1
|
Baddouri L, Hannig M. Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective. NPJ Biofilms Microbiomes 2024; 10:148. [PMID: 39681550 DOI: 10.1038/s41522-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.
Collapse
Affiliation(s)
- Lamyae Baddouri
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Pharmacy, Saarland University, Saarbrucken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
| |
Collapse
|
2
|
Abstract
BACKGROUND Anaerobic culture has been critical in our understanding of the oral microbiotas. HIGHLIGHT Studies in advanced periodontitis in the 1970's revealed microbial complexes that associated with different clinical presentations. Taxonomy studies identified species newly-observed in periodontitis as Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter (Wolinella) rectus and other Campylobacter species, and Tannerella (Bacteroides) forsythia. Anaerobic culture of initial periodontitis showed overlap in the microbiota with gingivitis, and added Selenomonas noxia and Filifactor alocis as putative periodontal pathogens. Porphyromonas gingivalis and T. forsythia were found to be associated with initial periodontitis in adults. The dominant microbiota of dental caries differs from that of periodontitis. The major cariogenic species are acidogenic and acid tolerant species particularly Streptococcus mutans, and Lactobacillus and Bifidobacterium species. Anaerobic culture of severe early childhood caries revealed a widely diverse microbiota, comparable to that observed using cloning and sequencing. The PCR-based cloning approach, however, underestimated Actinobacteria compared with culture. Only a subset of the caries-associated microbiota was acid tolerant, with different segments of the microbiota cultured on blood agar compared to a low pH acid agar. While the major caries-associated species was S. mutans, a new species, Scardovia wiggsiae, was significantly associated with early childhood caries. Higher counts of S. wiggsiae were also observed in initial white spot carious lesions in adolescents. CONCLUSION In periodontitis and dental caries, anaerobic culture studies of advanced disease provided a comprehensive analysis of the microbiota of these infections. Anaerobic culture highlighted the limitation of PCR with standard primers that underestimate detection of Actinobacteria.
Collapse
Affiliation(s)
- Anne C R Tanner
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts 02142, USA ; Department of Oral Medicine, Infection and Immunity, Harvard School Dental Medicine, Boston MA 02115, USA
| |
Collapse
|
3
|
Butler CA, Dashper SG, Zhang L, Seers CA, Mitchell HL, Catmull DV, Glew MD, Heath JE, Tan Y, Khan HSG, Reynolds EC. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development. PLoS One 2014; 9:e111168. [PMID: 25375181 PMCID: PMC4222909 DOI: 10.1371/journal.pone.0111168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur) superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator). Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM). The binding of hemin resulted in conformational changes of Zn(II)Har and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455) relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(II)Har bound the promoter region of dnaA (PGN_0001), one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.
Collapse
Affiliation(s)
- Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Helen L. Mitchell
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Deanne V. Catmull
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jacqueline E. Heath
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Yan Tan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
4
|
Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 2013; 25:65-72. [PMID: 23684627 DOI: 10.1016/j.smim.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
5
|
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27:409-19. [PMID: 23134607 DOI: 10.1111/j.2041-1014.2012.00663.x] [Citation(s) in RCA: 778] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Recent advancements in the periodontal research field are consistent with a new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex'. In this polymicrobial synergy, different members or specific gene combinations within the community fulfill distinct roles that converge to shape and stabilize a disease-provoking microbiota. One of the core requirements for a potentially pathogenic community to arise involves the capacity of certain species, termed 'keystone pathogens', to modulate the host response in ways that impair immune surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate the virulence of the entire microbial community through interactive communication with accessory pathogens. Other important core functions for pathogenicity require the expression of diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and proinflammatory surface structures/ligands), which in combination act as community virulence factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial community that elicits a non-resolving and tissue-destructive host response. On the basis of the fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial synergy and dysbiosis, we term it the PSD model.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
6
|
New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 2011; 78:194-203. [PMID: 22057871 DOI: 10.1128/aem.06813-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A significant number of microorganisms from the human oral cavity remain uncultivated. This is a major impediment to the study of human health since some of the uncultivated species may be involved in a variety of systemic diseases. We used a range of innovations previously developed to cultivate microorganisms from the human oral cavity, focusing on anaerobic species. These innovations include (i) in vivo cultivation to specifically enrich for species actively growing in the oral cavity (the "minitrap" method), (ii) single-cell long-term cultivation to minimize the effect of fast-growing microorganisms, and (iii) modifications of conventional enrichment techniques, using media that did not contain sugar, including glucose. To enable cultivation of obligate anaerobes, we maintained strict anaerobic conditions in most of our cultivation experiments. We report that, on a per cell basis, the most successful recovery was achieved using minitrap enrichment (11%), followed by single-cell cultivation (3%) and conventional plating (1%). Taxonomically, the richest collection was obtained using the single-cell cultivation method, followed by minitrap and conventional enrichment, comprising representatives of 13, 9, and 4 genera, respectively. Interestingly, no single species was isolated by all three methods, indicating method complementarity. An important result is the isolation and maintenance in pure culture of 10 strains previously only known by their molecular signatures, as well as representatives of what are likely to be three new microbial genera. We conclude that the ensemble of new methods we introduced will likely help close the gap between cultivated and uncultivated species from the human oral cavity.
