1
|
Misra S, Majumdar K, Sakhuja P, Jain P, Singh L, Kumar P, Dubey AP. Differentiating Biliary Atresia From Idiopathic Neonatal Hepatitis: A Novel Keratin 7 Based Mathematical Approach on Liver Biopsies. Pediatr Dev Pathol 2021; 24:103-115. [PMID: 33439108 DOI: 10.1177/1093526620983730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Differentiating biliary atresia (BA) from idiopathic neonatal hepatitis (INH) is vital in routine pediatric practice. However, on liver biopsy, few cases offer a diagnostic challenge to discriminate these entities with certainty. Bile ductular reaction (DR), intermediate hepatobiliary cells (IHBC) and extra-portal ductules (EPD) indicate progenitor cell activation, as a response to various hepatic insults. The present study aims to quantify DR, IHBC and EPD by Keratin 7 (CK7) immunohistochemistry (IHC) in BA and INH and to devise a mathematical approach to better differentiate the two, especially in histologically equivocal cases. METHODS A total of 98 cases were categorized on biopsy as BA, INH or equivocal histology, favoring BA or INH. CK7 DR mean, IHBC mean and EPD mean values were compared between BA and INH. A formula was derived to help distinguish these two entities, the cut-off value, sensitivity and specificity of which were determined by receiver operating characteristic (ROC) curve. This formula was applied and validated on histologically equivocal cases. RESULTS Univariate logistic regression revealed significant difference between BA and INH with respect to CK7 DR and CK7 EPD mean (p < 0.001 in both); however, CK7 IHBC mean was not significant (p = 0.08). On multivariate logistic regression, only CK7 DR had significant impact on diagnosis (p < 0.001). A formula: (CK7 DR)2 + (CK7 EPD)/(CK7 IHBC) was derived to help distinguish BA from INH. Cut off value of 10.5 and above, determined by ROC curve, favored a diagnosis of BA (sensitivity= 93.4%, specificity= 94.6%). Histologically equivocal and discrepant cases could be correctly categorized using this formula. CONCLUSIONS Formula using CK7 IHC parameters may aid pathologists better distinguish BA from INH, especially in histologically equivocal cases.
Collapse
Affiliation(s)
- Sunayana Misra
- Department of Pathology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Kaushik Majumdar
- Department of Pathology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Priyanka Jain
- Department of Clinical Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lavleen Singh
- Department of Pathology, Chacha Nehru Bal Chikitsalaya, New Delhi, India
| | - Praveen Kumar
- Department of Pediatrics, Lady Hardinge Medical College, Kalawati Saran Children's Hospital, New Delhi, India
| | - A P Dubey
- Department of Pediatrics, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
2
|
Mustonen AM, Salvén A, Kärjä V, Rilla K, Matilainen J, Nieminen P. Hyaluronan histochemistry-a potential new tool to assess the progress of liver disease from simple steatosis to hepatocellular carcinoma. Glycobiology 2019; 29:298-306. [PMID: 30689936 DOI: 10.1093/glycob/cwz002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease is among the most common liver diseases worldwide and one cause of cirrhosis that can result in the development of hepatocellular carcinoma (HCC). Hyaluronan (HA) is a high-molecular-mass glycosaminoglycan with diverse functions in tissue injury and repair, for instance, in inflammation and fibrogenesis. The aim of the present study was to investigate the relationships between the HA synthesizing and degrading enzymes in a spectrum of liver pathologies. This was realized by histological staining of liver sections from controls and patients with simple steatosis, steatohepatitis, cirrhosis and HCC (n = 90). HA-positive staining intensified in connective tissue in all liver pathologies, and staining of CD44, the major HA receptor, similarly increased in steatohepatitis and cirrhosis. HA synthase 1 (HAS1)-positive staining was reduced in steatosis, steatohepatitis and HCC. Staining of HAS3, which produces HA of a lower molecular mass, promotes inflammation and is pathogenic in animal models, increased in all diagnoses. The responses in staining intensity of HAS2 and hyaluronidases 1-2 were specific for different cell types. These findings suggest that HAS1-2 are responsible for HA synthesis in healthy livers, while HAS3 increases in importance in liver diseases. It is noteworthy that the pathological changes in HA metabolism are already visible in simple steatosis and, thus, precede the histological changes of inflammation and fibrosis. It could be possible to intervene in disease progression at an early stage by influencing HA metabolism. The results could have potential clinical applications with HAS3 immunostaining supplementing the existing HCC diagnostics.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| | - Anu Salvén
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Matilainen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
3
|
Luo J, Peng S, Bai W, Wu Z, Shan Z, Wu Z, Yuan X, Che X, Duan Z, Peng J, Wang Y, Zhang S. Matrilin-2 prevents the TNFα-induced apoptosis of WB-F344 cells via suppressing JNK pathway. Biotechnol Appl Biochem 2019; 66:309-315. [PMID: 30624798 DOI: 10.1002/bab.1726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
Abstract
Oval cells, a kind of hepatic progenitor cell quiescent at normal condition, activates to proliferate and differentiate into hepatocytes under severe and long-term liver injury, which usually raises severe inflammation. However, how oval cell survives in the inflammatory milieu interne is still unclear. Tumor necrosis factor α (TNFα), mimicking inflammatory hepatic milieu interne, was used to treat oval cell line, WB-F344, to test the protective function of matrilin-2. In this study, our data suggested that matrilin-2 prevented TNFα-induced apoptosis in WB-F344 cells via inhibiting ASK1/MKK7/JNK pathway. In conclusion, we determined that matrilin-2 plays the key role in maintaining the survival of oval cell and guarantees its proliferation under various injury factors.
Collapse
Affiliation(s)
- Junming Luo
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
- Department of Intensive Care Unit, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Shaohua Peng
- Department of Pathology, Medical School of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Wenbin Bai
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zhaoyu Wu
- Department of Oncology, the Affiliated Hospital of Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Zhongshu Shan
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zetao Wu
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Xin Yuan
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Xiaoming Che
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zhili Duan
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Jinwu Peng
- Department of Pathology, the Affiliated Changde Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Yichun Wang
- Department of Intensive Care Unit, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Weihai, 264200, Shandong Province, China
| |
Collapse
|
4
|
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e340. [PMID: 30924280 DOI: 10.1002/wdev.340] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Tissue regeneration is a process by which the remaining cells of an injured organ regrow to offset the missed cells. This field is relatively a new discipline that has been a focus of intense research by clinicians, surgeons, and scientists for decades. It constitutes the cornerstone of tissue engineering, creation of artificial organs, and generation and utilization of therapeutic stem cells to undergo transformation to different types of mature cells. Many medical experts, scientists, biologists, and bioengineers have dedicated their efforts to deeply comprehend the process of liver regeneration, striving for harnessing it to invent new therapies for liver failure. Liver regeneration after partial hepatectomy in rodents has been extensively studied by researchers for many years. It is divided into three important distinctive phases including (a) Initiation or priming phase which includes an overexpression of specific genes to prepare the liver cells for replication, (b) Proliferation phase in which the liver cells undergo a series of cycles of cell division and expansion and finally, (c) termination phase which acts as brake to stop the regenerative process and prevent the liver tissue overgrowth. These events are well controlled by cytokines, growth factors, and signaling pathways. In this review, we describe the function, embryology, and anatomy of human liver, discuss the molecular basis of liver regeneration, elucidate the hepatocyte and cholangiocyte lineages mediating this process, explain the role of hepatic progenitor cells and elaborate the developmental signaling pathways and regulatory molecules required to procure a complete restoration of hepatic lobule. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Signaling Pathways > Global Signaling Mechanisms Gene Expression and Transcriptional Hierarchies > Cellular Differentiation.
