1
|
Redeployment of odontode gene regulatory network underlies dermal denticle formation and evolution in suckermouth armored catfish. Sci Rep 2022; 12:6172. [PMID: 35418659 PMCID: PMC9007992 DOI: 10.1038/s41598-022-10222-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Odontodes, i.e., teeth and tooth-like structures, consist of a pulp cavity and dentin covered by a mineralized cap. These structures first appeared on the outer surface of vertebrate ancestors and were repeatedly lost and gained across vertebrate clades; yet, the underlying genetic mechanisms and trajectories of this recurrent evolution remain long-standing mysteries. Here, we established suckermouth armored catfish (Ancistrus sp.; Loricariidae), which have reacquired dermal odontodes (dermal denticles) all over most of their body surface, as an experimental model animal amenable to genetic manipulation for studying odontode development. Our histological analysis showed that suckermouth armored catfish develop dermal denticles through the previously defined odontode developmental stages. De novo transcriptomic profiling identified the conserved odontode genetic regulatory network (oGRN) as well as expression of paired like homeodomain 2 (pitx2), previously known as an early regulator of oGRN in teeth but not in other dermal odontodes, in developing dermal denticles. The early onset of pitx2 expression in cranial dermal denticle placodes implies its function as one of the inducing factors of the cranial dermal denticles. By comprehensively identifying the genetic program for dermal odontode development in suckermouth armored catfish, this work illuminates how dermal odontodes might have evolved and diverged in distinct teleost lineages via redeployment of oGRN.
Collapse
|
2
|
Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The Role of Matrix Metalloproteinases (MMPs) in Human Caries. J Dent Res 2016; 85:22-32. [PMID: 16373676 DOI: 10.1177/154405910608500104] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of this review is to summarize our understanding of the role of host matrix metalloproteinases (MMPs) in the caries process and to discuss new therapeutic avenues. MMPs hydrolyze components of the extracellular matrix and play a central role in many biological and pathological processes. MMPs have been suggested to play an important role in the destruction of dentin organic matrix following demineralization by bacterial acids and, therefore, in the control or progression of carious decay. Host-derived MMPs can originate both from saliva and from dentin. They may be activated by an acidic pH brought about by lactate release from cariogenic bacteria. Once activated, they are able to digest demineralized dentin matrix after pH neutralization by salivary buffers. Furthermore, the degradation of SIBLINGs (Small Integrin-binding Ligand N-linked Glycoproteins) by the caries process may potentially enhance the release of MMPs and their activation. This review also explores the different available MMP inhibitors, natural or synthetic, and suggests that MMP inhibition by several inhibitors, particularly by natural substances, could provide a potential therapeutic pathway to limit caries progression in dentin.
Collapse
Affiliation(s)
- C Chaussain-Miller
- Groupe Matrice Extracellulaire et Biominéralisation, Université Paris 5, France.
| | | | | | | |
Collapse
|
3
|
Chen Y, Zhang Y, Ramachandran A, George A. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex. J Dent Res 2015; 95:302-10. [PMID: 26503913 DOI: 10.1177/0022034515610768] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The craniofacial skeleton is derived from both neural crest cells and mesodermal cells; however, the majority of the bone, cartilage, and connective tissue is derived from the neural crest. Dentin sialophosphoprotein (DSPP) is a precursor protein that is expressed by the connective tissues of the craniofacial skeleton, namely, bone and dentin with high expression levels in the dentin matrix. Gene ablation studies have shown severe dental defects in DSPP-null mutant mice. Therefore, to elucidate the role of DSPP on the developing dental-craniofacial complex, we evaluated phenotypic changes in the structure of intramembranous bone and dentin mineralization using 3 different age groups of DSPP-null and wild-type mice. Results from micro-computed tomographic, radiographic, and optical microscopic analyses showed defective dentin, alveolar and calvarial bones, and sutures during development. The impaired mineralization of the cranial bone correlated well with low expression levels of Runx2, Col1, and OPN identified using calvarial cells from DSPP-null and wild-type mice in an in vitro culture system. However, the upregulation of MMP9, MMP2, FN, and BSP was observed. Interestingly, the null mice also displayed low serum phosphate levels, while calcium levels remained unchanged. Alizarin red and von Kossa staining confirmed the dysfunction in the terminal differentiation of osteoblasts obtained from the developing calvaria of DSPP-null mice. Immunohistochemical analysis of the developing molars showed changes in Runx2, Gli1, Numb, and Notch expression in the dental pulp cells and odontoblasts of DSPP-null mice when compared with wild-type mice. Overall, these observations provide insight into the role of DSPP in the normal development of the calvaria, alveolar bone, and dentin-pulp complex.