Collapse
|
7
|
Teles FRF, Teles RP, Siegelin Y, Paster B, Haffajee AD, Socransky SS. RNA-oligonucleotide quantification technique (ROQT) for the enumeration of uncultivated bacterial species in subgingival biofilms. Mol Oral Microbiol 2011; 26:127-39. [PMID: 21375703 PMCID: PMC3073708 DOI: 10.1111/j.2041-1014.2010.00603.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 35% of the species present in subgingival biofilms are as yet uncultivated, so their role in periodontal pathogenesis is unknown. The aim of the present study was to develop a high throughput method to quantify a wide range of cultivated and uncultivated taxa in subgingival biofilm samples associated with periodontal disease or health. Oligonucleotides targeting the 16S ribosomal DNA gene were designed, synthesized and labeled with digoxigenin. These probes were hybridized with the total nucleic acids of pure cultures or subgingival biofilm samples. Target species included cultivated taxa associated with periodontal health and disease, as well as uncultivated species, such as TM7 sp. OT 346, Mitsuokella sp. OT 131 and Desulfobulbus sp. OT 041. Sensitivity and specificity of the probes were determined. A Universal probe was used to assess total bacterial load. Sequences complementary to the probes were used as standards for quantification. Chemiluminescent signals were visualized after film exposure or using a CCD camera. In a pilot clinical study, 266 subgingival plaque samples from eight periodontally healthy people and 11 patients with periodontitis were examined. Probes were specific and sensitivity reached 10(4) cells. Fusobacterium nucleatum ss. polymorphum and Actinomyces gerencseriae were the most abundant cultivated taxa in clinical samples. Among uncultivated/unrecognized species, Mitsuokella sp. OT 131 and Prevotella sp. OT 306 were the most numerous. Porphyromonas gingivalis and Desulfobulbus sp. OT 041 were only detected in patients with periodontitis. Direct hybridization of total nucleic acids using oligonucleotide probes permitted the quantification of multiple cultivated and uncultivated taxa in mixed species biofilm samples.
Collapse
Affiliation(s)
- F R F Teles
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Asikainen S, Doğan B, Turgut Z, Paster BJ, Bodur A, Oscarsson J. Specified species in gingival crevicular fluid predict bacterial diversity. PLoS One 2010; 5:e13589. [PMID: 21049043 PMCID: PMC2963608 DOI: 10.1371/journal.pone.0013589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Analysis of gingival crevicular fluid (GCF) samples may give information of unattached (planktonic) subgingival bacteria. Our study represents the first one targeting the identity of bacteria in GCF. METHODOLOGY/PRINCIPAL FINDINGS We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. CONCLUSIONS/SIGNIFICANCE Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms.
