1
|
Avila V, Proctor G, Velandia-Romero M, Castellanos JE, Beltrán EO, Lynham S, Martignon S. Proteome of the 2-h in vivo Formed Acquired Enamel Pellicle of Adolescents with Erosive Tooth Wear, Caries, or Sound. Caries Res 2024:1-12. [PMID: 39369699 DOI: 10.1159/000541026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Acquired pellicle (AP) acts as a membrane preventing acids from coming into direct contact with the tooth. Possibly, individuals with different dental health status present changes in its composition that could disrupt this function. Thus, the aim of this study was to compare the protein composition of the AP in adolescents with erosive tooth wear (ETW), caries, or sound. METHODS Calibrated examiners in BEWE index and ICDAS-merged Epi criteria assessed ETW and caries in a sample of 454 systemically healthy adolescents aged 12-15 years old. Thirty subjects from that sample were selected for this study: ETW group (n = 10; total BEWE ≥9 and absence of dentinal caries lesions); caries group (n = 10; total BEWE <9 and with at least one dentinal caries lesion), and sound group (n = 10; total BEWE <9 and absence of dentinal caries lesions). Two-hour-formation AP samples were taken from buccal, occlusal/incisal, palatal/lingual tooth surfaces. Protein composition was analysed by liquid chromatography-tandem mass spectrometry. Using mean reporter ion values, relative abundances of proteins were compared among the three groups to calculate for fold changes. Twofold protein increases or decreases were reported (t test, p < 0.05). Gene Ontology (GO) of included proteins was assigned. RESULTS Mean age of participants was 13.1 ± 1.14 years and 56.6% were females. The prevalence of ETW was of 66.6% and of dentinal caries of 33.3%. The GO analyses showed that the majority of detected proteins were stress response related. The ETW group disclosed upregulated relative abundance of antileukoprotease (2.85-fold in ETW vs. sound and 2.34-fold in ETW group vs. caries group); histatin (2.42-fold in ETW group vs. sound group and 2.20-fold in ETW group vs. caries group), and prolactin-induced protein (2.30-fold in ETW group vs. sound group and 2.06-fold in ETW group vs. caries group) (p < 0.05). Hemoglobin subunits alpha (HBA) and beta (HBB) showed decreased relative abundances in the ETW and caries groups when compared to the sound group (HBA: 0.42-fold in ETW group and 0.40-fold in caries group; HBB: 0.45-fold in ETW group and 0.38-fold in caries group; p < 0.05). CONCLUSION AP from individuals with ETW showed differences when compared to other dental conditions, with relative abundance increasing of some stress response-associated proteins in ETW and a decrease in proteins related to salivary protection against acid challenges.
Collapse
Affiliation(s)
- Viviana Avila
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Myriam Velandia-Romero
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E Castellanos
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Edgar O Beltrán
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Stefania Martignon
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
2
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Umapathy VR, Natarajan PM, Swamikannu B. Review Insights on Salivary Proteomics Biomarkers in Oral Cancer Detection and Diagnosis. Molecules 2023; 28:5283. [PMID: 37446943 PMCID: PMC10343386 DOI: 10.3390/molecules28135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Early detection is crucial for the treatment and prognosis of oral cancer, a potentially lethal condition. Tumor markers are abnormal biological byproducts produced by malignant cells that may be found and analyzed in a variety of bodily fluids, including saliva. Early detection and appropriate treatment can increase cure rates to 80-90% and considerably improve quality of life by reducing the need for costly, incapacitating medicines. Salivary diagnostics has drawn the interest of many researchers and has been proven to be an effective tool for both medication monitoring and the diagnosis of several systemic diseases. Since researchers are now searching for biomarkers in saliva, an accessible bodily fluid, for noninvasive diagnosis of oral cancer, measuring tumor markers in saliva is an interesting alternative to blood testing for early identification, post-treatment monitoring, and monitoring high-risk lesions. New molecular markers for oral cancer detection, treatment, and prognosis have been found as a result of developments in the fields of molecular biology and salivary proteomics. The numerous salivary tumor biomarkers and how they relate to oral cancer and pre-cancer are covered in this article. We are optimistic that salivary protein biomarkers may one day be discovered for the clinical detection of oral cancer because of the rapid advancement of proteomic technology.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
4
|
Oliveira BP, Buzalaf MAR, Silva NC, Ventura TMO, Toniolo J, Rodrigues JA. Proteomic profile of the acquired enamel pellicle of children with early childhood caries and caries-free children. Eur J Oral Sci 2023:e12944. [PMID: 37414726 DOI: 10.1111/eos.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Acquired enamel pellicle plays an important role in the pathogenesis of early childhood caries (ECC), working as a protective interface between the tooth and the oral cavity. The aim of this cross-sectional in vivo proteomic study was to compare the acquired enamel pellicle protein profile of 3-5-year-old children with ECC (n = 10) and caries-free children (n = 10). Acquired enamel pellicle samples were collected and processed for proteomic analysis (nLC-ESI-MS/MS). In total, 241 proteins were identified. Basic salivary proline-rich protein 1 and 2, Cystatin-B, and SA were found only in the caries free group. When comparing caries free and ECC groups, lower protein levels were found in the caries free group for hemoglobin subunit beta, delta, epsilon, gamma-2, globin domain-containing protein and gamma-1, neutrophil defensin 3, serum albumin, protein S100-A8, and S100-A9. The proteins histatin-1, statherin, salivary acidic proline-rich phosphoprotein ½, proline-rich protein 4, submaxillary gland androgen-regulated protein 3B, alpha-amylase 1 and 2B were found at higher levels in the caries free group. The exclusive and the proteins found at higher levels in the caries free group might have protective functions that play a role in the prevention of caries, besides providing important insights to be evaluated in future studies for the possible development of new therapeutic strategies for ECC.