Collapse
Affiliation(s)
- Y Chen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Zhang
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A Ramachandran
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Fujikawa K, Yokohama-Tamaki T, Morita T, Baba O, Qin C, Shibata S. An in situ hybridization study of perlecan, DMP1, and MEPE in developing condylar cartilage of the fetal mouse mandible and limb bud cartilage. Eur J Histochem 2015; 59:2553. [PMID: 26428891 PMCID: PMC4598603 DOI: 10.4081/ejh.2015.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/23/2022] Open
Abstract
The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis.
Collapse
|
5
|
de La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification. Eur J Hum Genet 2014; 23:445-51. [PMID: 25118030 DOI: 10.1038/ejhg.2014.159] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022] Open
Abstract
Dentinogenesis imperfecta is an autosomal dominant disease characterized by severe hypomineralization of dentin and altered dentin structure. Dentin extra cellular matrix is composed of 90% of collagen type I and 10% of non-collagenous proteins among which dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP) are crucial in dentinogenesis. These proteins are encoded by a single gene: dentin sialophosphoprotein (DSPP) and undergo several post-translational modifications such as glycosylation and phosphorylation to contribute and to control mineralization. Human mutations of this DSPP gene are responsible for three isolated dentinal diseases classified by Shield in 1973: type II and III dentinogenesis imperfecta and type II dentin dysplasia. Shield classification was based on clinical phenotypes observed in patient. Genetics results show now that these three diseases are a severity variation of the same pathology. So this review aims to revise and to propose a new classification of the isolated forms of DI to simplify diagnosis for practitioners.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Benjamin Philippe Fournier
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Ariane Berdal
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| |
Collapse
|
6
|
Ozeki N, Mogi M, Yamaguchi H, Hiyama T, Kawai R, Hase N, Nakata K, Nakamura H, Kramer RH. Differentiation of human skeletal muscle stem cells into odontoblasts is dependent on induction of α1 integrin expression. J Biol Chem 2014; 289:14380-91. [PMID: 24692545 DOI: 10.1074/jbc.m113.526772] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle stem cells represent an abundant source of autologous cells with potential for regenerative medicine that can be directed to differentiate into multiple lineages including osteoblasts and adipocytes. In the current study, we found that α7 integrin-positive human skeletal muscle stem cells (α7(+)hSMSCs) could differentiate into the odontoblast lineage under specific inductive conditions in response to bone morphogenetic protein-4 (BMP-4). Cell aggregates of FACS-harvested α7(+)hSMSCs were treated in suspension with retinoic acid followed by culture on a gelatin scaffold in the presence of BMP-4. Following this protocol, α7(+)hSMSCs were induced to down-regulate myogenic genes (MYOD and α7 integrin) and up-regulate odontogenic markers including dentin sialophosphoprotein, matrix metalloproteinase-20 (enamelysin), dentin sialoprotein, and alkaline phosphatase but not osteoblastic genes (osteopontin and osteocalcin). Following retinoic acid and gelatin scaffold/BMP-4 treatment, there was a coordinated switch in the integrin expression profile that paralleled odontoblastic differentiation where α1β1 integrin was strongly up-regulated with the attenuation of muscle-specific α7β1 integrin expression. Interestingly, using siRNA knockdown strategies revealed that the differentiation-related expression of the α1 integrin receptor positively regulates the expression of the odontoblastic markers dentin sialophosphoprotein and matrix metalloproteinase-20. These results strongly suggest that the differentiation of α7(+)hSMSCs along the odontogenic lineage is dependent on the concurrent expression of α1 integrin.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan, and
| | - Hideyuki Yamaguchi
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Taiki Hiyama
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Rie Kawai
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Naoko Hase
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Kazuhiko Nakata
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Hiroshi Nakamura
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Randall H Kramer
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
7
|
Malhotra N, Mala K. Regenerative endodontics as a tissue engineering approach: Past, current and future. AUST ENDOD J 2012; 38:137-48. [DOI: 10.1111/j.1747-4477.2012.00355.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Cao Z, Jiang B, Xie Y, Liu CJ, Feng JQ. GEP, a local growth factor, is critical for odontogenesis and amelogenesis. Int J Biol Sci 2010; 6:719-29. [PMID: 21152114 PMCID: PMC2999849 DOI: 10.7150/ijbs.6.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.
