1
|
Ranpal S, von Bargen S, Gilles S, Luschkova D, Landgraf M, Traidl-Hoffmann C, Büttner C, Damialis A, Jochner-Oette S. Pollen production of downy birch (Betula pubescens Ehrh.) along an altitudinal gradient in the European Alps. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02483-7. [PMID: 37154946 DOI: 10.1007/s00484-023-02483-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
High-altitude environments are highly susceptible to the effects of climate change. Thus, it is crucial to examine and understand the behaviour of specific plant traits along altitudinal gradients, which offer a real-life laboratory for analysing future impacts of climate change. The available information on how pollen production varies at different altitudes in mountainous areas is limited. In this study, we investigated pollen production of 17 birch (Betula pubescens Ehrh.) individuals along an altitudinal gradient in the European Alps. We sampled catkins at nine locations in the years 2020-2021 and monitored air temperatures. We investigated how birch pollen, flowers and inflorescences are produced in relation to thermal factors at various elevations. We found that mean pollen production of Betula pubescens Ehrh. varied between 0.4 and 8.3 million pollen grains per catkin. We did not observe any significant relationships between the studied reproductive metrics and altitude. However, minimum temperature of the previous summer was found to be significantly correlated to pollen (rs = 0.504, p = 0.039), flower (rs = 0.613, p = 0.009) and catkin (rs = 0.642, p = 0.005) production per volume unit of crown. Therefore, we suggest that temperature variability even at such small scales is very important for studying the response related to pollen production.
Collapse
Affiliation(s)
- Surendra Ranpal
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072, Eichstätt, Germany.
| | - Susanne von Bargen
- Albrecht Daniel Thaer-Institute for Crop and Animal Sciences, Division Phytomedicine, Humboldt-University of Berlin, Berlin, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daria Luschkova
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Maria Landgraf
- Albrecht Daniel Thaer-Institute for Crop and Animal Sciences, Division Phytomedicine, Humboldt-University of Berlin, Berlin, Germany
| | | | - Carmen Büttner
- Albrecht Daniel Thaer-Institute for Crop and Animal Sciences, Division Phytomedicine, Humboldt-University of Berlin, Berlin, Germany
| | - Athanasios Damialis
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Susanne Jochner-Oette
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072, Eichstätt, Germany
| |
Collapse
|
2
|
Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S. Oak masting drivers vary between populations depending on their climatic environments. Curr Biol 2023; 33:1117-1124.e4. [PMID: 36764300 DOI: 10.1016/j.cub.2023.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.
Collapse
Affiliation(s)
- Emilie Fleurot
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Jean R Lobry
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Vincent Boulanger
- Département Recherche, Développement et Innovation, Office National des Forêts, 77300 Fontainebleau, France
| | - François Debias
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Camille Mermet-Bouvier
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Thomas Caignard
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Sylvain Delzon
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Marie-Claude Bel-Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France.
| |
Collapse
|
3
|
Ito Y, Kudo G. The selective advantage of mast flowering in Veratrum album subsp. oxysepalum: Implications of the predator satiation hypothesis. AMERICAN JOURNAL OF BOTANY 2022; 109:2082-2092. [PMID: 36263964 DOI: 10.1002/ajb2.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Synchronous, highly variable flower or seed production among years within a population (i.e., masting) has been reported in numerous perennial plants. Although masting provides ecological advantages such as enhancing pollination efficiency and/or escape from predator attack, little is known about the degree of these advantages and variations in masting behavior among populations of conspecific plants. METHODS We determined flowering ramet density and reproductive success (fruit-set success and herbivorous damage) of a perennial herb, Veratrum album subsp. oxysepalum, across six lowland and six alpine populations in northern Japan during 2-3 years. We then analyzed the relationship between floral density and reproductive success to assess the ecological significance of mast flowering. Flowering intervals of individual plants were estimated by counting annual scars on rhizomes. RESULTS Most populations had mast flowering, but the intervals between flowering for individual plants were shorter in the alpine populations than in the lowland populations. Floral damage by stem borers (dipteran larvae) and seed predation by lepidopteran larvae were intense in the lowland populations. Seed production of individual ramets increased with higher floral density owing to the effective avoidance of floral-stem damage and seed predation. Although stem borers were absent in the alpine habitat, seed predation decreased with higher floral density also in the alpine populations. Pollination success was independent of floral density in both of the alpine and lowland populations. CONCLUSIONS These results strongly support the predator satiation hypothesis for mast flowering by this species.