Collapse
Affiliation(s)
- Bethania Paludo Oliveira
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Natália Caldeira Silva
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Júlia Toniolo
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jonas Almeida Rodrigues
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Hertel S, Hannig C, Sterzenbach T. The abundance of lysozyme, lactoferrin and cystatin S in the enamel pellicle of children - Potential biomarkers for caries? Arch Oral Biol 2023; 146:105598. [PMID: 36525870 DOI: 10.1016/j.archoralbio.2022.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, the abundance of the protective salivary proteins lysozyme, lactoferrin, and cystatin S was quantified in the in situ formed pellicle of caries-free and caries-active children to determine whether they may be possible biomarkers for caries. DESIGN Pellicle formation was performed in situ for 10 min on ceramic specimens from the oral cavity of children (5-8 years) with caries (n = 17) and without evidence of caries (n = 17). Additionally, unstimulated saliva was collected. Levels of lysozyme, lactoferrin, and cystatin S were measured in desorbed pellicle eluates and saliva using ELISA. RESULTS No statistically significant differences were found in the occurrence of cystatin S and lysozyme in saliva and pellicle between caries-active and caries-free children. However, significantly higher amounts of lactoferrin were detected in the pellicle of caries-active children. CONCLUSION The protective salivary protein lactoferrin may be a biomarker for caries susceptibility in children.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
6
|
Applications of Mass Spectrometry in Dentistry. Biomedicines 2023; 11:biomedicines11020286. [PMID: 36830822 PMCID: PMC9953492 DOI: 10.3390/biomedicines11020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mass Spectrometry (MS) is one of the fastest-developing methods in analytical instrumentation. As a highly sensitive, universal detector, it can identify known and unknown compounds, which can indeed be found in a minimal concentration. This review aims to highlight the significant milestones in MS applications in dentistry during recent decades. MS can be applied in three different fields of dentistry: (1) in research of dental materials and chemical agents, (2) in laboratory analysis of biospecimens, and (3) as a real-time diagnostic tool in service of oral surgery and pathology. MS applications on materials and agents may focus on numerous aspects, such as their clinical behavior, possible toxicity, or antimicrobial properties. MS is also a valuable, non-invasive tool for biomarkers' detection in saliva and has found great application in -omics technologies as it achieves efficient structure-finding in metabolites. As metabolites are located beyond the central dogma, this technique can provide a complete understanding of cellular functions. Thus, it is possible to determine the biological profile in normal and pathological conditions, detect various oral or systematic diseases and conditions, and predict their course. Lastly, some promising advances concerning the surgical approach to potentially oral malignant or malignant disorders exist. This breakthrough method provides a comprehensive approach to dental materials research and biomarker discovery in dental and craniofacial tissues. The current availability of various 'OMIC' approaches paves the way for individualized dentistry and provides suggestions for clinical applications in the point-of-care hubs.