Collapse
Affiliation(s)
- Zhengguo Cao
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, CHINA
- 2. Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Avenue Dallas, TX 75246, USA
| | - Baichun Jiang
- 2. Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Avenue Dallas, TX 75246, USA
- 3. Institute of Medical Genetics, Shandong University School of Medicine, 44 West Wenhua Road, Jinan 250012, CHINA
| | - Yixia Xie
- 2. Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Avenue Dallas, TX 75246, USA
| | - Chuan-ju Liu
- 4. Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - Jian Q. Feng
- 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, CHINA
- 2. Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Avenue Dallas, TX 75246, USA
| |
Collapse
|
9
|
Bai H, Agula H, Wu Q, Zhou W, Sun Y, Qi Y, Latu S, Chen Y, Mutu J, Qiu C. A novel DSPP mutation causes dentinogenesis imperfecta type II in a large Mongolian family. BMC MEDICAL GENETICS 2010; 11:23. [PMID: 20146806 PMCID: PMC2829541 DOI: 10.1186/1471-2350-11-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/10/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II) may be caused by mutations in dentin sialophosphoprotein (DSPP). However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China. METHODS We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected. Linkage analysis of five polymorphic markers flanking DSPP gene was used to genotype the families and to construct the haplotypes of these families. All five DSPP exons including the intron-exon boundaries were PCR-amplified and sequenced in 48 members of this large family. RESULTS All affected individuals showed discoloration and severe attrition of their teeth, with obliterated pulp chambers and without progressive high frequency hearing loss or skeletal abnormalities. No recombination was found at five polymorphic markers flanking DSPP in the family. Direct DNA sequencing identified a novel A-->G transition mutation adjacent to the donor splicing site within intron 3 in all affected individuals but not in the unaffected family members and 50 unrelated Mongolian individuals. CONCLUSION This study identified a novel mutation (IVS3+3A-->G) in DSPP, which caused DGI-II in a large Mongolian family. This expands the spectrum of mutations leading to DGI-II.
Collapse
Affiliation(s)
- Haihua Bai
- Inner Mongolia University, Huhhot, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND AND OBJECTIVE Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. MATERIAL AND METHODS We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. RESULTS Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. CONCLUSION Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.
Collapse
Affiliation(s)
- Y Ogata
- Department of Periodontology and Research Institute of Oral Science, Nihon Unievrsity School of Dentistry at Matusudo, Chiba, Japan.
| |
Collapse
|
11
|
Cross KJ, Huq NL, O’Brien-Simpson NM, Perich JW, Attard TJ, Reynolds EC. The Role of Multiphosphorylated Peptides in Mineralized Tissue Regeneration. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9105-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
AbstractFor many years, operative dentistry has been using regenerative approaches to treat dental disease. The use of calcium hydroxide to stimulate reparative or reactionary dentin is clearly an example of such a therapeutic strategy. The advent of tissue engineering is allowing dentistry to move forward in the use of regeneration as an underlying principle for the treatment of dental disease. Tissue engineering is a multi-disciplinary science that brings together biology, engineering and clinical sciences with developing new tissues and organs. It is based on fundamental principles that involve the identification of appropriate cells, the development of conducive scaffolds and an understanding of the morphogenic signals required to induce cells to regenerate the tissues that were lost. This review is focused on the presentation and discussion of existing literature that covers the engineering of enamel, dentin and pulp, as well on the engineering of entire teeth. There are clearly major roadblocks to overcome before such strategies move to the clinic and are used regularly to treat patients. However, existing evidence strongly suggests that the engineering of new dental structures to replace tissues lost during the process of caries or trauma will have a place in the future of operative dentistry.
