1
|
Kao YH, Igarashi N, Abduweli Uyghurturk D, Li Z, Zhang Y, Ohshima H, MacDougall M, Takano Y, Den Besten P, Nakano Y. Fluoride Alters Signaling Pathways Associated with the Initiation of Dentin Mineralization in Enamel Fluorosis Susceptible Mice. Biol Trace Elem Res 2021; 199:3021-3034. [PMID: 33113116 DOI: 10.1007/s12011-020-02434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of β-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 μM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, β-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/β-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.
Collapse
Affiliation(s)
- Yu-Hsing Kao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Nanase Igarashi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Dawud Abduweli Uyghurturk
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Zhu Li
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mary MacDougall
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Yoshiro Takano
- Biostructural Science, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA.
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
2
|
Bourd-Boittin K, Septier D, Hall R, Goldberg M, Menashi S. Immunolocalization of Enamelysin (Matrix Metalloproteinase-20) in the Forming Rat Incisor. J Histochem Cytochem 2016; 52:437-45. [PMID: 15033995 DOI: 10.1177/002215540405200402] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the rat model, we used the continuously growing incisor to study the expression pattern of matrix metalloproteinase-20 (MMP-20) during the formation of mineralized dental tissues. Casein zymography analysis of extracts of the forming part of the incisor revealed lysis bands corresponding to both the latent form at 57 kD and the active 46- and 41-kD forms, whereas omission of proteinase inhibitors during protein extraction resulted in a single band at 21 kD. A higher molecular weight form of 78 kD was also stained with MMP-20 and TIMP-2 antibodies in Western blotting, and was therefore believed to correspond to an MMP-20/TIMP-2 complex. Immunohistochemical and immunogold electron microscopic results demonstrated strong MMP-20 staining in the forming outer enamel, which diminished near the dentino-enamel junction, but dentin and predentin were unstained. A strong concentration of MMP-20 was seen in the stratum intermedium (SI), particularly at the earlier stages of enamel development. Our results confirm the presence of MMP-20 protein in ameloblasts and odontoblasts of rat incisor and show it to be localized in the same sites of the forming enamel as amelogenin. Their expression is transient in odontoblasts but persists in ameloblasts, and in both cases the expression of amelogenin preceded that of MMP-20 suggesting a developmentally controlled regulation.
Collapse
Affiliation(s)
- Katia Bourd-Boittin
- Matrices Extracellulaires et Biominéralisation, EA 2496, Faculté de Chirurgie Dentaire, Université René Descartes Paris V, Montrouge, France
| | | | | | | | | |
Collapse
|
3
|
Wang J, Chen Y, Li L, Sun J, Gu X, Xu X, Pan H, Tang R. Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. CrystEngComm 2013. [DOI: 10.1039/c3ce40449h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 2011; 3:711-35. [PMID: 21196346 DOI: 10.2741/e281] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review firstly the specificities of the different types of dentin present in mammalian teeth. The outer layers include the mantle dentin, the Tomes' granular and the hyaline Hopewell-Smith's layers. Circumpulpal dentin forming the bulk of the tooth, comprises intertubular and peritubular dentin. In addition to physiological primary and secondary dentin formation, reactionary dentin is produced in response to pathological events. Secondly, we evaluate the role of odontoblasts in dentin formation, their implication in the synthesis and secretion of type I collagen fibrils and non-collagenous molecules. Thirdly, we study the composition and functions of dentin extracellular matrix (ECM) molecules implicated in dentinogenesis. As structural proteins they are mineralization promoters or inhibitors. They are also signaling molecules. Three different forms of dentinogenesis are identified: i) matrix vesicles are implicated in early dentin formation, ii) collagen and some proteoglycans are involved in the formation of predentin, further transformed into intertubular dentin, iii) the distal secretion of some non-collagenous ECM molecules and some serum proteins contribute to the formation of peritubular dentin.