Collapse
Affiliation(s)
- Anan Abu Rmilah
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erek Nelson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Li Lin
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol 2018; 68:238-250. [PMID: 29154966 DOI: 10.1016/j.jhep.2017.11.012] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
Cirrhosis has become the major liver-related clinical endpoint in non-alcoholic steatohepatitis (NASH). However, progression to cirrhosis is less predictable in NASH than in other chronic liver diseases. This is due to the complex and multifactorial aetiology of NASH, which is determined by lifestyle and nutrition, multiple genetic and epigenetic factors, and a prominent role of hepatic and extrahepatic comorbidities. Thus, modest changes in these cofactors can also induce fibrosis regression, at least in patients with precirrhotic liver disease. Fibrogenesis in NASH correlates with, but is indirectly coupled to, classical inflammation, since fibrosis progression is driven by repetitive periods of repair. While hepatocyte lipoapoptosis is a key driving force of fibrosis progression, activated hepatic stellate cells, myofibroblasts, cholangiocytes, macrophages and components of the pathological extracellular matrix are major fibrogenic effectors and thus pharmacological targets for therapies aimed at inhibition of fibrosis progression or induction of fibrosis reversal. The advent of novel, highly sensitive and specific serum biomarkers and imaging methods to assess the dynamics of liver fibrosis in NASH will improve detection, stratification and follow-up of patients with progressive NASH . These non-invasive tools will also promote the clinical development of antifibrotic drugs, by permitting the design of lean proof-of-concept studies, and enabling development of a personalised antifibrotic therapy for patients with rapid fibrosis progression or advanced disease.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Xiao Yu Wang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
6
|
Scheer MA, Schneider KJ, Finnigan RL, Maloney EP, Wells MA, Clemens DL. The Involvement of Acetaldehyde in Ethanol-Induced Cell Cycle Impairment. Biomolecules 2016; 6:biom6020017. [PMID: 27043646 PMCID: PMC4919912 DOI: 10.3390/biom6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 01/15/2023] Open
Abstract
Background: Hepatocytes metabolize the vast majority of ingested ethanol. This metabolic activity results in hepatic toxicity and impairs the ability of hepatocytes to replicate. Previous work by our group has shown that ethanol metabolism results in a G2/M cell cycle arrest. The intent of these studies was to discern the roles of acetaldehyde and reactive oxygen, two of the major by-products of ethanol metabolism, in the G2/M cell cycle arrest. Methods: To investigate the role of ethanol metabolites in the cell cycle arrest, VA-13 and VL-17A cells were used. These are recombinant Hep G2 cells that express alcohol dehydrogenase or alcohol dehydrogenase and cytochrome P450 2E1, respectively. Cells were cultured with or without ethanol, lacking or containing the antioxidants N-acetylcysteine (NAC) or trolox, for three days. Cellular accumulation was monitored by the DNA content of the cultures. The accumulation of the cyclin-dependent kinase, Cdc2 in the inactive phosphorylated form (p-Cdc2) and the cyclin-dependent kinase inhibitor p21 were determined by immunoblot analysis. Results: Cultures maintained in the presence of ethanol demonstrated a G2/M cell cycle arrest that was associated with a reduction in DNA content and increased levels of p-Cdc2 and p21, compared with cells cultured in its absence. Inclusion of antioxidants in the ethanol containing media was unable to rescue the cells from the cell cycle arrest or these ethanol metabolism-mediated effects. Additionally, culturing the cells in the presence of acetaldehyde alone resulted in increased levels of p-Cdc2 and p21. Conclusions: Acetaldehyde produced during ethanol oxidation has a major role in the ethanol metabolism-mediated G2/M cell cycle arrest, and the concurrent accumulation of p21 and p-Cdc2. Although reactive oxygen species are thought to have a significant role in ethanol-induced hepatocellular damage, they may have a less important role in the inability of hepatocytes to replace dead or damaged cells.
Collapse
Affiliation(s)
- Marc A Scheer
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Katrina J Schneider
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Rochelle L Finnigan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Eamon P Maloney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Mark A Wells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Dahn L Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
7
|
Kumar S, Wang J, Rani R, Gandhi CR. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice. PLoS One 2016; 11:e0147864. [PMID: 26808690 PMCID: PMC4726524 DOI: 10.1371/journal.pone.0147864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Richa Rani
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United states of America
- * E-mail:
| |
Collapse
|
8
|
Rachakonda V, Jadeja RN, Urrunaga NH, Shah N, Ahmad D, Cheng K, Twaddell WS, Raufman JP, Khurana S. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 2015; 5:14110. [PMID: 26374068 PMCID: PMC4571652 DOI: 10.1038/srep14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit.
Collapse
Affiliation(s)
- Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Nirish Shah
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Daniel Ahmad
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
9
|
Best J, Manka P, Syn WK, Dollé L, van Grunsven LA, Canbay A. Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 2015; 4:48-58. [PMID: 25713804 DOI: 10.3978/j.issn.2304-3881.2015.01.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Collapse
Affiliation(s)
- Jan Best
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Paul Manka
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Wing-Kin Syn
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Laurent Dollé
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Leo A van Grunsven
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Ali Canbay
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| |
Collapse
|
10
|
Howarth DL, Yin C, Yeh K, Sadler KC. Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae. Zebrafish 2013; 10:199-210. [PMID: 23697887 DOI: 10.1089/zeb.2012.0821] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzo(mbtps1) mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration.
Collapse
Affiliation(s)
- Deanna L Howarth
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | | | | | | |
Collapse
|
11
|
Clemens DL, Schneider KJM, Nuss RF. Ethanol metabolism activates cell cycle checkpoint kinase, Chk2. Alcohol 2011; 45:785-93. [PMID: 21924579 DOI: 10.1016/j.alcohol.2011.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 01/15/2023]
Abstract
Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of the regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrated that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury.
Collapse
Affiliation(s)
- Dahn L Clemens
- Research Service, Veterans Administration Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Khurana S, Shah N, Cheng K, Shiu B, Samimi R, Belo A, Shant J, Drachenberg C, Wess J, Raufman JP. Scopolamine treatment and muscarinic receptor subtype-3 gene ablation augment azoxymethane-induced murine liver injury. J Pharmacol Exp Ther 2010; 333:639-49. [PMID: 20197374 DOI: 10.1124/jpet.109.165118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous work suggests that vagus nerve disruption reduces hepatocyte and oval cell expansion after liver injury. The role of postneuronal receptor activation in response to liver injury has not been ascertained. We investigated the actions of scopolamine, a nonselective muscarinic receptor antagonist, and specific genetic ablation of a key cholinergic receptor, muscarinic subtype-3 (Chrm3), on azoxymethane (AOM)-induced liver injury in mice. Animal weights and survival were measured as was liver injury using both gross and microscopic examination. To assess hepatocyte proliferation and apoptosis, ductular hyperplasia, and oval cell expansion, we used morphometric analysis of 5-bromo-2'-deoxyuridine-, activated caspase-3-, hematoxylin and eosin-, cytokeratin-19-, and epithelial cell adhesion molecule-stained liver sections. Sirius red staining was used as a measure of collagen deposition and its association with oval cell reaction. In AOM-treated mice, both muscarinic receptor blockade with scopolamine and Chrm3 ablation attenuated hepatocyte proliferation and augmented gross liver nodularity, apoptosis, and fibrosis. Compared with control, scopolamine-treated and Chrm3(-/-) AOM-treated mice had augmented oval cell reaction with increased ductular hyperplasia and oval cell expansion. Oval cell reaction correlated robustly with liver fibrosis. No liver injury was observed in scopolamine-treated and Chrm3(-/-) mice that were not treated with AOM. Only AOM-treated Chrm3(-/-) mice developed ascites and had reduced survival compared with AOM-treated wild-type controls. In AOM-induced liver injury, inhibiting postneuronal cholinergic muscarinic receptor activation with either scopolamine treatment or Chrm3 gene ablation results in prominent oval cell reaction. We conclude that Chrm3 plays a critical role in the liver injury response by modulating hepatocyte proliferation and apoptosis.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Popov Y, Sverdlov DY, Bhaskar KR, Sharma AK, Millonig G, Patsenker E, Krahenbuhl S, Krahenbuhl L, Schuppan D. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G323-34. [PMID: 20056896 PMCID: PMC2838516 DOI: 10.1152/ajpgi.00394.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies have suggested the reversibility of liver fibrosis, but the mechanisms of fibrosis reversal are poorly understood. We investigated the possible functional link between apoptosis, macrophages, and matrix turnover in rat liver during reversal of fibrosis secondary to bile duct ligation (BDL). Biliary fibrosis was induced by BDL for 4 wk. After Roux-en-Y (RY)-bilio-jejunal-anastomosis, resolution of fibrosis was monitored for up to 12 wk by hepatic collagen content, matrix metalloproteinase (MMP) expression and activities, and fibrosis-related gene expression. MMP expression and activities were studied in macrophages after engulfment of apoptotic cholangiocytes in vitro. Hepatic collagen decreased to near normal at 12 wk after RY-anastomosis. During reversal, profibrogenic mRNA declined, whereas expression of several profibrolytic MMPs increased. Fibrotic septa showed fragmentation at week 4 and disappeared at week 12. Peak histological remodeling at week 4 was characterized by massive apoptosis of cytokeratin 19+ cholangiocytes, >90% in colocalization with CD68+ macrophages, and a 2- to 7.5-fold increase in matrix-degrading activities. In vitro, phagocytosis of apoptotic cholangiocytes induced matrix-degrading activities and MMP-3, -8, and -9 in rat peritoneal macrophages. We concluded that reconstruction of bile flow after BDL leads to an orchestrated fibrolytic program that results in near complete reversal of advanced fibrosis. The peak of connective tissue remodeling and fibrolytic activity is associated with massive apoptosis of cholangiocytes and their phagocytic clearance by macrophages in vivo. Macrophages upregulate MMPs and become fibrolytic effector cells upon apoptotic cholangiocyte engulfment in vitro, suggesting that phagocytosis-associated MMP induction in macrophages significantly contributes to biliary fibrosis reversal.