Collapse
Affiliation(s)
- Jacques E Nör
- Dept of Cariology, Restorative Sciences, Endodontics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Huq NL, Loganathan A, Cross KJ, Chen YY, Johnson NI, Willetts M, Veith PD, Reynolds EC. Association of bovine dentine phosphophoryn with collagen fragments. Arch Oral Biol 2006; 50:807-19. [PMID: 15970211 DOI: 10.1016/j.archoralbio.2005.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/01/2005] [Indexed: 11/25/2022]
Abstract
Bovine dentine phosphophoryn (BDP), a protein rich in aspartyl (Asp) and O-phosphoseryl (Ser(P)) residues, is synthesized by odontoblasts and believed to be involved in matrix-mediated biomineralization of dentine. Phosphophoryn was purified from bovine dentine using EDTA extraction, Ca(2+) precipitation, anion exchange and size exclusion chromatography. The purified protein migrated on SDS-PAGGE as a single band. The protein was dephosphorylated using a chelex alkaline dialysis procedure, repurified using anion exchange and size exclusion chromatography and then subjected to cleavage with trypsin. The digest was subjected to reversed-phase HPLC and analysed by Q-TOF mass spectrometry. The only non-trypsin peptides that could be identified were two collagen Type I alpha2 peptides whose sequence was determined by fragmentation analysis. The association of collagen fragments with highly purified phosphophoryn suggests that the EDTA extraction method yields BDP that is strongly bound to collagen fragments. This association now helps explain discrepancies in molecular weight and amino acid composition data for various phosphophoryn preparations compared with the same data calculated from the C-terminal extension of mouse, rat and human dentine sialophosphoprotein (DSPP) gene products. Analysis of the mutation pattern of the clinical disorder Osteogenesis Imperfecta within the region enclosed by the identified collagen fragments reveals that phosphophoryn associates with a segment of collagen that is crucial for structure and/or function.
Collapse
Affiliation(s)
- N Laila Huq
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, 711 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In recent years, substantial progress has been made regarding the molecular etiology of human structural tooth diseases that alter dentin matrix formation. These diseases have been classified into two major groups with subtypes: dentin dysplasia (DD) types I and II and dentinogenesis imperfecta (DGI) types I-III. Genetic linkage studies have identified the critical loci for DD-II, DGI-II, and DGI-II to human chromosome 4q21. Located within the common disease loci for these diseases is cluster of dentin/bone genes that includes osteopontin (OPN), bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP). To date, only mutations within dentin sialophosphoprotein have been associated with the pathogenesis of dentin diseases including DGI types-II and -III and DD-II. In this article, we overview the recent literature related to these dentin genetic diseases, their clinical features, and molecular pathogenesis.
Collapse
Affiliation(s)
- Mary MacDougall
- Department of Oral Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA.
| | | | | |
Collapse
|
15
|
Abstract
The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events.
Collapse
Affiliation(s)
- Gaoxiang Ge
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
16
|
Hao J, Zou B, Narayanan K, George A. Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone 2004; 34:921-32. [PMID: 15193538 DOI: 10.1016/j.bone.2004.01.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 01/06/2004] [Accepted: 01/13/2004] [Indexed: 12/23/2022]
Abstract
Sequential and reciprocal interactions between the oral ectoderm and neural crest-derived mesenchyme are responsible for tooth development. During dentin formation, there are three components that are necessary for proper mineralization, namely, collagen which forms a scaffold, noncollagenous proteins that can specifically bind to the collagen template and function as a mineral nucleator and crystalline calcium phosphate deposited in an ordered manner. It is well established that noncollagenous proteins play an important role during mineralized tissue formation. Here we demonstrate by in situ hybridization techniques that the noncollagenous dentin matrix proteins 1, 2 (DMP1, 2) and dentin sialoprotein (DSP) have characteristic temporal and spatial expression patterns within odontogenic tissues during dentin mineralization. DMP1, DMP2 and DSP mRNA are expressed in the odontoblasts at specific and overlapping time points and are thus presumably used for different functions during dentin formation. In developing rat incisors and molars, high levels of expression of DMP2 mRNA were seen in polarized odontoblasts and preameloblasts, while DSP mRNA was expressed at significantly lower levels and was expressed by highly differentiated odontoblasts. However, their expression was continuously maintained during the mineralization of the organic matrix. In the adult rats, DMP2 and DSP mRNA was also detected in the osteoblasts. The expression of DMP1 mRNA was found to coincide with the start of the mineral nucleation process and gradually decreased during the maturation of the mineralized matrix during odontogenesis. In this study, we have also correlated the expression of these proteins relative to the presence of type I collagen and calcium phosphate crystals. Thus, the temporal and spatial differences between DMP1, DMP2 and DSP might implicate a direct demonstration of the functional difference between these three genes during calcified tissue formation.