Collapse
Affiliation(s)
- Michel Goldberg
- UMR-S 747, INSERM, Universite Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
6
|
Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y. Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown- and root-analog portions of rat incisors. JOURNAL OF ELECTRON MICROSCOPY 2010; 60:79-87. [PMID: 21030417 DOI: 10.1093/jmicro/dfq075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mineralization of circumpulpal dentin has been interpreted in such a way that predentin matrix is abruptly converted to almost fully mineralized dentin at the mineralization front. A group of investigators pointed out the existence of intermediary layer along the mineralization front of rat incisor dentin and claimed that dentin mineralization is a rather transient process. Owing to a paucity of information, however, the entity of transient mineralization of dentin has remained elusive. Here we confirmed the existence of a lightly mineralized layer (LL) along the mineralization front of rat incisor dentin, recognizable by both light and electron microscopy, in routinely processed specimens. LL less than 3 µm thick was shown to be located along the mineralization front of crown-analog dentin and tapered out toward the root analog of the incisor. Electron microscopy revealed that mineral deposition first occurred in the non-collagenous matrix of LL and that mineralization of collagen fibers took place sometime later at the conventional mineralization front. Microscopic appearance of the mineral phase of LL varied considerably depending on the histological processing of ultrathin sections, thus explaining the inconsistent interpretation of dentin mineralization in previous studies. These data suggest that mineralization of circumpulpal dentin in rat incisors proceeds in a stepwise or a transient manner, initiated by crystal deposition in the non-collagenous matrix followed by massive mineral deposition in collagen fibers at the mineralization front. The thickness of LL where only the non-collagenous matrix is mineralized may vary in relation to differences in the local non-collagenous matrix and also the rate of collagen mineralization in the respective portions of circumpulpal dentin.
Collapse
Affiliation(s)
- Masud Ahmad
- Section of Biostructural Science, Department of Hard Tissue Engineering, Graduate School of Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Arnold WH, Naumova KI, Naumova EA, Gaengler P. Comparative Qualitative and Quantitative Assessment of Biomineralization of Tooth Development in Man and Zebrafish (Danio rerio). Anat Rec (Hoboken) 2008; 291:571-6. [DOI: 10.1002/ar.20687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Goldberg M, Septier D, Oldberg A, Young MF, Ameye LG. Fibromodulin-deficient Mice Display Impaired Collagen Fibrillogenesis in Predentin as Well as Altered Dentin Mineralization and Enamel Formation. J Histochem Cytochem 2006; 54:525-37. [PMID: 16344330 DOI: 10.1369/jhc.5a6650.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the functions of fibromodulin (Fmod), a small leucine-rich keratan sulfate proteoglycan in tooth formation, we investigated the distribution of Fmod in dental tissues by immunohistochemistry and characterized the dental phenotype of 1-day-old Fmod-deficient mice using light and transmission electron microscopy. Immunohistochemistry was also used to compare the relative protein expression of dentin sialoprotein (DSP), dentin matrix protein-1 (DMP 1), bone sialoprotein (BSP), and osteopontin (OPN) between Fmod-deficient mice and wild-type mice. In normal mice and rats, Fmod immunostaining was mostly detected in the distal cell bodies of odontoblasts and in the stratum intermedium and was weaker in odontoblast processes and predentin. The absence of Fmod impaired dentin mineralization, increased the diameter of the collagen fibrils throughout the whole predentin, and delayed enamel formation. Immunohistochemistry provides evidence for compensatory mechanisms in Fmod-deficient mice. Staining for DSP and OPN was decreased in molars, whereas DMP 1 and BSP were enhanced. In the incisors, labeling for DSP, DMP 1, and BSP was strongly increased in the pulp and odontoblasts, whereas OPN staining was decreased. Positive staining was also seen for DMP 1 and BSP in secretory ameloblasts. Together these studies indicate that Fmod restricts collagen fibrillogenesis in predentin while promoting dentin mineralization and the early stages of enamel formation. (J Histochem Cytochem 54:525-537, 2006)
Collapse
Affiliation(s)
- Michel Goldberg
- Laboratoire Réparation et Remodelage des Tissus Oro-Faciaux, EA 4296, Groupe Matrices extracellulaires et biominéralisations, Faculté de Chirurgie Dentaire, Université Paris V, Montrouge, France.