Collapse
|
7
|
Flemming J, Hannig C, Hannig M. Caries Management-The Role of Surface Interactions in De- and Remineralization-Processes. J Clin Med 2022; 11:jcm11237044. [PMID: 36498618 PMCID: PMC9737279 DOI: 10.3390/jcm11237044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Bioadhesion and surface interactions on enamel are of essential relevance for initiation, progression and prevention of caries and erosions. Salivary proteins on and within initial carious and erosive lesions can facilitate or aggravate de- and remineralization. This applies for the pellicle layer, the subsurface pellicle and for proteins within initial carious lesions. Little is known about these proteinaceous structures related to initial caries and erosion. Accordingly, there is a considerable demand for an understanding of the underlying processes occurring at the interface between the tooth surface and the oral cavity in order to develop novel agents that limit and modulate caries and erosion. Objectives and findings: The present paper depicts the current knowledge of the processes occurring at the interface of the tooth surface and the oral fluids. Proteinaceous layers on dental hard tissues can prevent or aggravate demineralization processes, whereas proteins within initial erosive or carious lesions might hinder remineralization considerably and restrict the entry of ions into lesions. CONCLUSIONS Despite the fact that organic-inorganic surface interactions are of essential relevance for de- and remineralization processes at the tooth surface, there is limited knowledge on these clinically relevant phenomena. Accordingly, intensive research is necessary to develop new approaches in preventive dentistry.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- Correspondence:
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
8
|
Ohshima K, Ohshima T, Meyer K, Takai E, Yoshizawa S, Shiraki K, Maeda N. Proteome analysis of high affinity mouse saliva proteins to hydroxyapatite. Heliyon 2022; 8:e10077. [PMID: 36033281 PMCID: PMC9399162 DOI: 10.1016/j.heliyon.2022.e10077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/31/2021] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Caries sensitivity varies between the two strains of inbred mice, BALB/cA has high sensitivity and C3H/HeN has low sensitivity. One potential reason seems to be a difference in pellicle-forming saliva protein composition. Here, we performed a proteomic analysis in order to identify differences of hydroxyapatite (HAP) adsorbed saliva proteins between these two mouse strains. HAP column chromatography revealed twice the quantity of high-affinity saliva proteins in C3H/HeN compared to BALB/cA. One- and two-dimensional electrophoresis showed 2 bands/spots with deviating migration. They were identified as murine carbonic anhydrase VI (CAVI) by peptide mass fingerprinting and confirmed with western blotting using a specific polyclonal antibody. Total RNA from the salivary glands of both mouse strains, PCR amplification of cDNA with a CAVI specific primer, and sequence analysis revealed one different base in codon 96, resulting in one different amino acid. Glyco-chains of CAVI deviate in one N-glycan, confirmed by mass analysis. CAVI activity was estimated from distinct circular dichroism spectra of the molecules and found higher in C3H/HeN mice. In summary, the CAVI composition of BALB/cA and C3H/HeN differs in one amino acid and a glyco-chain modification. Further, saliva from caries resistant C3H/HeN mice displayed higher CAVI activity and also overall hydroxyapatite adsorption, suggesting a relationship with caries susceptibility. CAVI was the salivary protein with high affinity for hydroxyapatite in two mice strains with different caries susceptibility. CAVI of the two strains showed differences in molecular weight, amino acids and genes, glyco-chain modification and enzyme activity. Differences in CAVI activity might contribute to caries susceptibility.
Collapse
Affiliation(s)
- Keijiro Ohshima
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Japan
| | - Tomoko Ohshima
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Japan
- Corresponding author.
| | - Karen Meyer
- Department of Dental Hygiene, Tsurumi Junior College, Japan
| | - Eisuke Takai
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | | | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Nobuko Maeda
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Japan
| |
Collapse
|
9
|
Emerging Biosensors for Oral Cancer Detection and Diagnosis—A Review Unravelling Their Role in Past and Present Advancements in the Field of Early Diagnosis. BIOSENSORS 2022; 12:bios12070498. [PMID: 35884301 PMCID: PMC9312890 DOI: 10.3390/bios12070498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Oral cancer is a serious concern to people all over the world because of its high mortality rate and metastatic spread to other areas of the body. Despite recent advancements in biomedical research, OC detection at an early stage remains a challenge and is complex and inaccurate with conventional diagnostics procedures. It is critical to study innovative approaches that can enable a faster, easier, non-invasive, and more precise diagnosis of OC in order to increase the survival rate of patients. In this paper, we conducted a review on how biosensors might be an excellent tool for detecting OC. This review covers the strategies that use different biosensors to target various types of biomarkers and focuses on biosensors that function at the molecular level viz. DNA biosensors, RNA biosensors, and protein biosensors. In addition, we reviewed non-invasive electrochemical methods, optical methods, and nano biosensors to analyze the OC biomarkers present in body fluids such as saliva and serum. As a result, this review sheds light on the development of ground-breaking biosensors for the early detection and diagnosis of OC.