Collapse
Affiliation(s)
- Yohei Ito
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
4
|
Invasive species and thermal squeeze: distribution of two invasive predators and drivers of ship rat (Rattus rattus) invasion in mid-elevation Fuscospora forest. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractGlobal climate change could alter the range, abundance, and interactions of species, potentially favouring invasive species and harming endemics. Ship rats (Rattus rattus) are one of the world's worst invasive predators but are typically absent from Aotearoa New Zealand's native Fuscospora cliffortioides (mountain beech) forest above 1000 m. Stoats (Mustela erminea) are another damaging invasive predator in Aotearoa New Zealand and prey on ship rats. We analyse community trapping records 2007–2020 to investigate the spatial and temporal distribution of ship rats and their key predator stoats at Craigieburn Forest Park. We document an invasion of ship rats after 2010 at Craigieburn and hypothesised two drivers of the increase in rat abundance: (1) more frequent mountain beech high-seed years providing more food for rats; and (2) warming winter temperatures allowing rats to invade areas that were previously too cold. We were unable to test a third possible driver (stoat trapping resulting in top-down meso-predator release) due to the nature of the data available. Rats were more common at low altitudes near streams, and stoats were more common at higher-altitudes on forest edges. Average winter temperature, but not seedfall, increased significantly at Craigieburn mid-elevations since 1972. The best predictor of annual rat catch was higher average winter temperatures interacting with high seedfall. This shows a key interaction between two global change drivers: warming temperatures have allowed exotic ship rats to expand into areas where they were previously absent, increasing the resultant "thermal squeeze" of predation on sensitive endemic birds at higher-altitude sites.
Collapse
|
5
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
6
|
Köhnke MC, Binny RN, Holland EP, James A. The necessity of tailored control of irrupting pest populations driven by pulsed resources. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractResource pulses are widespread phenomena in diverse ecosystems. Irruptions of generalist consumers and corresponding generalist predators often follow such resource pulses. This can have severe implications on the ecosystem and also on the spread of diseases or on regional famines. Suitable management strategies are necessary to deal with these systems. In this study, we develop a general model to investigate optimal control for such a system and apply this to a case study from New Zealand. In particular, we consider the dynamics of beech masting (episodic synchronous seed production) leading to rodent outbreaks and subsequent stoat (Mustela erminea) irruptions. Here, stoat control happens via secondary poisoning. The results show that the main driver of the optimal control timing (June) is the population density of the control vector. Intermediate control levels are superior to higher levels if the generalist consumer is necessary as a control vector. Finally, we extend the model to a two-patch metapopulation model, which indicates that, as a consequence of the strong vector dependence, a strategy of alternating control patches yields better results than static control. This highlights that besides control level, also the design impacts the control success. The results presented in this study reveal important insights for proper pest management in the New Zealand case study. However, they also generally indicate the necessity of tailored control in such systems.
Collapse
|
7
|
Holland EP, Binny RN, James A. Optimal control of irrupting pest populations in a climate-driven ecosystem. PeerJ 2019; 6:e6146. [PMID: 30595990 PMCID: PMC6304269 DOI: 10.7717/peerj.6146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
Irruptions of small consumer populations, driven by pulsed resources, can lead to adverse effects including the decline of indigenous species or increased disease spread. Broad-scale pest management to combat such effects benefits from forecasting of irruptions and an assessment of the optimal control conditions for minimising consumer abundance. We use a climate-based consumer-resource model to predict irruptions of a pest species (Mus musculus) population in response to masting (episodic synchronous seed production) and extend this model to account for broad-scale pest control of mice using toxic bait. The extended model is used to forecast the magnitude and frequency of pest irruptions under low, moderate and high control levels, and for different timings of control operations. In particular, we assess the optimal control timing required to minimise the frequency with which pests reach 'plague' levels, whilst avoiding excessive toxin use. Model predictions suggest the optimal timing for mouse control in beech forest, with respect to minimising plague time, is mid-September. Of the control regimes considered, a seedfall driven biannual-biennial regime gave the greatest reduction in plague time and plague years for low and moderate control levels. Although inspired by a model validated using house mouse populations in New Zealand forests, our modelling approach is easily adapted for application to other climate-driven systems where broad-scale control is conducted on irrupting pest populations.