Collapse
Affiliation(s)
- Yury Popov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; ,2Department of Medicine I, University of Erlangen-Nuremberg, Germany;
| | - Deanna Y. Sverdlov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - K. Ramakrishnan Bhaskar
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Anisha K. Sharma
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Gunda Millonig
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Eleonora Patsenker
- 2Department of Medicine I, University of Erlangen-Nuremberg, Germany; ,3Institute of Clinical Pharmacology, University of Bern;
| | - Stephan Krahenbuhl
- 4Department of Clinical Pharmacology & Toxicology and Research, University Hospital Basel;
| | | | - Detlef Schuppan
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
15
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
|
16
|
Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 2008; 32:1525-34. [PMID: 18616668 DOI: 10.1111/j.1530-0277.2008.00729.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with the recent developments on the epigenetic effects of ethanol. A large body of data have come from studies in liver and in neuronal systems and involve post-translational modifications in histones and methylations in DNA. Ethanol causes site selective acetylation, methylation, and phosphorylation in histone. With respect to methylations the methyl group donating system involving S-adenosyl methionine appears to play a central role. There is contrasting effect of acetylation versus methylation on the same site of histone, as it relates to the transcriptional activation. Epigenetic memory also appears to correlate with liver pathology and Mallory body formation. Experimental evidence supports transcriptional regulation of genes in the CNS by DNA methylations. These studies are contributing towards a better understanding of a novel epigenetic regulation of gene expression in the context of alcohol. The critical steps and the enzymes (e.g., histone acetyltransferase, histone deacetylase, DNA methyltransferase) responsible for the epigenetic modifications are prime targets for intense investigation. The emerging data are also beginning to offer novel insight towards defining the molecular actions of ethanol and may contribute to potential therapeutic targets at the nucleosomal level. These epigenetic studies have opened up a new avenue of investigation in the alcohol field.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology & Physiology, University of Missouri Columbia, Missouri 65212, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DEJ, Burt AD, Kirby JA. Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. J Transl Med 2008; 88:112-23. [PMID: 18059363 DOI: 10.1038/labinvest.3700704] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The relationship between bile duct damage and portal fibrosis in chronic liver diseases remains unclear. This study was designed to show whether human intrahepatic biliary epithelial cells can undergo epithelial-mesenchymal cell transition, thereby directly contributing to fibrogenesis. Primary human cholangiocytes were stimulated with transforming growth factor-beta (TGFbeta) or TGFbeta-presenting T cells and examined for evidence of transition to a mesenchymal phenotype. Liver sections were labelled to detect antigens associated with biliary epithelial cells (cytokeratin 7 and 19 and E-cadherin), T cells (CD8), epithelial-mesenchymal transition (S100A4, vimentin and matrix metalloproteinase-2 (MMP-2)), myofibroblasts (alpha-smooth muscle actin) and intracellular signal-transduction mediated by phosphorylated (p)Smad 2/3; in situ hybridisation was performed to detect mRNA encoding TGFbeta and S100A4. Stimulation of cultured cells with TGFbeta induced the expression of pSmad2/3, S100A4 and alpha-smooth muscle actin; these cells became highly motile. Although normal bile ducts expressed ALK5 (TGFbeta RI), low levels of TGFbeta mRNA and nuclear pSmad2/3, they did not express S100A4, vimentin or MMP-2. However, TGFbeta mRNA and nuclear pSmad2/3 were strongly expressed in damaged ducts, which also expressed S100A4, vimentin and MMP-2. Fibroblast-like cells which expressed S100A4 were present around many damaged bile ducts. Cells in the 'ductular reaction' expressed both epithelial and mesenchymal markers together with high levels of TGFbeta mRNA and pSmad2/3. In conclusion, the cells forming small- and medium-sized bile ducts and the ductular reaction undergo EMT during chronic liver diseases, resulting in the formation of invasive fibroblasts; this process may be driven by a response to local TGFbeta, possibly presented by infiltrating T cells.
Collapse
Affiliation(s)
- Karolina A Rygiel
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fleig SV, Choi SS, Yang L, Jung Y, Omenetti A, VanDongen HM, Huang J, Sicklick JK, Diehl AM. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. J Transl Med 2007; 87:1227-39. [PMID: 17952094 DOI: 10.1038/labinvest.3700689] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Progenitors regenerate fatty livers but the mechanisms involved are uncertain. The Hedgehog pathway regulates mesendodermal progenitors and modulates mesenchymal-epithelial interactions during tissue remodeling. To determine if Hedgehog signaling increases in liver progenitors during fatty liver injury, we compared expression of Hedgehog ligands and target genes across a spectrum of injury. Leptin-deficient ob/ob mice with fatty livers and their healthy lean littermates were studied before and after exposure to the hepatotoxin, ethionine. At baseline, ob/ob mice had greater liver damage than controls. Ethionine induced liver injury in both ob/ob and lean mice, with greater injury occurring in ob/ob mice. After ethionine, the ob/ob mice developed liver atrophy and fibrosis. Liver injury increased hepatic accumulation of progenitors, including ductular cells that produced and responded to Hedgehog ligands. A dose-response relationship was demonstrated between liver injury and expansion of Hedgehog-responsive progenitors. In severely damaged, atrophic livers, nuclei in mature-appearing hepatocytes accumulated the Hedgehog-regulated mesenchymal transcription factor, Gli2 and lost expression of the liver epithelial transcription factor, hepatocyte nuclear factor 6 (HNF-6). Hepatic levels of collagen mRNA and pericellular collagen fibrils increased concomitantly. Hence, fatty liver injury increases Hedgehog activity in liver progenitors, and this might promote epithelial-mesenchymal transitions that result in liver fibrosis.
Collapse
Affiliation(s)
- Susanne V Fleig
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Ethanol is a hepatotoxin. It appears that the liver is the target of ethanol induced toxicity primarily because it is the major site of ethanol metabolism. Metabolism of ethanol results in a number of biochemical changes that are thought to mediate the toxicity associated with ethanol abuse. These include the production of acetaldehyde and reactive oxygen species, as well as an accumulation of nicotinamide adenine dinucleotide (NADH). These biochemical changes are associated with the accumulation of fat and mitochondrial dysfunction in the liver. If these changes are severe enough they can themselves cause hepatotoxicity, or they can sensitize the liver to more severe damage by other hepatotoxins. Whether liver damage is the result of ethanol metabolism or some other hepatotoxin, recovery of the liver from damage requires replacement of cells that have been destroyed. It is now apparent that ethanol metabolism not only causes hepatotoxicity but also impairs the replication of normal hepatocytes. This impairment has been shown to occur at both the G1/S, and the G2/M transitions of the cell cycle. These impairments may be the result of activation of the checkpoint kinases, which can mediate cell cycle arrest at both of these transitions. Conversely, because ethanol metabolism results in a number of biochemical changes, there may be a number of mechanisms by which ethanol metabolism impairs cellular replication. It is the goal of this article to review the mechanisms by which ethanol metabolism mediates impairment of hepatic replication.