Collapse
|
10
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
11
|
Parsaie Z, Rezaie P, Azimi N, Mohammadi N. Relationship between Salivary Alpha-Amylase Enzyme Activity, Anthropometric Indices, Dietary Habits, and Early Childhood Dental Caries. Int J Dent 2022; 2022:2617197. [PMID: 35378726 PMCID: PMC8976663 DOI: 10.1155/2022/2617197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Although early childhood dental caries (ECC) have the same general etiology as other types of caries, predisposing factors are not well elucidated. This study aimed to investigate the effect of salivary alpha-amylase (sAA) activity, body mass index (BMI), dietary habits, and oral hygiene on ECC. Methods This cross-sectional study was performed on 38 ECC-affected and 41 caries-free children, aged 36 to 72 months. Upon the parents' consent, 3 mL of non-stimulated saliva was collected from the participants to measure the level of sAA activity through spectrophotometry. Additionally, parents/caretakers completed a structured questionnaire about demographic factors, oral hygiene, and consumption of sugar-containing foods. BMI, BMI z-scores, and percentile data were calculated by using an online calculator. The independent variables were dichotomized and tested through chi-square test, followed by a stepwise logistic regression, by using SPSS software (α = 0.05). Results The sAA activity was significantly higher in caries-free children (P ≤ 0.001). However, the mean BMI was not significantly different between the two groups (P=0.49). Brushing and other measured dietary habits were significantly associated with the development of ECC (P ≤ 0.001). According to the results of the logistic regression, sAA activity was shown to be a predictor for ECC development (Odds ratio (95% confidence interval): 0.9 (0.95-0.98)). Conclusion Children with inherently lower levels of sAA activity were more susceptible to dental caries. Improper nutritional habits and poor oral health care could exacerbate the risk of ECC.
Collapse
Affiliation(s)
- Zahra Parsaie
- Department of Pediatric Dentistry, Zahedan Dental School, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Pediatric Dentistry, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Niloofar Azimi
- Department of Pediatric Dentistry, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Mohammadi
- Oral and Dental Disease Research Center, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030343. [PMID: 35327715 PMCID: PMC8947358 DOI: 10.3390/children9030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Salivary biomolecules are considered important modulators of the oral microflora, with a potential subsequent impact on dental health. The present study aimed to investigate the relationship between salivary enzymatic activity and carious experience in children. The carious experience of a sample of 22 school children was evaluated by calculating dmf/DMF indices, following WHO recommendations. Unstimulated whole saliva was collected, and salivary alpha-amylase levels, total protease activity, and matrix metalloproteinase levels (MMP-8 and MMP-9) were measured. The data were analyzed using parametric and nonparametric tests. Our findings revealed no significant relationship between the investigated salivary parameters and the carious experience in permanent teeth (DMFT/DMFS scores). Carious indices scores for primary teeth (dmft and dmfs) were positively associated with MMP-8 levels (r = 0.62, p = 0.004 and rs = 0.61, p = 0.006, respectively) and MMP-9 levels (r = 0.45, p = 0.05 and rs = 0.48, p = 0.039, respectively) and negatively associated with alpha-amylase levels (rs = −0.54, p = 0.017 and rs = −0.59, p = 0.006, respectively). Although with a marginal significance, PEK−054 levels positively correlated with dental caries, while for PFU−089, a negative correlation was observed. These results suggest that salivary alpha-amylase and MMP-8 and MMP-9 levels may be considered potential indicators of carious experience in children. Further studies with a prospective design are needed in order to elucidate the role of these biomolecules in caries development.
Collapse
|
13
|
Koopaie M, Salamati M, Montazeri R, Davoudi M, Kolahdooz S. Salivary cystatin S levels in children with early childhood caries in comparison with caries-free children; statistical analysis and machine learning. BMC Oral Health 2021; 21:650. [PMID: 34922509 PMCID: PMC8683819 DOI: 10.1186/s12903-021-02016-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Background Early childhood caries is the most common infectious disease in childhood, with a high prevalence in developing countries. The assessment of the variables that influence early childhood caries as well as its pathophysiology leads to improved control of this disease. Cystatin S, as one of the salivary proteins, has an essential role in pellicle formation, tooth re-mineralization, and protection. The present study aims to assess salivary cystatin S levels and demographic data in early childhood caries in comparison with caries-free ones using statistical analysis and machine learning methods. Methods A cross-sectional, case–control study was undertaken on 20 cases of early childhood caries and 20 caries-free children as a control. Unstimulated whole saliva samples were collected by suction. Cystatin S concentrations in samples were determined using human cystatin S ELISA kit. The checklist was collected from participants about demographic characteristics, oral health status, and dietary habits by interviewing parents. Regression and receiver operating characteristic (ROC) curve analysis were done to evaluate the potential role of cystatin S salivary level and demographic using statistical analysis and machine learning. Results The mean value of salivary cystatin S concentration in the early childhood caries group was 191.55 ± 81.90 (ng/ml) and in the caries-free group was 370.06 ± 128.87 (ng/ml). T-test analysis showed a statistically significant difference between early childhood caries and caries-free groups in salivary cystatin S levels (p = 0.032). Investigation of the area under the curve (AUC) and accuracy of the ROC curve revealed that the logistic regression model based on salivary cystatin S levels and birth weight had the most and acceptable potential for discriminating of early childhood caries from caries-free controls. Furthermore, using salivary cystatin S levels enhanced the capability of machine learning methods to differentiate early childhood caries from caries-free controls. Conclusion Salivary cystatin S levels in caries-free children were higher than the children with early childhood caries. Results of the present study suggest that considering clinical examination, demographic and socioeconomic factors, along with the salivary cystatin S levels, could be usefull for early diagnosis ofearly childhood caries in high-risk children; furthermore, cystatin S is a protective factor against dental caries. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-02016-x.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Salamati
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Montazeri
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395 -433, 14399-55991, Tehran, Iran.