| | | | | | | | | |
Collapse
|
9
|
Goldberg M, Septier D, Rapoport O, Iozzo RV, Young MF, Ameye LG. Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation. Calcif Tissue Int 2005; 77:297-310. [PMID: 16283572 DOI: 10.1007/s00223-005-0026-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/17/2005] [Indexed: 10/25/2022]
Abstract
Small leucine-rich proteoglycans have been suggested to affect mineralization of dental hard tissues. To determine the functions of two of these small proteoglycans during the early stages of tooth formation, we characterized the dental phenotypes of biglycan (BGN KO) and decorin deficient (DCN KO) mice and compared them to that of wild type mice. Each targeted gene disruption resulted in specific effects on dentin and enamel formation. Dentin was hypomineralized in both knock out mice, although the effect was more prominent in the absence of decorin. Enamel formation was dramatically increased in newborn biglycan knockout mice but delayed in absence of decorin. Increased enamel formation in the former case resulted from an upregulation of amelogenin synthesis whereas delayed enamel formation in the later case was most probably an indirect consequence of the high porosity of the underlying dentin. Enamelin expression was unchanged in BGN KO, and reduced in DCN KO. Dentin sialoprotein (DSP), a member of the family of phosphorylated extracellular matrix proteins that play a role in dentinogenesis, was overexpressed in BGN-KO odontoblasts and in the sub-odontoblastic layer. In contrast, a decreased expression of DSP was detected in DCN KO. Dentin matrix protein-1 (DMP-1), bone sialoprotein (BSP) and osteopontin (OPN) were upregulated in BGN KO and downregulated in the DCN KO. Despite the strong effects induced by these deficiencies in newborn mice, no significant difference was detected between the three genotypes in adult mice, suggesting that the effects reported here in newborn mice are transient and subjected to self-repair.
Collapse
Affiliation(s)
- M Goldberg
- Laboratoire: Réparation et Remodelage des Tissus Oro-Faciaux, EA 2496, Groupe Matrices Extracellulaires et Minéralisations, Faculté de Chirurgie Dentaire, Université Paris V, Montrouge, 92120, France.
| | | | | | | | | | | |
Collapse
|
10
|
Michel Goldberg, Dominique Septier, Nagai N. Phospholipids in Amelogenesis and Dentinogenesis. J HARD TISSUE BIOL 2004. [DOI: 10.2485/jhtb.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michel Goldberg
- Laboratoire de Biologie et Physiopathologie Cranio-Faciale EA 2496, Groupe Matrices Extracellularies et Biomineralisation, Faculte de Chirurgie Dentaire-Universite Paris V
| | - Dominique Septier
- Laboratoire de Biologie et Physiopathologie Cranio-Faciale EA 2496, Groupe Matrices Extracellularies et Biomineralisation, Faculte de Chirurgie Dentaire-Universite Paris V
| | - Noriyuki Nagai
- Department of Oral Pathology and Medicine, Graduate School of Medicine & Dentistry, Okayama University
| |
Collapse
|
11
|
Goldberg M, Septier D. Phospholipids in amelogenesis and dentinogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:276-90. [PMID: 12090465 DOI: 10.1177/154411130201300305] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phospholipids have been identified in enamel and dentin. Before demineralization, a group of phospholipids extracted by lipid solvents was associated with cell membranes and is therefore closely related to cell growth and intracellular regulations. After demineralization, a second group of phospholipids, associated with the extracellular matrix, was extracted; this group is probably linked to the mineralized phase. Using imidazole-osmium tetroxide fixation of rat incisors, we stained cellular unsaturated fatty acids, so that we could visualize the membrane domains, coated pits, and endocytic inclusions. Filipin, a probe for cholesterol, varied in density along the plasma membrane of secretory ameloblasts, and allowed us to visualize membrane remnants inside the forming enamel. With respect to phospholipids located in the extracellular matrix, the malachite-green-glutaraldehyde (MGA) method or iodoplatinate (IP) reaction retains and visualizes enamel and dentin phospholipids. In predentin, aggregates appearing as granules and filaments, or liposome-like structures, were located in the spaces between collagen fibrils. In dentin, organic envelopes coating the crystals, also named "crystal-ghost" structures, outlined groups of collagen fibrils. Histochemical data provided evidence that phospholipids are co-distributed or interact with proteoglycans. Radioautography after IP reaction established that [3H] choline was detected in dentin as early as 30 min after the intravenous injection of the labeled precursor, before any labeling was seen in odontoblasts and predentin. This suggests that blood-serum-labeled phospholipids pass between odontoblasts, cross the distal permeable junctional complex, and diffuse in dentin prior to any cellular uptake and phospholipid synthesis. Pharmacologically and genetically induced pathology also supports the suggestion that phospholipids play an important role in the formation and mineralization of dental tissues.