Collapse
Affiliation(s)
- Dahn L Clemens
- Department of Internal Medicine, University of Nebraska Medical Center and Veterans Affairs Medical Center, Omaha Nebraska 68105, USA.
| |
Collapse
|
20
|
Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, Dixon JB, Weltman MD, Tilg H, Moschen AR, Purdie DM, Demetris AJ, Clouston AD. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133:80-90. [PMID: 17631134 DOI: 10.1053/j.gastro.2007.05.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/22/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Portal fibrosis and linkage is a key feature of progressive disease in nonalcoholic steatohepatitis (NASH), but not simple steatosis. It is underappreciated and poorly understood. Fatty liver has impaired regeneration that induces a secondary replicative pathway using bipotential, periportal, hepatic progenitor cells (HPCs). We propose that activation of this pathway, with increased cell injury in NASH, also induces a periportal ductular reaction (DR) that could produce a profibrogenic stimulus. METHODS Biopsy specimens from 107 patients with nonalcoholic fatty liver disease and 11 controls were immunostained with cytokeratin-7 to quantify the DR and HPCs, and with p21 to assess hepatocyte replicative arrest. These results were correlated with clinicopathologic variables. RESULTS Patients with nonalcoholic fatty liver disease had expansion of HPCs, with a strong association between HPCs and the DR (r(s) = 0.582, P < .0001). In those with NASH (n = 69) there was an increased DR compared with simple steatosis, which correlated with the stage of fibrosis (r(s) = 0.510, P < .0001). The DR increased with the grade of NASH activity (r(s) = 0.478, P < .0001), grade of portal inflammation (r(s) = 0.445, P < .0001), and extent of hepatocyte replicative arrest (r(s) = 0.446, P < .0001). Replicative arrest was in turn associated with insulin resistance (r(s) = 0.450, P < .0001) and NASH activity (r(s) = 0.452, P < .0001). By multivariate analysis, the extent of DR (odds ratio [OR] = 17.9, P = .016), hepatocyte ballooning (OR = 8.1, P < .0001), and portal inflammation (OR = 3.3, P = .005) were associated independently with fibrosis. CONCLUSIONS These findings suggest that an altered replication pathway in active NASH promotes a periportal DR, which in turn may provoke progressive periportal fibrogenesis.
Collapse
Affiliation(s)
- Michelle M Richardson
- School of Medicine, Southern Clinical Division, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Alcohol excess is associated with a spectrum of disease ranging from simple steatosis through steatohepatitis to cirrhosis and, in some, hepatocellular carcinoma. Alcoholic steatohepatitis itself has a variable histological picture, but a constant feature is the presence of ballooning degeneration of hepatocytes. Recent studies have emphasized the importance of apoptosis as a mechanism of cell death in this condition. It is accompanied by varying degrees of perivenular, centrilobular, and pericellular fibrosis. When severe and associated with perivenular liver cell necrosis (central sclerosing hyaline necrosis), there may be precirrhotic portal hypertension. The pattern of fibrosis may initially be diffuse with little nodule formation, but in time there is frequently the development of a micronodular cirrhosis. In approximately 15% of patients with established cirrhosis, hepatocellular carcinoma develops; several precursor lesions are now recognized which can be detected histologically. Several authors have drawn attention to additional components of the spectrum of alcoholic liver disease, including vascular changes, portal tract inflammation and fibrosis, ductular reaction, and iron overload. The morphology of alcoholic liver disease can be significantly affected by abstinence; furthermore, the clinical and morphological phenotype can be significantly influenced by the presence of comorbid conditions such as nonalcoholic fatty liver disease or viral hepatitis. Biopsy appearances can provide important prognostic information in alcoholic liver disease, and this review incorporates a proposed grading and staging schema for assessment of histological severity.
Collapse
Affiliation(s)
- William W Yip
- Department of Pathology, Alice Ho Miu Ling Nethersole Hospital, Tai Po, New Territories, Hong Kong
| | | |
Collapse
|
22
|
Abstract
Despite its remarkable capacity for endogenous regeneration, the mammalian liver is vulnerable to a number of chronic or acute conditions that exceed or circumvent the proliferative capabilities of its mature cell complement. Bipotential hepatic progenitors, or "oval cells," have been shown to contribute to organ regeneration under such circumstances, both in human patients and in animal models. These progenitors are attractive agents for cell therapy, but have thus far proven challenging to isolate and manipulate. New reports indicating that transplanted bone marrow cells (BMCs) can also generate hepatocytes and contribute to liver repair have attracted considerable attention, because these cells are familiar and accessible to both clinicians and scientists. Recently, the issue of whether nuclear transfer (via cell fusion between donor BMC and recipient hepatocyte) or previously unrecognized differentiation potential (i.e., plasticity/transdifferentiation of BMC) is the primary origin of donor-derived hepatocytes has generated considerable controversy. In the liver, most evidence supports cell fusion as the key agent in the reversal of hepatopathology. However, regardless of their origin, the frequency of hepatocyte correction events is low. As is the case for the delivery of intrahepatic progenitors, substantial improvements in the understanding of this process will be needed before clinical application becomes practical.
Collapse
Affiliation(s)
- Craig Dorrell
- Department of Molecular and Medical Genetics, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
23
|
Tsamandas AC, Syrokosta I, Thomopoulos K, Zolota V, Dimitropoulou D, Liava A, Coupoulou AA, Siagris D, Petsas T, Karatza C, Gogos CA. Potential role of hepatic progenitor cells expression in cases of chronic hepatitis C and their relation to response to therapy: a clinicopathologic study. Liver Int 2006; 26:817-26. [PMID: 16911464 DOI: 10.1111/j.1478-3231.2006.01306.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND This study investigates the correlation of hepatic progenitor cells (HPC) expression with treatment response in patients with chronic hepatitis C. DESIGN The study comprised 77 liver biopsies with chronic hepatitis C (HCV). All patients were PCR-HCV (+) and received antiviral therapy with interferon or pegylated interferon alpha-2b and ribavirin. Twenty-nine patients were assigned as responders (group A), 29 as nonresponders (group B) and 19 as relapsers (group C). Ten normal liver biopsies were used as controls. Liver paraffin sections were subjected (a) to immunohistochemistry using antibodies for cytokeratins 19 (CK19) and 7 (CK7), alpha-fetoprotein (AFP), leukocyte common antigen (LCA) and CD34 antigen (b) to in situ hybridization for AFP mRNA and (c) to immunohistochemistry+in situ hybridization. Results were expressed as % of positive cells following morphometric analysis. RESULTS HPC expression was present in all 87 specimens. In the control biopsies, rare HPC were detected. In the CH cases and according to AFP mRNA expression, the grade for % HPC expression was: group B: 53.2+/-2.6> group C: 48.37+/-1.8> group A: 31.4+/-1.6 (group A vs B P<0.01, group A vs C P<0.01, group B vs C P>0.05. Double stain revealed that HPC coexpressed CK19/AFP mRNA, CK7/AFP mRNa and AFP protein/AFP mRNA. HPC-percentages were directly correlated with total HAI score (P<0.01), fibrosis stage (P<0.01), and transaminase values (P<0.05). CONCLUSIONS This study demonstrates that in cases of chronic hepatitis C, the significant association of HPC expression with the severity of disease and more specifically with the response to treatment implies that HPC development and proliferation may provide additional prognostic information and predict prognosis in such cases.