Collapse
Affiliation(s)
| | | | - Alex James
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.,Te Pūnaha Matatini, New Zealand
| |
Collapse
|
8
|
|
9
|
Allen RB, Millard P, Richardson SJ. A Resource Centric View of Climate and Mast Seeding in Trees. PROGRESS IN BOTANY VOL. 79 2017. [DOI: 10.1007/124_2017_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Monks A, Monks JM, Tanentzap AJ. Resource limitation underlying multiple masting models makes mast seeding sensitive to future climate change. THE NEW PHYTOLOGIST 2016; 210:419-430. [PMID: 26725252 DOI: 10.1111/nph.13817] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Mechanistic models can help resolve controversy over the responses of mast seeding plants to future environmental change. We evaluate drivers of mast seeding by: developing and validating a new mechanistic resource-based model of mast seeding using four 40-yr Chionochloa (snow tussock) datasets; and comparing the performance of competing empirically-based statistical models, that aim to approximate the mechanisms underlying mast seeding, in explaining simulated and observed data. Our mechanistic model explained 90-99% of the variation in Chionochloa flowering, with higher rates of stored resource mobilisation and lower probability of climatic induction of flowering occurring at lower fertility sites. Inter-annual variation in floral induction and the degree to which seeding is resource-limited explained shifts in the relative performance of different empirical models fitted to data simulated from the mechanistic model. Empirical models explicitly capturing the interaction between the floral induction cue and internal resource state underlying the resource-limited induction mechanism had > 8.7× the statistical support of alternatives when fitted to Chionochloa datasets. We find support for resource-limited floral induction with multiple empirical models consistent with this same mechanism. As both resource acquisition and flowering cues are climate sensitive, we expect climate change to impact upon patterns of mast seeding.
Collapse
Affiliation(s)
- Adrian Monks
- Landcare Research, Private Bag 1930, Dunedin, 9054, New Zealand
| | - Joanne M Monks
- Department of Conservation, PO Box 5244, Dunedin, 9058, New Zealand
| | - Andrew J Tanentzap
- Landcare Research, Private Bag 1930, Dunedin, 9054, New Zealand
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
11
|
Bell DM, Clark JS. Seed predation and climate impacts on reproductive variation in temperate forests of the southeastern USA. Oecologia 2016; 180:1223-34. [PMID: 26747267 DOI: 10.1007/s00442-015-3537-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022]
Abstract
Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of interannual climate variation on seed abortion rates, (2) assess the impact of seed density on predation rates, and (3) examine the degree to which density-dependent seed predation would amplify or dampen interannual variation in fecundity associated with seed abortion. We used a 19-year study of seed abortion and pre-dispersal predation rates by insects and vertebrates (birds and rodents) for five temperate tree species across forest plots from the North Carolina Piedmont to the Southern Appalachian Mountains in the southeastern USA. We found that rates of seed abortion and predation increased reproductive variation for oaks (Quercus species). Probability of seed abortion was greatest during years with cool, dry springs. Responses of seed predation on Quercus species to current year's seed density varied by species, but exhibited positive density-dependence to previous year's seed density consistent with numerical responses of seed predators. Seed abortion and predation rates for two drupe species responded little to variation in climate or seed density, respectively. Given that predation increased interannual variation in seed availability and the negative density-dependence to previous year's seed density, our results indicate that consistent numerical responses of oak seed predators may amplify interannual variation due to climate-mediated processes like seed abortion.
Collapse
Affiliation(s)
- David M Bell
- Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA.
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Zwolak R, Bogdziewicz M, Wróbel A, Crone EE. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 2015; 180:749-58. [PMID: 26612728 DOI: 10.1007/s00442-015-3511-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Aleksandra Wróbel
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Elizabeth E Crone
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA.,Department of Biology, Tufts University, 163 Packard Ave, Medford, MA, 02155, USA
| |
Collapse
|
13
|
Holland EP, James A, Ruscoe WA, Pech RP, Byrom AE. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems. PLoS One 2015; 10:e0119139. [PMID: 25785866 PMCID: PMC4364896 DOI: 10.1371/journal.pone.0119139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.