Collapse
Affiliation(s)
- Sirkka Asikainen
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The mouth is a favorable habitat for a great variety of bacteria. Microbial composition of dental plaque is the usual cause of various oral diseases in humans, including dental caries, periodontal disease and halitosis. In general, oral antibacterial agents such as antibiotics are commonly used to treat oral bacterial infection. Traditional periodontal surgery is painful and time-consuming. In addition, bacterial resistance and toxicity of antibiotics have become a global pandemic and unavoidable. Recently, vaccines for dental caries and periodontal disease have been developed and applied. Moreover, the use of photodynamic therapy has become an alternative to antibiotic drugs. The purpose of this article is to highlight the advantages of vaccine therapy and photodynamic therapy for oral microbial-related diseases compared to treatments with antimicrobial agents and traditional periodontal surgery.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Division of Dermatology, Department of Medicine, University of California, San Diego, CA, USA
- VA San Diego Healthcare Center, San Diego, CA, USA
| | - Wen-Hong Zhu
- Center on Proteolytic Pathways, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Chun-Ming Huang
- Division of Dermatology, Department of Medicine, University of California, San Diego, CA, USA
- VA San Diego Healthcare Center, San Diego, CA, USA
- Moores Cancer Center; University of California, San Diego, CA, USA
| |
Collapse
|
10
|
McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun 1999; 67:3248-56. [PMID: 10377098 PMCID: PMC116503 DOI: 10.1128/iai.67.7.3248-3256.1999] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation and progression of adult-onset periodontitis has been associated with infection of the gingival sulcus by Porphyromonas gingivalis. This organism utilizes a multitude of virulence factors to evade host defenses as it establishes itself as one of the predominant pathogens in periodontal pockets. A feature common to many other oral pathogens is the production of ammonia due to its protective effect during acidic cleansing cycles in the mouth. Additionally, ammonia production by P. gingivalis has been proposed as a virulence factor due to its negative effects on neutrophil function. In this study, we describe the first purification of a peptidylarginine deiminase (PAD) from a prokaryote. PAD exhibits biochemical characteristics and properties that suggest that it may be a virulence agent. PAD deiminates the guanidino group of carboxyl-terminal arginine residues on a variety of peptides, including the vasoregulatory peptide-hormone bradykinin, to yield ammonia and a citrulline residue. The soluble protein has an apparent mass of 46 kDa, while the DNA sequence predicts a full-length protein of 61.7 kDa. PAD is optimally active at 55 degrees C, stable at low pH, and shows the greatest activity above pH 9.0. Interestingly, in the presence of stabilizing factors, PAD is resistant to limited proteolysis and retains significant activity after short-term boiling. We propose that PAD, acting in concert with arginine-specific proteinases from P. gingivalis, promotes the growth of the pathogen in the periodontal pocket, initially by enhancing its survivability and then by assisting the organism in its circumvention of host humoral defenses.
Collapse
Affiliation(s)
- W T McGraw
- Department of Biochemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
11
|
Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev 1998; 62:71-109. [PMID: 9529888 PMCID: PMC98907 DOI: 10.1128/mmbr.62.1.71-109.1998] [Citation(s) in RCA: 301] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the oral cavity, indigenous bacteria are often associated with two major oral diseases, caries and periodontal diseases. These diseases seem to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. To define the process involved in caries and periodontal diseases, it is necessary to understand the ecology of the oral cavity and to identify the factors responsible for the transition of the oral microbiota from a commensal to a pathogenic relationship with the host. The regulatory forces influencing the oral ecosystem can be divided into three major categories: host related, microbe related, and external factors. Among host factors, secretory immunoglobulin A (SIgA) constitutes the main specific immune defense mechanism in saliva and may play an important role in the homeostasis of the oral microbiota. Naturally occurring SIgA antibodies that are reactive against a variety of indigenous bacteria are detectable in saliva. These antibodies may control the oral microbiota by reducing the adherence of bacteria to the oral mucosa and teeth. It is thought that protection against bacterial etiologic agents of caries and periodontal diseases could be conferred by the induction of SIgA antibodies via the stimulation of the mucosal immune system. However, elucidation of the role of the SIgA immune system in controlling the oral indigenous microbiota is a prerequisite for the development of effective vaccines against these diseases. The role of SIgA antibodies in the acquisition and the regulation of the indigenous microbiota is still controversial. Our review discusses the importance of SIgA among the multiple factors that control the oral microbiota. It describes the oral ecosystems, the principal factors that may control the oral microbiota, a basic knowledge of the secretory immune system, the biological functions of SIgA, and, finally, experiments related to the role of SIgA in oral microbial ecology.