Collapse
Affiliation(s)
- M Goldberg
- Laboratoire de Biologie et Physiopathologie Crânio-Faciale EA 2496, Groupe Matrices Extracellulaires et Biominéralisation, Faculté de Chirurgie Dentaire-Université Paris V, Montrouge, France.
| | | |
Collapse
|
12
|
Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:331-49. [PMID: 11603505 DOI: 10.1177/10454411010120040401] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The predominant proteoglycans present in predentin and dentin are the chondroitin-sulphate-rich decorin and biglycan and the keratan-sulphate-rich lumican and fibromodulin. These are small, interstitial, leucine-rich proteoglycans which have recently been shown to exist in gradients across the predentin. Antibodies recognizing chondroitin sulphate show a decreasing gradient from the pulpal aspect toward the mineralizing front, the converse being true for keratan sulphate. Antidecorin shows an increase toward the mineralization front. Evidence from biochemical, autoradiographic, and immunohistochemical studies implies that such changes may be brought about by gradients of metalloproteinases. This offers the possibility that the proteoglycans organize the collagen network for receipt of phosphoproteins and phospholipids, the former being evident only at the onset of dentin formation. The suggestion is raised that glycosaminoglycan-depleted leucine-rich protein cores act as sequester points for receipt of phosphoproteins in particular. The rigid, spatially oriented glycosaminoglycan chains on decorin and biglycan are known to bind calcium and may feature directly in mineral initiation.
Collapse
Affiliation(s)
- G Embery
- Department of Basic Dental Science, Dental School, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
13
|
Hall R, Septier D, Embery G, Goldberg M. Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor-coordinated distribution with proteoglycans suggests a functional role. THE HISTOCHEMICAL JOURNAL 1999; 31:761-70. [PMID: 10661319 DOI: 10.1023/a:1003945902473] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stromelysin-1 (matrix metalloproteinase-3) or proteoglycanase was visualized by light and electron microscopy immunolabelling in the forming zone of rat incisors. In predentine, labelling was more dense at the transition zone between the inner proximal third and the two outer thirds. Odontoblast processes were also positively stained, mostly in predentine and to a lesser degree in dentine. The dentine-enamel junction was intensely labelled, whereas dentine and forming enamel were only faintly stained. Gold-antibodies complexes were seen inside secretory ameloblasts and odontoblasts in cytosolic locations. The distribution of stromelysin-1 was compared with the distribution of 2-B-6 epitope, an antibody recognizing chondroitin-4-sulphate/dermatan sulphate and which showed a decreasing gradient from the proximal zone to the distal part of predentine. In contrast, both 5-D-4, an anti-keratan sulphate antibody and an anti-lumican antibody displayed a reversed distribution, with an increase seen from the proximal and central thirds to the distal part of predentine. This coordinated distribution suggests that stromelysin-1 may have a functional role, being implicated in predentine in the degradation of chondroitin-4-sulphate/dermatan sulphate-containing proteoglycans, and consequently allowing keratan sulphate proteoglycan concentration to increase near the border where mineralization is initiated.
Collapse
Affiliation(s)
- R Hall
- Basic Dental Science, Dental School, University of Wales College of Medicine, Cardiff, UK
| | | | | | | |
Collapse
|
14
|
Torres-Quintana MA, Septier D, Goldberg M. Differences in the pattern of lanthanum diffusion into predentine and dentine in mouse incisors and molars. Arch Oral Biol 1999; 44:351-60. [PMID: 10348362 DOI: 10.1016/s0003-9969(99)00005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lanthanum nitrate was either perfused intravascularly or segments of mouse tooth were immersed in a fixative solution containing the tracer. The tracer deposits were examined in young (8-day-old) and older (8-week-old) mouse incisors and molars, demineralized or undemineralized. Lanthanum passed the distal junctional complex of odontoblasts and appeared in the predentine of incisors as large electron-dense stellate aggregates, 40-70 nm in diameter, and in molars as round, 20-40 nm dots. In dentine, tracer deposits were detected at three locations. Near the predentine dentine junction, the tracer densely stained a band 0.5-2.5 microm in width, also termed metadentine; in the inner circumpulpal dentine, the staining was weaker or lacking in an area extending 5-7 microm from the predentine-dentine junction; in outer circumpulpal dentine, lateral diffusion had occurred in porosities of intertubular dentine. Lanthanum impregnated the walls of dentine tubules and a peritubular-like dentine. In contrast, the mantle dentine was never stained. These differences in the pattern of diffusion prove that lanthanum staining is age-dependent and varies between mouse incisors and molars, independently of tissue processing. Architectural properties and driving flux are involved in the transport and localization of lanthanum in predentine and dentine.