Collapse
Affiliation(s)
- E. Penelope Holland
- Landcare Research, Lincoln, Canterbury, New Zealand
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Alex James
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| | - Wendy A. Ruscoe
- Landcare Research, Lincoln, Canterbury, New Zealand
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | | | | |
Collapse
|
14
|
Tanentzap AJ, Lee WG, Coomes DA, Mason NWH. Masting, mixtures and modes: are two models better than one? OIKOS 2014. [DOI: 10.1111/oik.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Andrew J. Tanentzap
- Landcare Research; Private Bag 1930 Dunedin 9054 New Zealand
- Dept of Plant Sciences; Univ. of Cambridge; Cambridge CB2 3EA UK
| | - William G. Lee
- Landcare Research; Private Bag 1930 Dunedin 9054 New Zealand
- School of Biological Sciences, Univ. of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - David A. Coomes
- Dept of Plant Sciences; Univ. of Cambridge; Cambridge CB2 3EA UK
| | | |
Collapse
|
15
|
Allen RB, Hurst JM, Portier J, Richardson SJ. Elevation-dependent responses of tree mast seeding to climate change over 45 years. Ecol Evol 2014; 4:3525-37. [PMID: 25478145 PMCID: PMC4224528 DOI: 10.1002/ece3.1210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/04/2022] Open
Abstract
We use seed count data from a New Zealand mono-specific mountain beech forest to test for decadal trends in seed production along an elevation gradient in relation to changes in climate. Seedfall was collected (1965 to 2009) from seed trays located on transect lines at fixed elevations along an elevation gradient (1020 to 1370 m). We counted the number of seeds in the catch of each tray, for each year, and determined the number of viable seeds. Climate variables were obtained from a nearby (<2 km) climate station (914-m elevation). Variables were the sum or mean of daily measurements, using periods within each year known to correlate with subsequent interannual variation in seed production. To determine trends in mean seed production, at each elevation, and climate variables, we used generalized least squares (GLS) regression. We demonstrate a trend of increasing total and viable seed production, particularly at higher elevations, which emerged from marked interannual variation. Significant changes in four seasonal climate variables had GLS regression coefficients consistent with predictions of increased seed production. These variables subsumed the effect of year in GLS regressions with a greater influence on seed production with increasing elevation. Regression models enforce a view that the sequence of climate variables was additive in their influence on seed production throughout a reproductive cycle spanning more than 2 years and including three summers. Models with the most support always included summer precipitation as the earliest variable in the sequence followed by summer maximum daily temperatures. We interpret this as reflecting precipitation driven increases in soil nutrient availability enhancing seed production at higher elevations rather than the direct effects of climate, stand development or rising atmospheric CO2 partial pressures. Greater sensitivity of tree seeding at higher elevations to changes in climate reveals how ecosystem responses to climate change will be spatially variable.
Collapse
Affiliation(s)
| | | | - Jeanne Portier
- Centre d'Etude de la Forêt, Université du Québec à Montréal C.P. 8888, Montréal, Québec, H3C 3P8, Canada
| | | |
Collapse
|
16
|
Crone EE, Rapp JM. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann N Y Acad Sci 2014; 1322:21-34. [DOI: 10.1111/nyas.12465] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Joshua M. Rapp
- Department of Biology; Tufts University; Medford Massachusetts
| |
Collapse
|
17
|
Veale AJ, McMurtrie P, Edge KA, Clout MN. The effects of mice on stoats in southern beech forests. AUSTRAL ECOL 2014. [DOI: 10.1111/aec.12161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A. J. Veale
- School of Biological Sciences; University of Auckland; 261 Morrin Rd, St Johns Auckland 1071 New Zealand
| | | | - K.-A. Edge
- Department of Conservation; Te Anau New Zealand
| | - M. N. Clout
- School of Biological Sciences; University of Auckland; 261 Morrin Rd, St Johns Auckland 1071 New Zealand
| |
Collapse
|
18
|
Canham CD, Ruscoe WA, Wright EF, Wilson DJ. Spatial and temporal variation in tree seed production and dispersal in a New Zealand temperate rainforest. Ecosphere 2014. [DOI: 10.1890/es13-00384.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 2013; 174:665-77. [DOI: 10.1007/s00442-013-2821-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/28/2013] [Indexed: 11/27/2022]
|
20
|
Tompkins DM, Byrom AE, Pech RP. Predicted responses of invasive mammal communities to climate-related changes in mast frequency in forest ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1075-1085. [PMID: 23967576 DOI: 10.1890/12-0915.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Predicting the dynamics and impacts of multiple invasive species can be complex because ecological relationships, which occur among several trophic levels, are often incompletely understood. Further, the complexity of these trophic relationships exacerbates our inability to predict climate change effects on invaded ecosystems. We explore the hypothesis that interactions between two global change drivers, invasive vertebrates and climate change, will potentially make matters worse for native biodiversity. In New Zealand beech (Nothofagus spp.) forests, a highly irruptive invasive mammal community is driven by multi-annual resource pulses of beech seed (masting). Because mast frequency is predicted to increase with climate change, we use this as a model system to explore the extent to which such effects may influence invasive vertebrate communities, and the implications of such interactions for native biodiversity and its management. We build on an established model of trophic interactions in the system, combining it with a logistic probability mast function, the parameters of which were altered to simulate either contemporary conditions or conditions of more or less frequent masting. The model predicts that increased mast frequency will lead to populations of a top predator (the stoat) and a mesopredator (the ship rat) becoming less irruptive and being maintained at appreciably higher average abundances in this forest type. In addition, the ability of both current and in-development management approaches to suppress invasive mammals is predicted to be compromised. Because invasive mammals are key drivers of native fauna extinction in New Zealand, with the additional loss of associated functions such as pollination and seed dispersal, these predictions imply potentially serious adverse impacts of climate change for the conservation of biodiversity and ecosystem function. Our study also highlights the importance of long-term monitoring data for assessing and managing future impacts of global change drivers.
Collapse
|