Collapse
Affiliation(s)
- Jianjun Hao
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
17
|
Fedarko NS, Jain A, Karadag A, Fisher LW. Three small integrin‐binding ligand N‐linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB J 2004; 18:734-6. [PMID: 14766790 DOI: 10.1096/fj.03-0966fje] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are critical for development, wound healing, and for the progression of cancer. It is generally accepted that MMPs are secreted in a latent form (proMMP) and are activated only upon removal of their inhibitory propeptides. This report shows that three members of the SIBLING (Small, Integrin-Binding LIgand, N-linked Glycoprotein) family can specifically bind (Kd approximately equal nM) and activate three different MMPs. Binding of SIBLING to their corresponding proMMPs is associated with structural changes as indicated by quenching of intrinsic tryptophan fluorescence, increased susceptibility to plasmin cleavage, and decreased inhibition by specific natural and synthetic inhibitors. Activation includes both making the proMMPs enzymatically active and the reactivation of the TIMP (tissue inhibitors of MMP) inhibited MMPs. Bone sialoprotein specifically binds proMMP-2 and active MMP-2, while osteopontin binds proMMP-3 and active MMP-3, and dentin matrix protein-1 binds proMMP-9 and active MMP-9. Both pro and active MMP-SIBLING complexes are disrupted by the abundant serum protein, complement Factor H, thereby probably limiting SIBLING-mediated activation to regions immediately adjacent to sites of secretion in vivo. These data suggest that the SIBLING family offers an alternative method of controlling the activity of at least three MMPs.
Collapse
Affiliation(s)
- Neal S Fedarko
- Division of Geriatrics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Although the majority of dental abscesses in children originate from dental caries or trauma, a few are associated with unusual conditions which challenge diagnosis and management. Recent research findings have shed light on these unusual entities and greatly improved understanding of their clinical implications. These conditions include developmental abnormalities such as dens invaginatus in which there is an invagination of dental tissues into the pulp chamber and dens evaginatus in which a tubercle containing pulp is found on the external surface of a tooth crown. In addition, inherited conditions which show abnormal dentine such as dentine dysplasia, dentinogenesis imperfecta, and osteogenesis imperfecta predispose the dentition to abscess formation. Furthermore, 'spontaneous' dental abscesses are frequently encountered in familial hypophosphataemia, also known as vitamin D-resistant rickets, in which there is hypomineralization of dentine and enlargement of the pulp. In addition to developmental conditions, there are also acquired conditions which may cause unusual dental abscesses. These include pre-eruptive intracoronal resorption which was previously known as 'pre-eruptive caries' or the 'fluoride bomb'. In addition, some undiagnosed infections associated with developing teeth are now thought to be the mandibular infected buccal cysts which originate from infection of the developing dental follicles. In the present paper, these relatively unknown entities which cause unusual abscesses in children are reviewed with the aim of updating the general practitioner in their diagnosis and management.
Collapse
Affiliation(s)
- W K Seow
- School of Dentistry, The University of Queensland, Brisbane.
| |
Collapse
|
19
|
Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 2003; 278:24874-80. [PMID: 12721295 DOI: 10.1074/jbc.m303908200] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels.
Collapse
Affiliation(s)
- Taduru Sreenath
- Functional Genomics Unit and Gene Targeting Facility, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
MacDougall M, Simmons D, Gu TT, Dong J. MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21. Connect Tissue Res 2003; 43:320-30. [PMID: 12489176 DOI: 10.1080/03008200290000556] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Substantial progress has been made regarding the molecular etiology of the dentin diseases dentinogenesis imperfecta types II and III, and dentin dysplasia type II. Genetic linkage studies have identified the critical loci for these diseases on human chromosome 4q21. Located within an overlapping segment of these disease loci is a dentin/bone gene cluster that includes osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein, and a new gene MEPE also known as OF45, renamed osteoregulin. In this paper, we report the location of MEPE/OF45 in relationship to the other members of the dentin/bone gene cluster as well as the genomic organization of the human gene. For the first time, MEPE/OF45 expression was shown in dental tissue, in particular odontoblasts, by reverse-transcription polymerase chain reaction (RT-PCR) amplification and characterization of a partial mouse cDNA. Our data provide the first evidence that MEPE/OF45 is expressed during odontogenesis and should be considered as a candidate gene for dentin structural diseases mapping to human chromosome 4q21.