Collapse
Affiliation(s)
- H Marcotte
- Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
12
|
Abstract
Dental plaque is the diverse microbial community found on the tooth surface embedded in a matrix of polymers of bacterial and salivary origin. Once a tooth surface is cleaned, a conditioning film of proteins and glycoproteins is adsorbed rapidly to the tooth surface. Plaque formation involves the interaction between early bacterial colonisers and this film (the acquired enamel pellicle). To facilitate colonisation of the tooth surface, some receptors on salivary molecules are only exposed to bacteria once the molecule is adsorbed to a surface. Subsequently, secondary colonisers adhere to the already attached early colonisers (co-aggregation) through specific molecular interactions. These can involve protein-protein or carbohydrate-protein (lectin) interactions, and this process contributes to determining the pattern of bacterial succession. As the biofilm develops, gradients in biologically significant factors develop, and these permit the co-existence of species that would be incompatible with each other in a homogenous environment. Dental plaque develops naturally, but it is also associated with two of the most prevalent diseases affecting industrialised societies (caries and periodontal diseases). Future strategies to control dental plaque will be targeted to interfering with the formation, structure and pattern of development of this biofilm.
Collapse
Affiliation(s)
- P D Marsh
- Department of Microbial Pathogenicity, CAMR, Porton Down, Salisbury, UK
| | | |
Collapse
|
13
|
Scannapieco FA, Haraszthy GG, Cho MI, Levine MJ. Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect Immun 1992; 60:4726-33. [PMID: 1383157 PMCID: PMC258224 DOI: 10.1128/iai.60.11.4726-4733.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The goal of the present study was to begin characterizing the amylase-binding component(s) on the surface of Streptococcus gordonii G9B. Alkali extracts but not phenol-water extracts of this bacterium inhibited 125I-amylase binding to S. gordonii G9B. To identify the bacterial components involved in amylase binding, the alkali extract was subjected to affinity chromatography on amylase-Sepharose. Immunoblotting with a rabbit antiserum against S. gordonii G9B revealed that a 20-kDa streptococcal component was eluted from the amylase-Sepharose with 1% sodium dodecyl sulfate (SDS), 2 M KSCN, or 0.1 M sodium citrate buffer, pH 4.5. Subsequently, the 20-kDa component was prepared from alkali extracts by electroelution from preparative SDS electrophoresis or by gel filtration chromatography. This component was trypsin sensitive, and an antibody raised against it inhibited the binding of 125I-amylase to S. gordonii G9B. Indirect immunofluorescence microscopy and immunogold electron microscopy demonstrated that both bound amylase and the 20-kDa component were localized to the cell division septum on dividing cells or to polar zones on single cells. In addition, exponentially growing bacteria bound more 125I-amylase than stationary-phase cells did. Collectively, these results suggest that a 20-kDa amylase-binding component is present on the surface of the nascent streptococcal cell wall.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo 14214
| | | | | | | |
Collapse
|
14
|
De Nardin AM, Sojar HT, Grossi SG, Christersson LA, Genco RJ. Humoral immunity of older adults with periodontal disease to Porphyromonas gingivalis. Infect Immun 1991; 59:4363-70. [PMID: 1682261 PMCID: PMC259050 DOI: 10.1128/iai.59.12.4363-4370.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effect of age on the humoral response to Porphyromonas gingivalis was assessed in groups of adults (25 to 54 years and 55 to 74 years) with periodontal disease and compared with that in age-matched healthy controls. To determine whether there was an antibody response against P. gingivalis, we measured serum antibodies against whole cells of P. gingivalis 381, A7A1-28, and W50. In addition, antibody levels against purified P. gingivalis outer membrane proteins (i.e., the 43-kDa fimbrial protein and a 75-kDa protein) were also evaluated. Elderly subjects showed the same response to P. gingivalis as younger subjects. Immunoglobulin G (IgG) antibodies to both purified proteins were also elevated in both diseased groups as compared with the normal groups. Total serum IgG, IgA, and IgM levels were also determined by an enzyme-linked immunosorbent assay for all four groups. Total serum IgG levels were elevated in older adults with periodontitis and total IgA levels were elevated in both groups of older adults compared with the younger groups of similar disease status. Total serum IgM levels were comparable for the four groups. Antinuclear antibody titers were assessed in the two groups of older adults and were also found to be higher for the group with periodontitis. These studies show that older adults as well as younger adults have markedly elevated specific antibodies of the IgG and IgA classes to antigens of P. gingivalis, a putative pathogen in both groups. Furthermore, older adults with periodontitis have significantly elevated levels of total serum IgG which may possibly be related to higher levels of autoantibodies.
