predictors of total fungal DNA and Asp/Pen DNA. Hotel ranking (Trip Advisor) or self-rated quality of the interior of the hotel room was a predictor of total fungal DNA, A. versicolor DNA and Streptomyces DNA. Odour was a predictor of S. chartarum DNA. In conclusion, fungal DNA in swab samples from hotel rooms was related to latitude, seaside location, ventilation, visible dampness and indoor mould growth. Hotels in tropical areas may have 10-100 times higher levels of common moulds such as Aspergillus and Penicillium species, as compared to a temperate climate zone.
Collapse
Affiliation(s)
- Dan Norbäck
- Dept. of Medical Science, Uppsala University, Occupational and Environmental Medicine, University Hospital, SE-751 85, Sweden.
| | | |
Collapse
|
7
|
Sharma D, Dutta BK, Singh AB. Dust mites population in indoor houses of suspected allergic patients of South assam, India. ISRN ALLERGY 2011; 2011:576849. [PMID: 23724231 PMCID: PMC3658589 DOI: 10.5402/2011/576849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/07/2011] [Indexed: 11/23/2022]
Abstract
Background. In the present study, quality and quantity of indoor dust mites was evaluated at the residence of 150 atopic allergic patients from four different districts of South Assam. Methods. Suspected patients with case history of allergic disease were selected for indoor survey. Dust samples (500 mg) were collected from the selected patient's house and were analyzed using standard methods. Results. About 60% of the selected patients were found suffering from respiratory disorders and rest 40% from skin allergy. The dominant mites recorded from indoor dust samples were Dermatophagoides followed by Blomia, Acarus, and Cheyletus while Caloglyphus was recorded in least number. The distribution of mites on the basis of housing pattern indicates that RCC type of buildings supports maximum dust mite's population followed by Assam type (semi-RCC) buildings, and the lowest count was observed in wooden houses. Environmental factors like temperature, rainfall, and relative humidity are found to determine the indoor mite's population. Severity of allergic attack in some of the typical cases was found to be proportional to the allergen load of mites in the dust samples. Conclusions. The economic status, housing pattern, and local environmental factors determine the diversity and abundance of dust mites in indoor environment.
Collapse
Affiliation(s)
- Dhruba Sharma
- Department of Botany, Rajiv Gandhi University, Rono Hills, Arunachal Pradesh, Doimukh 791112, India
| | | | | |
Collapse
|
8
|
Liao EC, Ho CM, Lin MY, Tsai JJ. Dermatophagoides pteronyssinus and Tyrophagus putrescentiae allergy in allergic rhinitis caused by cross-reactivity not dual-sensitization. J Clin Immunol 2010; 30:830-9. [PMID: 20683648 DOI: 10.1007/s10875-010-9446-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/15/2010] [Indexed: 11/26/2022]
Abstract
Tyrophagus putrescentiae and Dermatophagoides pteronyssinus are causative factors for the development of airway hypersensitivity. The main objective in this study was to identify the cross-reactive allergens between T. putrescentiae and D. pteronyssinus and investigate their sensitization in patients with allergic rhinitis. The prevalence of sensitization to mites was determined by skin prick tests and histamine release assays. Both immunoblot and ELISA inhibition assays were performed by using the recombinant allergens of T. putrescentiae and D. pteronyssinus. The cross-reactive allergens were identified by using IgE-binding inhibition analysis. The correlations of specific IgE between T. putrescentiae and D. pteronyssinus to group 2 and group 3 mite allergens were compared. A total of 117 allergic rhinitis patients, aged between 16 and 40 years old were recruited to be included in this study. The results showed that 70% (82/117) of allergic rhinitis subjects had skin test positive reactions to D. pteronyssinus or T. putrescentiae. Among these mite-sensitive subjects, there were 81 subjects (81/82) sensitive to D. pteronyssinus and 34 subjects (34/82) sensitive to T. putrescentiae. Among the T. putrescentiae hypersensitive subjects, 97% (33/34) were also sensitized to D. pteronyssinus. In the IgE-binding inhibition analysis, 59% (13/22) subjects had IgE-binding activity of T. putrescentiae that was completely absorbed by D. pteronyssinus, especially components with MW at 16 kDa. In ELISA inhibition testing, 69% of IgE-binding was inhibited by rTyr p 2, and 45% inhibited by rTyr p 3. The titers of IgE antibodies to rTyr p 2 and rDer p 2 were well correlated, but not rTyr p 3 and rDer p 3. In conclusion, most T. putrescentiae sensitized subjects were also sensitized to D. pteronyssinus in young adult allergic rhinitis patients. The complete absorption of IgE binding activity by D. pteronyssinus indicates that T. putrescentiae hypersensitivity might be due to the cross-reactivity, not dual-sensitization of D. pteronyssinus and T. putrescentiae. The IgE-binding titers of group 2 allergens were well correlated and the binding activity of Tyr p 2 could be absorbed by Der p 2, suggesting that group 2 allergens are the major cross-reactive allergen of D. pteronyssinus and T. putrescentiae.