Collapse
|
24
|
Seth D, Gorrell MD, Cordoba S, McCaughan GW, Haber PS. Intrahepatic gene expression in human alcoholic hepatitis. J Hepatol 2006; 45:306-20. [PMID: 16797773 DOI: 10.1016/j.jhep.2006.04.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/20/2006] [Accepted: 04/25/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Alcoholic hepatitis remains an important cause of morbidity and mortality. Treatment remains unsatisfactory, in part, due to limited understanding of the pathogenesis. The aim of this study is to define the global intrahepatic expression profile of human alcoholic hepatitis. METHODS Gene expression was analysed by DNA microarray on RNA isolated from liver of patients with alcoholic hepatitis (AH, n = 8), alcoholic steatosis (AS, n = 9) and explants from non-diseased donor liver controls (ND, n = 7). Differential expression of selected genes was confirmed by real-time RT-PCR and immunohistochemistry. RESULTS Cluster analysis allowed differentiation of alcoholic hepatitis from alcoholic steatosis. The gene expression profile of AH revealed 586 genes differentially expressed from AS and 211 genes differentially expressed from that of ND liver. In comparison, only 98 genes were differentially expressed in AS from ND. Novel differentially expressed genes in AH in comparison to ND and AS included claudins, osteopontin, CD209, selenoprotein and genes related to bile duct proliferation. Real-time RT-PCR confirmed up-regulation of IL-8, osteopontin, and TNFRSF14 and down-regulation of SAMeS and CD209. CONCLUSIONS This study has defined the intrahepatic gene expression profile of human alcoholic hepatitis and revealed a number of novel differentially expressed genes.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | | | | | | | | |
Collapse
|
25
|
Vanden Heuvel GB, Brantley JG, Alcalay NI, Sharma M, Kemeny G, Warolin J, Ledford AW, Pinson DM. Hepatomegaly in transgenic mice expressing the homeobox gene Cux-1. Mol Carcinog 2005; 43:18-30. [PMID: 15812824 PMCID: PMC4441415 DOI: 10.1002/mc.20091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cux-1 is a member of a family of homeobox genes structurally related to Drosophila Cut. Mammalian Cut proteins function as transcriptional repressors of genes specifying terminal differentiation in multiple cell lineages. In addition, mammalian Cut proteins serve as cell-cycle-dependent transcriptional factors in proliferating cells, where they function to repress expression of the cyclin kinase inhibitors p21 and p27. Previously we showed that transgenic mice expressing Cux-1 under control of the CMV immediate early gene promoter develop multiorgan hyperplasia. Here we show that mice constitutively expressing Cux-1 exhibit hepatomegaly correlating with an increase in cell proliferation. In addition, the increase in Cux-1 expression in transgenic livers was associated with a decrease in p21, but not p27, expression. Within transgenic livers, Cux-1 was ectopically expressed in a population of small cells, but not in mature hepatocytes, and many of these small cells expressed markers of proliferation. Transgenic livers showed an increase in alpha-smooth muscle actin, indicating activation of hepatic stellate cells, and an increase in cells expressing chromogranin-A, a marker for hepatocyte precursor cells. Morphological analysis of transgenic livers revealed inflammation, hepatocyte swelling, mixed cell foci, and biliary cell hyperplasia. These results suggest that increased expression of Cux-1 may play a role in the activation of hepatic stem cells, possibly through the repression of the cyclin kinase inhibitor p21.
Collapse
Affiliation(s)
- Gregory B Vanden Heuvel
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Clouston AD, Powell EE, Walsh MJ, Richardson MM, Demetris AJ, Jonsson JR. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 2005; 41:809-18. [PMID: 15793848 DOI: 10.1002/hep.20650] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms for progressive fibrosis and exacerbation by steatosis in patients with chronic hepatitis C (HCV) are still unknown. We hypothesized that proliferative blockade in HCV-infected and steatotic hepatocytes results in the default activation of hepatic progenitor cells (HPC), capable of differentiating into both biliary and hepatocyte lineages, and that the resultant ductular reaction promotes portal fibrosis. To study this concept, 115 liver biopsy specimens from subjects with HCV were scored for steatosis, inflammation, and fibrosis. Biliary epithelium and HPC were decorated by cytokeratin 7 immunoperoxidase, and the replicative state of hepatocytes was assessed by p21 and Ki-67 immunohistochemistry. A ductular reaction at the portal interface was common. There was a highly significant correlation between the area of ductular reaction and fibrosis stage (r = 0.453, P < .0001), which remained independently associated after multivariate analysis. HPC numbers also correlated with fibrosis (r = 0.544, P < .0001) and the ductular area (r = 0.624, P < .0001). Moreover, steatosis correlated with greater HPC proliferation (r = 0.372, P = .0004) and ductular reaction (r = 0.374, P < .0001) but was not an obligate feature. Impaired hepatocyte replication by p21 expression was independently associated with HPC expansion (P = .002) and increased with the body mass index (P < .001) and lobular inflammation (P = .005). In conclusion, the strong correlation between portal fibrosis and a periportal ductular reaction with HPC expansion, the exacerbation by steatosis, and the associations with impaired hepatocyte replication suggest that an altered regeneration pathway drives the ductular reaction. We believe this triggers fibrosis at the portal tract interface. This may be a stereotyped response of importance in other chronic liver diseases.
Collapse
Affiliation(s)
- Andrew D Clouston
- School of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Roskams T, Cassiman D, De Vos R, Libbrecht L. Neuroregulation of the neuroendocrine compartment of the liver. ACTA ACUST UNITED AC 2004; 280:910-23. [PMID: 15382010 DOI: 10.1002/ar.a.20096] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver progenitor cells as well as hepatic stellate cells have neuroendocrine features. Progenitor cells express chromogranin-A and neural cell adhesion molecule, parathyroid hormone-related peptide, S-100 protein, neurotrophins, and neurotrophin receptors, while hepatic stellate cells express synaptophysin, glial fibrillary acidic protein, neural cell adhesion molecule, nestin, neurotrophins, and their receptors. This phenotype suggests that these cell types form a neuroendocrine compartment of the liver, which could be under the control of the central nervous system. We recently showed that the parasympathetic nervous system promotes progenitor cell expansion after liver injury, since selective vagotomy reduces the number of progenitor cells after chemical injury in the rat. Similarly, after transplantation, which surgically denervates the liver, human livers that develop hepatitis have fewer progenitor cells than native, fully innervated livers with similar degrees of liver injury. There is also accumulating experimental evidence linking the autonomic system, in particular the sympathetic nervous system (SNS), with the pathogenesis of cirrhosis and its complications. Recently, it has been shown that hepatic stellate cells themselves respond to neurotransmitters. Moreover, inhibition of the SNS reduced fibrosis in carbon tetrachloride-induced liver injury. In view of the denervated state of transplanted livers, it is very important to unravel the neural control mechanisms of regeneration and fibrogenesis. Moreover, since there is a shortage of donor organs, a better understanding of the mechanisms of regeneration could have therapeutic possibilities, which could even obviate the need for orthotopic liver transplantation.
Collapse
Affiliation(s)
- Tania Roskams
- Department of Pathology, University of Leuven, Belgium.
| | | | | | | |
Collapse
|
28
|
Vertemati M, Minola E, Goffredi M, Sabatella G, Gambacorta M, Vizzotto L. Computerized morphometry of the cirrhotic liver: Comparative analysis in primary biliary cirrhosis, alcoholic cirrhosis, and posthepatitic cirrhosis. Microsc Res Tech 2004; 65:113-21. [PMID: 15605407 DOI: 10.1002/jemt.20110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibrosis and nodular regeneration are the hallmarks of liver cirrhosis. To assess the degree of fibrosis and the severity of the structural changes affecting parenchymal and extraparenchymal components in liver cirrhosis, a computerized morphometric model has been applied to liver specimens from patients undergoing liver transplantation for primary biliary cirrhosis, posthepatitic and alcoholic cirrhosis. Fifty-eight hepatectomy specimens from patients undergoing liver transplantation for cirrhosis were analyzed: 17 alcoholic, 28 posthepatitic (HBV-related and HCV-related cirrhosis), and 13 primary biliary cirrhoses. Liver specimens were fixed in 10% neutral-buffered formalin and embedded in paraffin. Sections were stained with chromotrope-aniline blue method and monoclonal antibodies against cytokeratin 7 and CD31. Volume fractions of parenchymal compartment and fibrosis were stereologically determined on the specimens stained with chromotrope-aniline blue method. Volume fractions of portal bile ducts, proliferated bile ductules, and hepatocytes with biliary metaplasia were measured on cytokeratin 7 stains, while volume fractions of capillary units have been evaluated on CD31 staining. Volume fraction of fibrosis was higher in primary biliary cirrhosis than in the other disease-induced cirrhosis. The main differences were related to immunohistochemical staining. Volume fraction of hepatocytes with biliary metaplasia was higher in HCV-related cirrhosis, whereas volume fractions of biliary structures were more prominent in HBV-related cirrhosis. Primary biliary cirrhosis was characterized by a reduced number of bile ducts and by a wider expression of cytokeratin 7 into periportal hepatocytes. Capillary units were more prominent in primary biliary cirrhosis than alcoholic and posthepatitic cirrhosis. Our computerized morphometric model well describes and quantifies the morphological alterations of the liver and it could represent an adjunctive tool to evaluate the degree of dysplastic phenomena involving parenchymal and extraparenchymal compartments.