Collapse
Affiliation(s)
- M A Torres-Quintana
- Laboratorie de Biologie et Physiopathologie Cranio-faciales, Université René Descartes, Paris V, Faculté de Chirurgie Dentaire, Montrouge, France
| | | | | |
Collapse
|
15
|
Torres-Quintana MA, Lécolle S, Goldberg M. Effects of inositol hexasulphate, a casein kinase inhibitor, on dentine phosphorylated proteins in organ culture of mouse tooth germs. Arch Oral Biol 1998; 43:597-610. [PMID: 9758042 DOI: 10.1016/s0003-9969(98)00037-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To study the effects of impaired protein phosphorylation on dentine formation and mineralization, inositol hexasulphate, an intracellular type I and type II casein kinase inhibitor, was used in an in vitro organotypic culture system. Mandibular first molar tooth germs were dissected from 18-day-old mouse embryos and cultured for 11 days with and without inositol hexasulphate at different concentrations. At 0.04-0.08 mM inhibitor, cellular alterations were not detected. Dentine displayed the characteristic purple-blue colour when Stains all, a specific stain for extracellular phosphoproteins, was used. At 0.1 mM, dentine failed to stain and mineralization did not occur, as seen from the von Kossa method. The presence of numerous lysosome-like vesicles inside cells indicated that the experiment was at the limits of cytotoxicity; higher concentrations induced severe cellular alterations. Therefore, quantitative radioautography was carried out on germs treated or not with the inhibitor at 0.1 mM. [33P]-phosphate incorporation showed that grain density in inhibited germs compared with that in control germs was about double in odontoblasts and half in the predentine/dentine compartment. In the presence of inositol hexasulphate the incorporation of [3H]serine into odontoblast cell bodies was unchanged between 2 and 24 h while in predentine/dentine, grain density was higher between 1 and 4 h, and reduced at 24 h. Both with [33P]phosphate and [3H]serine, labelling was seen throughout the porous dentine formed in vitro and not as a band located at the predentine/dentine junction, as is the case in vivo. With [3H]proline, in the presence of the inhibitor, a small reduction of grain density occurred in cell bodies, no significant difference was seen between 1 and 4 h in predentine/dentine, and more silver grains were present after 24 h both in cells and in the matrix. The radioautographic data support the view that the inhibitor interacts mostly with post-transductional phosphorylation and does not alter significantly other cell synthetic pathways and functions. Finally, the experiments presented here confirm that phophorylated proteins have a key role in dentine mineralization.
Collapse
Affiliation(s)
- M A Torres-Quintana
- Laboratoire de Biologie et Physiopathologie Crânio-faciales, Université René Descartes, Paris V, Faculté de Chirurgie Dentaire, Montrouge, France
| | | | | |
Collapse
|
16
|
Septier D, Hall RC, Lloyd D, Embery G, Goldberg M. Quantitative immunohistochemical evidence of a functional gradient of chondroitin 4-sulphate/dermatan sulphate, developmentally regulated in the predentine of rat incisor. THE HISTOCHEMICAL JOURNAL 1998; 30:275-84. [PMID: 9610819 DOI: 10.1023/a:1003216024158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A quantitative examination was carried out on the early and mature stages of dentinogenesis in the rat incisor, using a post-embedding immunogold labelling with an anti-chondroitin 4 sulphate/dermatan sulphate antibody (2B6). At a very early stage of predentine formation, before polarizing odontoblasts have established junctional complexes, immunolabelling was weak. In contrast, when polarized odontoblasts established distal junctional complexes, immunolabelling in predentine was uniform and threefold denser than in initial predentine. The same gold particle density was found in the non-mineralized mantle dentine. During circumpulpal dentine formation, a gradient was seen in predentine, a larger number of gold particles being scored in the proximal zone compared with the distal region adjacent to the mineralization front. In circumpulpal dentine, some labelling was found within the lumen of the tubules and in the bordering dentine around the tubules. A few particles were also detected in intertubular matrix after demineralization. Together, these data provide evidence for a developmentally regulated gradient during the transition between mantle and circumpulpal dentine, and also in a more mature part of the tooth, a functional gradient that probably plays a role in the process of mineralization.
Collapse
Affiliation(s)
- D Septier
- Laboratoire de Biologie et Physiopathologie Cranio-faciales, Faculté de Chirurgie Dentaire, Université Paris, Montrouge, France
| | | | | | | | | |
Collapse
|