| | - Mansour Davoudi
- Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Culp DJ, Robinson B, Cash MN. Murine Salivary Amylase Protects Against Streptococcus mutans-Induced Caries. Front Physiol 2021; 12:699104. [PMID: 34276419 PMCID: PMC8283412 DOI: 10.3389/fphys.2021.699104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.
Collapse
Affiliation(s)
- David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
15
|
Hildebrandt T, Zawilska A, Trzcionka A, Tanasiewicz M, Mazurek H, Świętochowska E. Estimation of Proinflammatory Factors in the Saliva of Adult Patients with Cystic Fibrosis and Dental Caries. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E612. [PMID: 33202617 PMCID: PMC7698042 DOI: 10.3390/medicina56110612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Introduction: The available literature lacks data regarding the levels of resistin, lysozyme, lactoferrin, α-amylase activity, pH, and saliva buffer capacity, as well as oral health and hygiene in the group of adult patients with cystic fibrosis (CF). The aim of the research was to assess the selected saliva parameters in patients diagnosed with cystic fibrosis. Materials and methods: Examined group was composed of 40 patients diagnosed with CF, while the control group of 40 healthy individuals. Both groups underwent the same scheme of the assessment (DMT index, salivary pH, buffer capacity, analysis of total sialic acid, total protein estimation, lysozyme levels estimation, lactofferin levels measurement, α-amylase activity, estimation of the levels of resistin and TNF-α). Results: In the examined group, there were higher values of decayed teeth as well as values of sialic acid, total protein, lactoferrin, α-amylase, and TNF-α. However, mean lysozyme, and resistin levels, as well as pH and buffer capacity of the saliva, were lower. Conclusions: New diagnostic methods, including the evaluation of selected salivary biochemical parameters, may indicate the existence of factors predisposing to severe tooth decay in the study group. Appropriate preventive treatment to combat dental caries in adult patients with CF will significantly improve their comfort and life expectancy.
Collapse
Affiliation(s)
- Tomasz Hildebrandt
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Plac Akademicki 17, 41-902 Bytom, Poland; (T.H.); (A.Z.); (M.T.)
| | - Anna Zawilska
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Plac Akademicki 17, 41-902 Bytom, Poland; (T.H.); (A.Z.); (M.T.)
| | - Agata Trzcionka
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Plac Akademicki 17, 41-902 Bytom, Poland; (T.H.); (A.Z.); (M.T.)
| | - Marta Tanasiewicz
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Plac Akademicki 17, 41-902 Bytom, Poland; (T.H.); (A.Z.); (M.T.)
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, ul. Prof. Jana Rudnika 3B, 34-700 Rabka Zdrój, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze- Rokitnica, Poland;
| |
Collapse
|
16
|
Pappa E, Vougas K, Zoidakis J, Vastardis H. Proteomic advances in salivary diagnostics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140494. [DOI: 10.1016/j.bbapap.2020.140494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
|
17
|
Chawhuaveang DD, Yu OY, Yin IX, Lam WYH, Mei ML, Chu CH. Acquired salivary pellicle and oral diseases: A literature review. J Dent Sci 2020; 16:523-529. [PMID: 33384841 PMCID: PMC7770358 DOI: 10.1016/j.jds.2020.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
As soon as saliva contacts the teeth surface, salivary proteins adhere to the tooth surface to form acquired salivary pellicle. The formation of this acquired salivary pellicle is a dynamic and selective process of macromolecular adsorption and desorption. Although acquired salivary pellicle contains proteins and peptides, it also contains lipids, and other macro-molecules, all of which contribute to its protective properties. Acquired salivary pellicle is related to the development of common oral diseases, such as erosion, dental caries, and periodontal disease. Acquired salivary pellicle acts as a natural barrier to prevent a tooth's surface from making direct contact with acids and to protect it from erosive demineralization. It contributes to the control of dental erosion by modulating calcium and phosphate concentrations on the tooth surface. It also influences the initial colonizer of oral biofilm and affects the transportation pathway of the acidic products of cariogenic bacteria, which affects the development of dental caries. In addition, it influences periodontal disease by acting on the colonization of periodontal pathogens. This paper's aim is to provide an overview of the acquired salivary pellicle, highlighting its composition, structure, function, role in common oral diseases, and modification for the prevention of oral diseases.