Collapse
|
29
|
Seth D, Leo MA, McGuinness PH, Lieber CS, Brennan Y, Williams R, Wang XM, McCaughan GW, Gorrell MD, Haber PS. Gene expression profiling of alcoholic liver disease in the baboon (Papio hamadryas) and human liver. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:2303-17. [PMID: 14633604 PMCID: PMC1892389 DOI: 10.1016/s0002-9440(10)63587-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2003] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of alcoholic liver disease (ALD) is not well understood. Gene expression profiling has the potential to identify new pathways and altered molecules in ALD. Gene expression profiles of ALD in a baboon model and humans were compared using DNA arrays. Reverse transcriptase-polymerase chain reaction and immunohistochemistry were used for downstream analysis of array results. cDNA array analysis revealed differential expression of several novel genes and pathways in addition to genes known to be involved in ALD pathogenesis. Overall gene expression profiles were similar in both species, with a majority of genes involved with fibrogenesis and xenobiotic metabolism, as well as inflammation, oxidant stress, and cell signaling. Genes associated with stellate cell activation (collagens, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinase) were up-regulated in humans. Decreased expression of several metallothioneins was unexpected. Fourteen molecules related to the annexin family were up-regulated, including annexin A1 and A2. Immunofluorescence revealed a marked overexpression of annexin A2 in proliferating bile duct cells, hepatocyte cell surface, and selective co-localization with CD14-positive cells in human ALD. The gene expression profile of ALD is dominated by alcohol metabolism and inflammation and differs from other liver diseases. Annexins may play a role in the progression of fibrosis in ALD.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Ren C, Paronetto F, Mak KM, Leo MA, Lieber CS. Cytokeratin 7 staining of hepatocytes predicts progression to more severe fibrosis in alcohol-fed baboons. J Hepatol 2003; 38:770-5. [PMID: 12763370 DOI: 10.1016/s0168-8278(03)00144-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Not all alcoholic patients develop severe liver disease with fibrosis progressing to cirrhosis. It is of practical importance to determine whether some markers can predict progression of liver fibrosis. METHODS We used a baboon model that mimics human alcoholic liver disease. Cytokeratin 7 and 19 expression and fat deposition were investigated in serial liver biopsies of 18 animals undergoing prolonged alcohol administration (range 2-17 years) and in four controls. Fibrosis was graded histologically and was also assessed quantitatively by image analysis. RESULTS Ten animals did not show a progression of liver disease even after 17 years of alcohol administration, but eight animals fed alcohol exhibited a progression of liver disease from no fibrosis or perivenular fibrosis to septal fibrosis or cirrhosis within 7 years. In normal liver, cytokeratin 7 and cytokeratin 19 immunostaining is restricted to bile duct cells. Hepatocellular cytokeratin 7 was observed only in those animals which progressed to more severe stages of fibrosis and it anticipated this progression by 4.2 years on average. CONCLUSIONS In alcohol-fed baboons, cytokeratin 7 staining of hepatocytes (but not cytokeratin 19, nor fat deposition) predicts with a high degree of sensitivity and specificity progression to more severe liver disease.
Collapse
Affiliation(s)
- Chaoling Ren
- Alcohol Research Center, Veterans Affairs Medical Center, 130 West Kingsbridge Road (151-2), Bronx, NY 10468, USA
| | | | | | | | | |
Collapse
|
32
|
Su Q, Fu Y, Liu YF, Zhang W, Liu J, Wang CM. Laminin induces the expression of cytokeratin 19 in hepatocellular carcinoma cells growing in culture. World J Gastroenterol 2003; 9:921-9. [PMID: 12717831 PMCID: PMC4611398 DOI: 10.3748/wjg.v9.i5.921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the abnormal cytokeratin (CK) expression, emergence of CK19 with or without CK7, in liver parenchymal cells and the role of laminin (LN), a basement membrane protein, in this process.
METHODS: Six hepatocellular carcinoma (HCC) cell lines were examined for different CKs, LN and its receptor by immunocytochemistry and Western blotting. Double immunofluorescent reaction, laser-scanning confocal microscopy and an in vitro induction procedure were used to demonstrate the role of LN in regulating CK19 expression in these cells.
RESULTS: Immunoreactivities for CK8, CK18, CK7 and the receptor for LN were observed in all the six HCC cell lines examined. However, CK19 was merely found in four of the six cell lines, and was in any case associated with LN expression. Laser-scanning confocal microscopy demonstrated the concomitant presence of these two molecules in most of the positive cells. In the two HCC cell lines, originally negative for CK19, addition of LN to the culture medium resulted in an induction of CK19 in a dose-dependent manner. Both the artificially induced and the intrinsic production of CK19 were completely blocked by an antibody to LN.
CONCLUSION: LN can induce expression of CK19 in HCC cells in vitro, providing direct evidence for our hypothesis that the abnormal hepatocytic CK19 expression in situ is due to pathologic LN deposition.
Collapse
Affiliation(s)
- Qin Su
- Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The canals of Hering and bile ductules in human liver contain hepatic progenitor cells that can differentiate towards the biliary and hepatocytic lineage. Proliferation and differentiation of hepatic progenitor cells is referred to as 'activation' and this process occurs to a variable degree in almost all human liver diseases. Several studies indicate that hepatic progenitor cell activation in diseased liver is regulated by neural and neuroendocrine factors such as the vagal innervation. Analogous to oval cells in animal liver, there is evidence that human hepatic progenitor cells may be able to give rise to hepatocellular carcinoma and other liver tumors.
Collapse
Affiliation(s)
- Louis Libbrecht
- Department of Pathology and the Laboratory of Morphology and Molecular Pathology, University Hospitals, University of Leuven, 3000, Leuven, Belgium.
| | | |
Collapse
|
34
|
Zuckerman E, Misselevich I, Boss JH. Oval cell hyperplasia in asparaginase--induced liver damage. LIVER 2002; 22:363-4. [PMID: 12296971 DOI: 10.1034/j.1600-0676.2002.01612.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Mandache E, Vidulescu C, Gherghiceanu M, Dragomir P, Popescu LM. Neoductular progenitor cells regenerate hepatocytes in severely damaged liver: a comparative ultrastructural study. J Cell Mol Med 2002; 6:59-73. [PMID: 12003669 PMCID: PMC6740071 DOI: 10.1111/j.1582-4934.2002.tb00311.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In severely injured liver, stem cells give rise to progeny that tend to replace lost hepatocytes. Neoductular reaction appears as an inherent stage of liver reconstruction following severe damage caused by different pathological mechanisms. Few ultrastructural types of progenitor cells have been described, and some molecular phenotypes of progenitor stages have been characterized, but the details of the differentiation process are largely unknown. We prepared for light and electron microscopy examination human liver from biopsies of patients with chronic active hepatitis, and rat liver with allyl alcohol-induced periportal necrosis. We found that progenitor neoductular cells acquire the hepatocytic polarity pattern during a multi-step process apparently involving cell migration and dissolution of neoductular basement membrane. An intermediate stage with "mixed" ductular and hepatocytic polarity was described.