Collapse
Affiliation(s)
- Mary MacDougall
- Department of Pediatric Dentistry, Dental School, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7888, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
21
|
Huth KC, Paschos E, Sagner T, Hickel R. Diagnostic features and pedodontic-orthodontic management in dentinogenesis imperfecta type II: a case report. Int J Paediatr Dent 2002; 12:316-21. [PMID: 12199890 DOI: 10.1046/j.1365-263x.2002.00390.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dentinogenesis imperfecta type II, also known as hereditary opalescent dentin, is an isolated inherited condition transmitted as an autosomal dominant trait affecting the primary and permanent dentition. The combined pedodontic-orthodontic management of a 4-year-old child is described. Following orthodontic analysis to encourage a favourable growth outcome, treatment comprised restoration of the primary teeth with stainless steel crowns and composite crowns. Differential diagnosis and alternative therapies, including orthodontic considerations, are discussed.
Collapse
Affiliation(s)
- K Ch Huth
- Department of Restorative Dentistry, Periodontology and Pedodontics, Dental School of the Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | |
Collapse
|
22
|
Jain A, Karadag A, Fohr B, Fisher LW, Fedarko NS. Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor activity enabling MCP-like cellular evasion of complement-mediated attack. J Biol Chem 2002; 277:13700-8. [PMID: 11825898 DOI: 10.1074/jbc.m110757200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we have shown that two members of the newly named SIBLING (small integrin-binding ligand, N-linked glycoproteins) family of proteins, bone sialoprotein, and osteopontin, bound first to a cell surface receptor and then to complement Factor H thereby blocking the lytic activity of the alternative pathway of complement. Another member of this family, dentin matrix protein 1, is shown in this paper to be very similar to osteopontin in that it can bind strongly to Factor H (K(a) approximately 1 nm) and block the lytic activity through either the vitronectin receptor (alpha(V)beta(3) integrin) or CD44. Binding of Factor H to SIBLING localized to the cells surface was demonstrated by fluorescence-activated cell sorting. Extensive overlapping fragment analyses suggests that both dentin matrix protein 1 and osteopontin interact with cell surface CD44 through their amino termini. Similar fragments of bone sialoprotein, like the intact protein, did not functionally interact with CD44. All three proteins are shown to act in conjunction with Factor I, a serum protease that, when complexed to appropriate cofactors, stops the lytic pathway by digesting the bound C3b in a series of proteolytic steps. These results show that at least three members of this family confer membrane cofactor protein-like activity (MCP or CD46) upon cells expressing RGD-binding integrins or CD44. The required order of the assembly of the complex suggests that this cofactor activity is limited to short diffusional distances.
Collapse
Affiliation(s)
- Alka Jain
- Division of Geriatrics, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
23
|
Qin C, Brunn JC, Jones J, George A, Ramachandran A, Gorski JP, Butler WT. A comparative study of sialic acid-rich proteins in rat bone and dentin. Eur J Oral Sci 2001; 109:133-41. [PMID: 11347657 DOI: 10.1034/j.1600-0722.2001.00001.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four sialic acid-rich (SA-rich) proteins found in bone and dentin, osteopontin (OPN), bone sialoprotein (BSP), bone acidic glycoprotein-75 (BAG-75), and dentin matrix protein 1 (DMP1), share some common features. We used SDS-PAGE and Western immunoblots to analyze and compare SA-rich proteins in bone and dentin extracts from rats with a single chromatographic procedure. OPN was detected in dentin extracts, with a relative level less than one-seventieth of that in bone. Both bone and dentin BSP demonstrated an extremely broad distribution pattern, probably due to a high degree of heterogeneity in post-translational modifications. BAG-75 in both bone and dentin was detected as an 83 kDa band, dramatically distinct from that of DMPI. Using a polyclonal antibody raised against a purified bone 57 kDa protein (a portion of DMPI), we detected 150 kDa protein bands in bone fraction; the same bands were recognized by antirecombinant rat DMPI antibody. Bands from dentin migrating at about 150 kDa in earlier fractions and progressing to 200 kDa in later fractions showed a clear immunoreactivity to the anti-57 kDa antibody. We conclude that the majority of DMPI in rat bone is processed into fragments, whereas that in dentin remains intact.