Collapse
Affiliation(s)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Faculty of Dentistry, The University of Otago, Dunedin, New Zealand
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Nijakowski K, Surdacka A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2020; 21:ijms21207477. [PMID: 33050496 PMCID: PMC7589027 DOI: 10.3390/ijms21207477] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Saliva as a biological fluid has a remarkable potential in the non-invasive diagnostics of several systemic disorders. Inflammatory bowel diseases are chronic inflammatory disorders of the gastrointestinal tract. This systematic review was designed to answer the question “Are salivary biomarkers reliable for the diagnosis of inflammatory bowel diseases?”. Following the inclusion and exclusion criteria, eleven studies were included (according to PRISMA statement guidelines). Due to their heterogeneity, the potential salivary markers for IBD were divided into four groups: oxidative status markers, inflammatory cytokines, microRNAs and other biomarkers. Active CD patients manifest decreased activity of antioxidants (e.g., glutathione, catalase) and increased lipid peroxidation. Therefore, malondialdehyde seems to be a good diagnostic marker of CD. Moreover, elevated concentrations of proinflammatory cytokines (such as interleukin 1β, interleukin 6 or tumour necrosis factor α) are associated with the activity of IBD. Additionaly, selected miRNAs are altered in saliva (overexpressed miR-101 in CD; overexpressed miR-21, miR-31, miR-142-3p and underexpressed miR-142-5p in UC). Among other salivary biomarkers, exosomal PSMA7, α-amylase and calprotectin are detected. In conclusion, saliva contains several biomarkers which can be used credibly for the early diagnosis and regular monitoring of IBD. However, further investigations are necessary to validate these findings, as well as to identify new reliable salivary biomarkers.
Collapse
|
19
|
Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules 2020; 25:E3098. [PMID: 32646009 PMCID: PMC7412334 DOI: 10.3390/molecules25133098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Fostered by the advances in the instrumental and analytical fields, in recent years the analysis of volatile organic compounds (VOCs) has emerged as a new frontier in medical diagnostics. VOCs analysis is a non-invasive, rapid and inexpensive strategy with promising potential in clinical diagnostic procedures. Since cellular metabolism is altered by diseases, the resulting metabolic effects on VOCs may serve as biomarkers for any given pathophysiologic condition. Human VOCs are released from biomatrices such as saliva, urine, skin emanations and exhaled breath and are derived from many metabolic pathways. In this review, the potential of VOCs present in saliva will be explored as a monitoring tool for several oral diseases, including gingivitis and periodontal disease, dental caries, and oral cancer. Moreover, the analytical state-of-the-art for salivary volatomics, e.g., the most common extraction techniques along with the current challenges and future perspectives will be addressed unequivocally.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Priscilla Porto-Figueira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - Pritam Sukul
- Department of Anaesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - José S. Câmara
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
20
|
Comparative proteomic analysis on acquired enamel pellicle at two time points in caries-susceptible and caries-free subjects. J Dent 2020; 94:103301. [DOI: 10.1016/j.jdent.2020.103301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 01/19/2023] Open
|
21
|
Rosa N, Campos B, Esteves AC, Duarte AS, Correia MJ, Silva RM, Barros M. Tracking the functional meaning of the human oral-microbiome protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:199-235. [PMID: 32312422 DOI: 10.1016/bs.apcsb.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interactome - the network of protein-protein interactions (PPIs) within a cell or organism - is technically difficult to assess. Bioinformatic tools can, not only, identify potential PPIs that can be later experimentally validated, but also be used to assign functional meaning to PPIs. Saliva's potential as a non-invasive diagnostic fluid is currently being explored by several research groups. But, in order to fully attain its potential, it is necessary to achieve the full characterization of the mechanisms that take place within this ecosystem. The onset of omics technologies, and specifically of proteomics, delivered a huge set of data that is largely underexplored. Quantitative information relative to proteins within a given context (for example a given disease) can be used by computational algorithms to generate information regarding PPIs. These PPIs can be further analyzed concerning their functional meaning and used to identify potential biomarkers, therapeutic targets, defense and pathogenicity mechanisms. We describe a computational pipeline that can be used to identify and analyze PPIs between human and microbial proteins. The pipeline was tested within the scenario of human PPIs of systemic (Zika Virus infection) and of oral conditions (Periodontal disease) and also in the context of microbial interactions (Candida-Streptococcus) and showed to successfully predict functionally relevant PPIs. The pipeline can be applied to different scientific areas, such as pharmacological research, since a functional meaningful PPI network can provide insights on potential drug targets, and even new uses for existing drugs on the market.