Collapse
Affiliation(s)
- En-Chih Liao
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
9
|
Segundo GRS, Sopelete MC, Terra SA, Pereira FL, Justino CM, Silva DADO, Taketomi EA. Diversity of allergen exposure: implications for the efficacy of environmental control. Braz J Otorhinolaryngol 2010; 75:311-6. [PMID: 19575122 PMCID: PMC9450745 DOI: 10.1016/s1808-8694(15)30796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/14/2007] [Indexed: 11/25/2022] Open
Abstract
The prevalence of allergic diseases such as asthma, rhinitis, allergic conjunctivitis and atopic dermatitis has increased in the last decades. The relationship between allergen exposure, atopic sensitization and development of allergic diseases is widely described in the literature. Aim To evaluate measures for reducing allergen exposure as part of the treatment of allergic diseases. Methods An analysis was made of previous studies on allergen exposure done with a similar methodology in the central region of Brazil; the study included homes, hotels, cinemas, cars, taxis, buses and scholar transportation. Results High levels of Der p 1 and Der f 1 mite allergens were found in a large proportion of the sample in most of the environments included in those studies; there were higher levels of pet allergens in cars and school transportation vehicles. Conclusion The diversity of allergen exposure demonstrates the need for education about allergic diseases for patients and their families, as well as measures of reducing allergens in homes. This should be part of a global strategy of the management of allergic diseases, given that individuals live in society, not only in their houses.
Collapse
|
10
|
Segundo GRS, Sopelete MC, Terra SA, Pereira FL, Justino CM, Silva DADO, Taketomi EA. Diversidade da exposição alergênica: implicações na obtenção da eficácia do controle ambiental. ACTA ACUST UNITED AC 2009. [DOI: 10.1590/s0034-72992009000200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As doenças alérgicas, como a asma, rinite, conjuntivite alérgica e a dermatite atópica têm apresentado um aumento na sua prevalência nas últimas décadas. A relação entre exposição alergênica, sensibilização atópica e desenvolvimento de doenças alérgicas são amplamente descrita na literatura. OBJETIVO: Discutir a dificuldade no controle ambiental da exposição alergênica como parte do tratamento das doenças alérgicas. MÉTODOS: Analisar trabalhos de exposição alergênica realizados com metodologia similar na região central do Brasil, incluindo casas, hotéis, cinemas, carros, táxis, ônibus e transporte escolar. RESULTADOS: Níveis elevados dos alérgenos do grupo 1 de Dermatophagoides pteronyssinus (Der p 1) e de D. farinae (Der f 1), capazes de causar sensibilização e exacerbação de sintomas foram encontrados na maioria dos ambientes estudados em uma larga proporção das amostras, enquanto os alérgenos de animais domésticos atingiram maiores níveis em carros e veículos de transporte escolar. CONCLUSÃO: A diversidade da exposição alergênica mostra a necessidade de uma compreensão da doença alérgica pelos pacientes e familiares, e que as medidas de controle do ambiente doméstico fazem parte de uma estratégia global do tratamento das doenças alérgicas, uma vez que os indivíduos vivem em uma sociedade e não isoladas no interior de seus domicílios.
Collapse
|