Collapse
Affiliation(s)
- C Qin
- Department of Basic Sciences, The University of Texas-Houston Health Science Center, Dental Branch, 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kantaputra PN. Dentinogenesis imperfecta-associated syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 104:75-8. [PMID: 11746032 DOI: 10.1002/ajmg.10031] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 2001; 27:201-4. [PMID: 11175790 DOI: 10.1038/84848] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dentinogenesis imperfecta 1 (DGI1, MIM 125490) is an autosomal dominant dental disease characterized by abnormal dentin production and mineralization. The DGI1 locus was recently refined to a 2-Mb interval on 4q21 (ref. 1). Here we study three Chinese families carrying DGI1. We find that the affected individuals of two families also presented with progressive sensorineural high-frequency hearing loss (gene DFNA39). We identified three disease-specific mutations within the dentin sialophosphoprotein gene (DSPP) in these three families. We detected a G-->A transition at the donor-splicing site of intron 3 in one family without DFNA39, a mutation predicted to result in the skipping of exon 3. In two other families affected with both DGI1 and DFNA39, however, we identified two independent nucleotide transversions in exons 2 and 3 of DSPP, respectively, that cause missense mutations of two adjacent amino-acid residues in the predicted transmembrane region of the protein. Moreover, transcripts of DSPP previously reported to be expressed specifically in teeth are also detected in the inner ear of mice. We have thus demonstrated for the first time that distinct mutations in DSPP are responsible for the clinical manifestations of DGI1 with or without DFNA39.
Collapse
Affiliation(s)
- S Xiao
- Shanghai Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qin C, Cook RG, Orkiszewski RS, Butler WT. Identification and characterization of the carboxyl-terminal region of rat dentin sialoprotein. J Biol Chem 2001; 276:904-9. [PMID: 11042175 DOI: 10.1074/jbc.m006271200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two acidic proteins, dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), are present in the extracellular matrix of dentin but not in bone. These two proteins are expressed in odontoblasts and preameloblasts as a single cDNA transcript coding a large precursor protein termed dentin sialophosphoprotein (DSPP). DSPP is specifically cleaved into two unique proteins, DSP and DPP. However, the cleavage site(s) of DSPP and the mechanisms for regulating the cleavages are unknown. To identify the specific site(s) of DSPP that are cleaved when the initial translation product is converted to DSP and DPP, we performed a detailed analysis (Edman degradation and mass spectrometry) on selected tryptic peptides of a size originating from the COOH-terminal region of rat DSP. After cleavage with trypsin, the DSP fragments were separated by a two-dimensional method (size-exclusion chromatography followed by reversed phase high performance liquid chromatography). We characterized 13 peptides from various regions of DSP. The analyses showed that peptide Ile(409)-Tyr(421) was the major COOH-terminal fragment, ending at Tyr(421) only 9 residues from the NH(2) terminus of DPP. Peptide Gln(385)-His(406) represented a second, minor COOH-terminal peptide that terminated at His(406). Both of these residues are well beyond the COOH terminus predicted previously by two independent studies estimating that rat DSP contained 360-370 amino acids. Careful studies on two peptides showed that, among 9 potential casein kinase II phosphorylation sites, 2 serines were phosphorylated. We found that rat DSP was heterogeneous with respect to phosphorylation, because this same peptide sequence eluted in two discrete peaks, one with 2 phosphoserines and the other having 1. The finding that 3 lysines just preceding the COOH termini were modified by a 43-Da substituent (possibly a carbamoyl substituent) suggests that the lysines in this region were particularly susceptible to attachment of this substituent.