Collapse
Affiliation(s)
- Nuno Rosa
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Bruno Campos
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Cristina Esteves
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Sofia Duarte
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Maria José Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Raquel M Silva
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Marlene Barros
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
22
|
Kulhavá L, Eckhardt A, Pataridis S, Foltán R, Mikšík I. Proteomic Analysis of Whole Saliva in Relation to Dental Caries Resistance. Folia Biol (Praha) 2020; 66:72-80. [PMID: 32851837 DOI: 10.14712/fb2020066020072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Saliva contains possible biomarkers that are associated with dental caries. The present study aimed to analyse differences in the abundance of proteins in the saliva between caries-positive (CP; N = 15) and caries-free (CF; N = 12) males and to compare differences in the abundance of proteins between two saliva sample fractions (supernatant and pellet). We found 14 differently significantly expressed proteins in the CF group when comparing the supernatant fractions of the CP and CF groups, and three proteins in the pellet fractions had significantly higher expression in the CP group. Our results indicate very specific protein compositions of the saliva in relation to dental caries resistance (the saliva of the CP group mainly contained pellet proteins and the saliva of the CF group mainly contained supernatant proteins). This was the first time that the saliva pellet fraction was analysed in relation to the dental caries status. We detected specific calcium-binding proteins that could have decalcified enamel in the saliva pellet of the CP group. We also observed significantly up-regulated immune proteins in the saliva supernatant of the CF group that could play an important role in the caries prevention. The particular protein compositions of the saliva pellet and supernatant in the groups with different susceptibilities to tooth decay is a promising finding for future research.
Collapse
Affiliation(s)
- L Kulhavá
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - A Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - S Pataridis
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Foltán
- Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - I Mikšík
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Pelá VT, Prakki A, Wang L, Ventura TMS, de Souza E Silva CM, Cassiano LPS, Brianezzi LFF, Leite AL, Buzalaf MAR. The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens. Arch Oral Biol 2019; 108:104527. [PMID: 31472277 DOI: 10.1016/j.archoralbio.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study evaluated the influence of the addition of fillers and/or protease inhibitors [(epigallocatechin gallate - EGCG) or (chlorhexidine - CHX)] in experimental resins in the protein profile of the acquired pellicle (AP) formed in situ on enamel-resin specimens. DESIGN 324 samples of bovine enamel were prepared (6 × 6 × 2 mm). The center of each sample was added with one of the following experimental resins (Bis-GMA+TEGDMA): no filler, no inhibitor (NF-NI); filler no inhibitor (F-NI); no filler plus CHX (NF-CHX); filler plus CHX (F-CHX); no filler plus EGCG (NF-EGCG); filler plus EGCG (F-EGCG). Nine subjects used a removable jaw appliance (BISPM - Bauru in situ pellicle model) with 2 slabs from each group. The AP was formed for 120 min, in 9 days and collected with electrode filter paper soaked in 3% citric acid. The pellicles collected were processed for analysis by LC-ESI-MS/MS. RESULTS A total of 140 proteins were found in the AP collected from all the substrates. Among them, 16 proteins were found in common in all the groups: 2 isoforms of Basic salivary proline-rich protein, Cystatin-S, Cystatin-AS, Cystatin-SN, Histatin-1, Ig alpha-1 chain C region, Lysozyme C, Mucin-7, Proline-rich protein 4, Protein S100-A9, Salivary acidic proline-rich phosphoprotein ½ and Statherin. Proteins with other functions, such as metabolism and transport, were also identified. CONCLUSION The composition of the experimental resins influenced the protein profile of the AP. This opens a new avenue for the development of new materials able to guide for AP engineering, thus conferring protection to the adjacent teeth.