Collapse
Affiliation(s)
- E Mandache
- Victor Babes Institute of Pathology, Bucharest, Romania.
| | | | | | | | | |
Collapse
|
36
|
Libbrecht L, De Vos R, Cassiman D, Desmet V, Aerts R, Roskams T. Hepatic progenitor cells in hepatocellular adenomas. Am J Surg Pathol 2001; 25:1388-96. [PMID: 11684955 DOI: 10.1097/00000478-200111000-00006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatocellular adenoma is a benign tumor of the liver that has a small but not negligible risk of malignant transformation into hepatocellular carcinoma. In analogy with the established role of oval cells in hepatocarcinogenesis in rodent models, human hepatic progenitor cells may have a function in the development of liver tumors. To investigate this issue, we performed immunohistochemistry on biopsies of 10 consecutively resected hepatocellular adenomas using markers for hepatic progenitor cells. Sections of paraffin-embedded and frozen biopsies were stained using antibodies against cytokeratins 7, 8, 18, and 19, chromogranin-A, OV-6, and neural cell adhesion molecule. Hepatic progenitor cells were observed in five of 10 hepatocellular adenomas. These five tumors also contained cells with an immunohistochemical phenotype intermediate between hepatic progenitor cells and hepatocytes. Hepatic progenitor cells and intermediate hepatocyte-like cells were scattered throughout the tumors with a density that varied from area to area. Ultrastructural examination confirmed the presence of hepatic progenitor cells. Our study shows that hepatic progenitor cells are present in a considerable proportion of hepatocellular adenomas, supporting the hypothesis that human hepatic progenitor cells can play a role in the development of hepatocellular tumors.
Collapse
Affiliation(s)
- L Libbrecht
- Department of Pathology, University Hospitals, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Kitada T, Seki S, Iwai S, Yamada T, Sakaguchi H, Wakasa K. In situ detection of oxidative DNA damage, 8-hydroxydeoxyguanosine, in chronic human liver disease. J Hepatol 2001; 35:613-8. [PMID: 11690707 DOI: 10.1016/s0168-8278(01)00171-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS 8-Hydroxydeoxyguanosine (8-OHdG) is a promutagenic DNA lesion produced by oxygen radicals and is recognized as a useful marker in estimating DNA damage induced by oxidative stress. METHODS Hepatic expression of 8-OHdG was immunohistochemically investigated in control and diseased human livers. RESULTS While no positive immunolabeling for 8-OHdG was observed in control livers, 8-OHdG was widely evident in diseased livers. Nuclear expression of 8-OHdG in the hepatocytes and bile duct cells were found in various forms of chronic hepatitis. 8-OHdG-positive hepatocytes were especially abundant in the periportal area with piecemeal necrosis and prominent cell infiltration. The number of positive hepatocytes significantly increased with the progression of severity of chronic hepatitis activity (r(s)=0.68, P<0.05). In alcoholic liver disease, nuclear expression of 8-OHdG was detected in the hepatocytes in the area of alcoholic hepatitis. Regarding primary biliary cirrhosis, 8-OHdG was preferentially detected in the nuclei of injured bile ducts (11 of 12 cases, 91.7%) and occasionally (2 of 12 cases, 16.7%) in the nuclei of hepatocytes around the bile duct lesions. CONCLUSIONS These results indicate that oxidative DNA damage is common in various forms of chronic liver disease suggesting a possible link between chronic inflammation and hepatocarcinogenesis.
Collapse
Affiliation(s)
- T Kitada
- Third Department of Internal Medicine, Osaka City University Medical School, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The existence of a liver stem cell population has only gained credence recently, following the results of animal experiments. These cells are thought to reside in the terminal bile ductules (canals of Hering). Hepatocyte division is responsible for liver regeneration after most causes of injury. However, stem cells may contribute to hepatocyte regeneration, or even take over this role if the liver injury is severe and associated with an impairment of hepatocyte proliferation as in cirrhosis or submassive/massive necrosis, due to drugs, toxins or viruses. "Oval" cells are the descendants of the stem cells and are found in the portal and periportal regions in experimental animals within days of the liver injury. These cells proliferate to form narrow ductules, which may stain positively for biliary cytokeratins CK 19, and radiate out into the damaged parenchyma. Both in vitro and in vivo animal studies now suggest that oval cells can differentiate into bile ductular cells or hepatocytes to allow repopulation of the injured liver. As the oval cells differentiate into hepatocytes they may show positive staining for pyruvate kinase isoenzyme L-PK, albumin and alpha-fetoprotein. There is also growing evidence that bone marrow stem cells may contribute to liver regeneration. The possible involvement of hepatic stem cells in the development of dysplastic nodules, hepatocellular carcinoma and cholangiocarcinoma has been suggested but remains highly controversial. Oval cell isolation and culture techniques, together with stem cell transplantation strategies, may in the future provide novel treatments for individuals with inherited and acquired hepatic disorders.
Collapse
Affiliation(s)
- C J Vessey
- Department of Anatomical Pathology, University of Cape Town, South Africa
| | | |
Collapse
|
39
|
Libbrecht L, Desmet V, Van Damme B, Roskams T. Deep intralobular extension of human hepatic 'progenitor cells' correlates with parenchymal inflammation in chronic viral hepatitis: can 'progenitor cells' migrate? J Pathol 2001. [PMID: 11054721 DOI: 10.1002/1096-9896(2000)9999:9999%3c::aid-path700%3e3.0.co;2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ductular reaction and putative progenitor cells (or 'progenitor cells'), which are presumed to be the human counterpart of the oval cells in rat liver, have been discerned in various human liver diseases, including chronic viral hepatitis. Since in experimental models of chronic hepatitis the activation of oval cells is correlated with the inflammatory infiltrate, this study investigated whether there is a correlation in chronic viral hepatitis between the number of 'progenitor cells' extending into the lobule and the severity of parenchymal inflammation, on the one hand, and the extent of ductular reaction and the severity of interface hepatitis, on the other hand. Liver biopsies of 55 patients with chronic hepatitis B and/or C were used. The severity of parenchymal inflammation and of interface hepatitis was semiquantitatively graded on a haematoxylin and eosin-stained paraffin section, while the number of 'progenitor cells' and the extent of the ductular reaction were assessed on a serial section stained for cytokeratin (CK) 7. In addition, more extensive phenotyping of 'progenitor cells' was performed on sections from frozen material from five patients, using antibodies against CK7, CK8, CK18, CK19, chromogranin-A, and the rat oval cell marker OV-6. The number of more centrally located 'progenitor cells' correlated significantly with the severity of the parenchymal inflammation, while the extent of the ductular reaction correlated significantly with the severity of interface hepatitis. These findings suggest that in chronic viral hepatitis, inflammation plays a role in 'progenitor cell' activation and its topography. In cases with moderate and severe lobular inflammation, 'progenitor cells' were strikingly scattered throughout the parenchyma and surrounded by intermediate hepatocyte-like cells, suggesting their migration into the parenchyma and their differentiation towards the hepatocytic lineage.
Collapse
Affiliation(s)
- L Libbrecht
- Laboratory for Histo- and Cytochemistry, University of Leuven, Minderbroedersstraat 12, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
40
|
Libbrecht L, Desmet V, Van Damme B, Roskams T. Deep intralobular extension of human hepatic 'progenitor cells' correlates with parenchymal inflammation in chronic viral hepatitis: can 'progenitor cells' migrate? J Pathol 2000; 192:373-8. [PMID: 11054721 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path700>3.0.co;2-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ductular reaction and putative progenitor cells (or 'progenitor cells'), which are presumed to be the human counterpart of the oval cells in rat liver, have been discerned in various human liver diseases, including chronic viral hepatitis. Since in experimental models of chronic hepatitis the activation of oval cells is correlated with the inflammatory infiltrate, this study investigated whether there is a correlation in chronic viral hepatitis between the number of 'progenitor cells' extending into the lobule and the severity of parenchymal inflammation, on the one hand, and the extent of ductular reaction and the severity of interface hepatitis, on the other hand. Liver biopsies of 55 patients with chronic hepatitis B and/or C were used. The severity of parenchymal inflammation and of interface hepatitis was semiquantitatively graded on a haematoxylin and eosin-stained paraffin section, while the number of 'progenitor cells' and the extent of the ductular reaction were assessed on a serial section stained for cytokeratin (CK) 7. In addition, more extensive phenotyping of 'progenitor cells' was performed on sections from frozen material from five patients, using antibodies against CK7, CK8, CK18, CK19, chromogranin-A, and the rat oval cell marker OV-6. The number of more centrally located 'progenitor cells' correlated significantly with the severity of the parenchymal inflammation, while the extent of the ductular reaction correlated significantly with the severity of interface hepatitis. These findings suggest that in chronic viral hepatitis, inflammation plays a role in 'progenitor cell' activation and its topography. In cases with moderate and severe lobular inflammation, 'progenitor cells' were strikingly scattered throughout the parenchyma and surrounded by intermediate hepatocyte-like cells, suggesting their migration into the parenchyma and their differentiation towards the hepatocytic lineage.