Collapse
Affiliation(s)
- C Qin
- Department of Basic Sciences, The University of Texas-Houston Health Science Center, Dental Branch, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
27
|
Petersen DN, Tkalcevic GT, Mansolf AL, Rivera-Gonzalez R, Brown TA. Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J Biol Chem 2000; 275:36172-80. [PMID: 10967096 DOI: 10.1074/jbc.m003622200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe the cloning and characterization of a novel bone-specific cDNA predicted to encode an extracellular matrix protein. This cDNA was identified by subtractive hybridization based upon its high expression in bone marrow-derived osteoblasts. By Northern blot analysis, we detected a single 2-kilobase mRNA transcript in bone, whereas no expression was detected in other tissues. Immunohistochemistry revealed that the protein was expressed highly in osteocytes within trabecular and cortical bone. RNA and protein expression analysis using in vivo marrow ablation as a model of bone remodeling demonstrated that this gene was expressed only in cells that were embedded within bone matrix in contrast to the earlier expression of known osteoblast markers. The cDNA was predicted to encode a serine/glycine-rich secreted peptide containing numerous potential phosphorylation sites and one RGD sequence motif. The interaction of RGD domain-containing peptides with integrins has been shown previously to regulate bone remodeling by promoting recruitment, attachment, and differentiation of osteoblasts and osteoclasts. Secretion of this RGD-containing protein from osteocytes has the potential to regulate cellular activities within the bone environment and thereby may impact bone homeostasis. We propose the name OF45 (osteoblast/osteocyte factor of 45 kDa) for this novel cDNA.
Collapse
Affiliation(s)
- D N Petersen
- Department of Cardiovascular & Metabolic Diseases, Global Research and Development, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | | | | | |
Collapse
|
28
|
Ganss B, Kim RH, Sodek J. Bone sialoprotein. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:79-98. [PMID: 10759428 DOI: 10.1177/10454411990100010401] [Citation(s) in RCA: 422] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The search for a protein nucleator of hydroxyapatite crystal formation has been a focus for the isolation and characterization of the major non-collagenous proteins in bone. Of the proteins characterized to date, bone sialoprotein (BSP) has emerged as the only bona fide candidate for nucleation. BSP is a highly glycosylated and sulphated phosphoprotein that is found almost exclusively in mineralized connective tissues. Characteristically, polyglutamic acid and arginine-glycine-aspartate (RGD) motifs with the ability to bind hydroxyapatite and cell-surface integrins, respectively, have been conserved in the protein sequence. Expression of the BSP gene, which is induced in newly formed osteoblasts, is up-regulated by hormones and cytokines that promote bone formation and down-regulated by factors that suppress bone formation. Thus, BSP has the biophysical and chemical properties of a nucleator, and its temporo-spatial expression coincides with de novo mineralization in bone and cementum. Moreover, BSP has been associated with mineral crystal formation in several pathologies, including breast carcinomas. However, the ability of BSP to mediate cell attachment and to signal through the RGD motif points to alternate functions for BSP which need further investigation. In combination, the hydroxyapatite-binding polyglutamic acid sequences and the RGD provide bi-functional entities through which BSP may mediate the targeting and attachment of normal and metastasizing cells to the bone surface.
Collapse
Affiliation(s)
- B Ganss
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
MacDougall M, Jeffords LG, Gu TT, Knight CB, Frei G, Reus BE, Otterud B, Leppert M, Leach RJ. Genetic linkage of the dentinogenesis imperfecta type III locus to chromosome 4q. J Dent Res 1999; 78:1277-82. [PMID: 10371253 DOI: 10.1177/00220345990780061301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dentinogenesis imperfecta type III (DGI-III) is an autosomal-dominant disorder of dentin formation which appears in a tri-racial southern Maryland population known as the "Brandywine isolate". This disease has suggestive evidence of linkage to the long arm of human chromosome 4 (LOD score of 2.0) in a family presenting with both juvenile periodontitis and DGI-III. The purpose of this study was to screen a family presenting with only DGI-III to determine if this locus was indeed on chromosome 4q. Furthermore, we wanted to determine if DGI-III co-localized with dentinogenesis imperfecta type II (DGI-II), which has been localized to 4q21-q23. Therefore, a large kindred from the Brandywine isolate was identified, oral examination performed, and blood samples collected from 21 family members. DNA from this family was genotyped with 6 highly polymorphic markers that span the DGI-II critical region of chromosome 4q. Analysis of the data yielded a maximum two-point LOD score of 4.87 with a marker for the dentin matrix protein 1 (DMP1) locus, a gene contained in the critical region for DGI-II. Our results demonstrated that the DGI-III locus is on human chromosome 4q21 within a 6.6 cM region that overlaps the DGI-II critical region. These results are consistent with the hypothesis that DGI-II is either an allelic variant of DGI-III or the result of mutations in two tightly linked genes.
Collapse
Affiliation(s)
- M MacDougall
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, 78284-7888, USA
| | | | | | | | | | | | | | | | | |
Collapse
|