Collapse
Affiliation(s)
- A M De Nardin
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo 14212
| | | | | | | | | |
Collapse
|
15
|
Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun 1989; 57:2853-63. [PMID: 2788139 PMCID: PMC313538 DOI: 10.1128/iai.57.9.2853-2863.1989] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase (EC 3.2.1.1) was the prominent salivary component eluted from S. sanguis. Studies with 125I-labeled HSMSL or 125I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of [125I]alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology and Dental Research Institute, State University of New York, Buffalo 14214
| | | | | | | |
Collapse
|
16
|
|
17
|
Minah GE, Rednor JL, Peterson DE, Overholser CD, Depaola LG, Suzuki JB. Oral succession of gram-negative bacilli in myelosuppressed cancer patients. J Clin Microbiol 1986; 24:210-3. [PMID: 3018036 PMCID: PMC268876 DOI: 10.1128/jcm.24.2.210-213.1986] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aerobic and facultative gram-negative bacilli (GNB) have been reported to increase on various body surfaces in the seriously ill and debilitated patient. This study examined quantitative aspects of GNB succession at five oral sites in cancer patients before and during myelosuppressive chemotherapy. GNB concentrations increased sharply during chemotherapy at 25 to 50% of the oral sites in both acute nonlymphocytic leukemia and small-cell lung carcinoma patients. Most sites did not exhibit shifts of GNB to levels higher than 0.1% of the cultivable flora. When shifts occurred, all sites sampled in the mouth were usually affected and GNB usually represented more than 10% of the cultivable flora. Low levels of indigenous microflora were observed in most sites exhibiting GNB shifts. None of the subjects harboring high levels of GNB developed the symptoms of acute infection which are commonly observed in myelosuppressed patients. Although Pseudomonas aeruginosa and Klebsiella pneumoniae were recovered from some sites, most GNB were nonpathogenic species of Pseudomonas; Pseudomonas pickettii was the most frequently recovered.
Collapse
|
18
|
Singer RE, Buckner BA. Butyrate and propionate: important components of toxic dental plaque extracts. Infect Immun 1981; 32:458-63. [PMID: 7251132 PMCID: PMC351466 DOI: 10.1128/iai.32.2.458-463.1981] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited proliferation of both mouse L929 cells and human gingival fibroblasts. Furthermore, when tested at concentrations present in plaque extracts, the inhibitory effects of butyrate and propionate accounted for essentially all the inhibitory potential of the extracts. These findings, taken together with those of other groups, suggest that butyrate and propionate, end products of dental plaque metabolism, may have an etiological role in periodontal disease.
Collapse
|
19
|
Mouton C, Hammond PG, Slots J, Genco RJ. Serum antibodies to oral Bacteroides asaccharolyticus (Bacteroides gingivalis): relationship to age and periondontal disease. Infect Immun 1981; 31:182-92. [PMID: 7216444 PMCID: PMC351768 DOI: 10.1128/iai.31.1.182-192.1981] [Citation(s) in RCA: 256] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An enzyme-linked immunosorbent assay microplate method was used for measuring levels of antibody specific for the oral serotype of Bacteroides asaccharolyticus (Bacteroides gingivalis) in serum samples obtained from umbilical cords, infants, children, periodontally normal adults, and edentulous adults. Serum from patients with various periodontal diseases, including adult periodontitis, localized juvenile periodontitis, generalized juvenile periodontitis, post-localized juvenile periodontitis, and acute necrotizing ulcerative gingivitis, were also studied. A positive correlation between increase in age and increase in both prevalence and level of specific antibody in the G, A, and M classes of immunoglobulins was observed. This indicates that antibodies reactive with oral B. asaccharolyticus found in up to 84% of normal adults are natural antibodies, presumably with a protective role. Among the patient groups, those with adult periodontitis were found to have levels of immunoglobulin G antibodies to oral B. asaccharolyticus that were five times higher than the antibody levels found in control subjects. The levels of IgG antibodies to this organism in the other patient groups were comparable to the levels found in the control group. However, 50% of the individuals in the generalized juvenile periodontitis group had high levels of immunoglobulin G antibodies to B. asaccharolyticus, suggesting heterogeneity with respect to immune response in these patients. These results indicate that antibodies to oral B. asaccharolyticus (B. gingivalis) occur at low levels in most normal children and adults and that the rise in titer of the specific antibodies of each major class of immunoglobulins parallels the ontogenic change in serum levels of that isotype. In contrast, there is a marked increase in titer of immunoglobulin G antibodies to oral B. asaccharolyticus in the group of patients with adult periodontitis and in patients with the generalized form of juvenile periodontitis.
Collapse
|