Collapse
Affiliation(s)
- L Libbrecht
- Laboratory for Histo- and Cytochemistry, University of Leuven, Minderbroedersstraat 12, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
41
|
22 Hepatitis C and iron. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1874-5326(00)80026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:537-41. [PMID: 10027411 PMCID: PMC1849988 DOI: 10.1016/s0002-9440(10)65299-6] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The risk of developing hepatocellular carcinoma is significantly increased in patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C infection. The precise mechanisms underlying the development of hepatocellular carcinoma in these conditions are not well understood. Stem cells within the liver, termed oval cells, are involved in the pathogenesis of hepatocellular carcinoma in animal models and may be important in the development of hepatocellular carcinoma in human chronic liver diseases. The aims of this study were to determine whether oval cells could be detected in the liver of patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C, and whether there is a relationship between the severity of the liver disease and the number of oval cells. Oval cells were detected using histology and immunohistochemistry in liver biopsies from patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. Oval cells were not observed in normal liver controls. Oval cell numbers increased significantly with the progression of disease severity from mild to severe in each of the diseases studied. We conclude that oval cells are frequently found in subjects with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. There is an association between severity of liver disease and increase in the number of oval cells consistent with the hypothesis that oval cell proliferation is associated with increased risk for development of hepatocellular carcinoma in chronic liver disease.
Collapse
Affiliation(s)
- K N Lowes
- University Department of Medicine, Fremantle Hospital, Western Australia, Australia
| | | | | | | |
Collapse
|
43
|
Alison M, Golding M, Sarraf C. Wound healing in the liver with particular reference to stem cells. Philos Trans R Soc Lond B Biol Sci 1998; 353:877-94. [PMID: 9684285 PMCID: PMC1692283 DOI: 10.1098/rstb.1998.0252] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of liver regeneration in response to the loss of hepatocytes is widely acknowledged, and this is usually accomplished by the triggering of normally proliferatively quiescent hepatocytes into the cell cycle. However, when regeneration is defective, tortuous ductular structures, initially continuous with the biliary tree, proliferate and migrate into the surrounding hepatocyte parenchyma. In humans, these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals, similar ductal cells are usually called oval cells, and their association with impaired regeneration has led to the conclusion that they are the progeny of facultative stem cells. Oval cells are of considerable biological interest as they may represent a target population for hepatic carcinogens, and they may also be useful vehicles for ex vivo gene therapy for the correction of inborn errors of metabolism. This review proposes that the liver harbours stem cells that are located in the biliary epithelium, that oval cells are the progeny of these stem cells, and that these cells can undergo massive expansion in their numbers before differentiating into hepatocytes. This is a conditional process that only occurs when the regenerative capacity of hepatocytes is overwhelmed, and thus, unlike the intestinal epithelium, the liver is not behaving as a classical, continually renewing, stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the ability to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.
Collapse
Affiliation(s)
- M Alison
- Histopathology Department, Imperial College School of Medicine, London, UK
| | | | | |
Collapse
|
44
|
Golding M, Sarraf C, Lalani EN, Alison MR. Reactive biliary epithelium: the product of a pluripotential stem cell compartment? Hum Pathol 1996; 27:872-84. [PMID: 8816880 DOI: 10.1016/s0046-8177(96)90212-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liver parenchymal cells (hepatocytes) have a low rate of turnover, but can nevertheless mount a rapid and efficient regenerative response. However, in some cases of extreme hepatotoxicity hepatocyte proliferation is restricted or even abolished, and instead biliary epithelial cells, commonly referred to as ductular oval cells, migrate into the periportal and midzonal parenchyma. Initially these cells behave as authentic biliary epithelium with expression of the biliary cytokeratin intermediate filaments, but then show hepatocytic traits such as alpha fetoprotein and albumin synthesis. Thereafter these biliary ducts rapidly vanish to be replaced by either small hepatocytes or intestinal-type cells. The proliferation and differentiation of oval cells is probably strongly influenced by paracrine signalling from liver stellate cells. Oval cells appear to be the progeny of facultative pluripotential stem cells which have the lineage potential of uncommitted gastrointestinal stem cells; these stem cells are likely to be located in the cholangioles and small interlobular bile ducts. Oval cells thus constitute an important reserve compartment for hepatocytes when hepatocyte regeneration is compromised.
Collapse
Affiliation(s)
- M Golding
- Department of Histopathology, Royal Postgraduate Medical School, London, UK
| | | | | | | |
Collapse
|
45
|
Jensen K, Gluud C. The Mallory body: morphological, clinical and experimental studies (Part 1 of a literature survey). Hepatology 1994; 20:1061-77. [PMID: 7927209 DOI: 10.1002/hep.1840200440] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To aid understanding of markers of disease and predictors of outcome in alcohol-exposed systems, we undertook a literature survey of more than 700 articles to view the morphological characteristics and the clinical and experimental epidemiology of the Mallory body. Mallory bodies are filaments of intermediate diameter that contain intermediate filament components (e.g., cytokeratins) observable by conventional light microscopy or immunohistochemical methods, identical in structure regardless of initiating factors or putative pathogenesis. Although three morphological types can be identified under electron microscopy (with fibrillar structure parallel, random or absent), they remain stereotypical manifestations of hepatocyte injury. A summary of the conditions associated with Mallory bodies in the literature and their validity and potential etiological relationships is presented and discussed, including estimates on the combined light microscopic and immunohistochemical prevalences and kinetics. Emphasis is placed on proper confounder control (in particular, alcohol history), which is highly essential but often inadequate. These conditions include (mean prevalence of Mallory bodies in parentheses): Indian childhood cirrhosis (73%), alcoholic hepatitis (65%), alcoholic cirrhosis (51%), Wilson's disease (25%), primary biliary cirrhosis (24%), nonalcoholic cirrhosis (24%), hepatocellular carcinoma (23%), morbid obesity (8%) and intestinal bypass surgery (6%). Studies in alcoholic hepatitis strongly suggest a hit-and-run effect of alcohol, whereas other chronic liver diseases show evidence of gradual increase in prevalence of Mallory bodies with severity of hepatic pathology. Mallory bodies in cirrhosis do not imply alcoholic pathogenesis. Obesity, however, is associated with alcoholism and diabetes, and Mallory bodies are only present in diabetic patients if alcoholism or obesity complicates the condition. In addition, case studies on diseases in which Mallory bodies have been identified, along with pharmacological side effects and experimental induction of Mallory bodies by various antimitotic and oncogenic chemicals, are presented. Mallory bodies occur only sporadically in abetalipoproteinemia, von Gierke's disease and focal nodular hyperplasia and during hepatitis due to calcium antagonists or perhexiline maleate. Other conditions and clinical drug side effects are still putative. Finally, a variety of experimental drugs have been developed that cause Mallory body formation, but markedly different cell dynamics and metabolic pathways may raise questions about the relevance of such animal models for human Mallory body formation. In conclusion, the Mallory body is indicative but not pathognomonic of alcohol involvement. A discussion on theories of development and pathological significance transcending the clinical frameworks will be presented in a future paper.
Collapse
Affiliation(s)
- K Jensen
- Department of Medical Gastroenterology, Hvidovre University Hospital, Denmark
| | | |
Collapse
|