Collapse
Affiliation(s)
- Vinícius Taioqui Pelá
- Department of Genetics and Evolution Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Anuradha Prakki
- Department of Clinical Sciences, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - Linda Wang
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | | | - Luiza Paula Silva Cassiano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | - Aline Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | |
Collapse
|
24
|
Amado F, Calheiros-Lobo MJ, Ferreira R, Vitorino R. Sample Treatment for Saliva Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:23-56. [DOI: 10.1007/978-3-030-12298-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Identification of salivary peptidomic biomarkers in chronic kidney disease patients undergoing haemodialysis. Clin Chim Acta 2019; 489:154-161. [DOI: 10.1016/j.cca.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/20/2018] [Accepted: 12/06/2018] [Indexed: 11/24/2022]
|
26
|
Wang K, Zhou X, Li W, Zhang L. Human salivary proteins and their peptidomimetics: Values of function, early diagnosis, and therapeutic potential in combating dental caries. Arch Oral Biol 2018; 99:31-42. [PMID: 30599395 DOI: 10.1016/j.archoralbio.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 02/05/2023]
Abstract
Saliva contains a large number of proteins that play various crucial roles to maintain the oral health and tooth integrity. This oral fluid is proposed to be one of the most important host factors, serving as a special medium for monitoring aspects of microorganisms, diet and host susceptibility involved in the caries process. Extensive salivary proteomic and peptidomic studies have resulted in considerable advances in the field of biomarkers discovery for dental caries. These salivary biomarkers may be exploited for the prediction, diagnosis, prognosis and treatment of dental caries, many of which could also provide the potential templates for bioactive peptides used for the biomimetic management of dental caries, rather than repairing caries lesions with artificial materials. A comprehensive understanding of the biological function of salivary proteins as well as their derived biomimetic peptides with promising potential against dental caries has been long awaited. This review overviewed a collection of current literature and addressed the majority of different functions of salivary proteins and peptides with their potential as functional biomarkers for caries risk assessment and clinical prospects for the anti-caries application.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Trautmann S, Barghash A, Fecher-Trost C, Schalkowsky P, Hannig C, Kirsch J, Rupf S, Keller A, Helms V, Hannig M. Proteomic Analysis of the Initial Oral Pellicle in Caries-Active and Caries-Free Individuals. Proteomics Clin Appl 2018; 13:e1800143. [PMID: 30548171 DOI: 10.1002/prca.201800143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To 1) elucidate individual proteomic profiles of the 3-min biofilm of caries-active and caries-free individuals and 2) compare these proteomic profiles against the background of caries. EXPERIMENTAL DESIGN The initial oral pellicle of 12 caries-active and 12 caries-free individuals is generated in situ on ceramics specimens. The individual, host-specific proteomic profiles of this basic pellicle layer are analyzed by a chemical elution protocol combined with an elaborate mass spectrometry and evaluated bioinformatically. RESULTS A total of 1188 different proteins are identified. Additionally, 68 proteins are present in the profiles of all individuals, suggesting them as ubiquitously occurring base-proteins of the initial human pellicle. Thereof, the single profiles exhibit high inter-individual differences independent of their group affiliation, stating the initial pellicle to represent a rather "individual fingerprint". Quantitative analyses imply slight indication for 23 proteins potentially capable of counting for caries-specific biomarkers. CONCLUSIONS AND CLINICAL RELEVANCE The introduced protocol enables the individual analysis of minimal protein amounts and allows for highly precise characterizations and comparisons of individual proteomic profiles. The results contain a considerable higher extent of protein identifications and might serve as a base for future large scale analyzes to identify discrimination factors for the development of caries susceptibility tests.
Collapse
Affiliation(s)
- Simone Trautmann
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
| | - Ahmad Barghash
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.,School of Electrical Engineering and Information Technology, German Jordanian University, Amman, Jordan
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Pascal Schalkowsky
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jasmin Kirsch
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
28
|
Jágr M, Ergang P, Pataridis S, Kolrosová M, Bartoš M, Mikšík I. Proteomic analysis of dentin-enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci 2018; 127:112-121. [DOI: 10.1111/eos.12594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Michal Jágr
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Quality of Plant Products; Crop Research Institute; Prague Czech Republic
| | - Peter Ergang
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Statis Pataridis
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Marta Kolrosová
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Martin Bartoš
- Institute of Dental Medicine; First Faculty of Medicine; Charles University and General University Hospital; Prague Czech Republic
| | - Ivan Mikšík
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
29
|
Lorenzo-Pouso AI, Pérez-Sayáns M, Bravo SB, López-Jornet P, García-Vence M, Alonso-Sampedro M, Carballo J, García-García A. Protein-Based Salivary Profiles as Novel Biomarkers for Oral Diseases. DISEASE MARKERS 2018; 2018:6141845. [PMID: 30524521 PMCID: PMC6247606 DOI: 10.1155/2018/6141845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The Global Burden of Oral Diseases affects 3.5 billion people worldwide, representing the number of people affected by the burden of untreated dental caries, severe periodontal disease, and edentulism. Thus, much more efforts in terms of diagnostics and treatments must be provided in the fight of these outcomes. In this sense, recently, the study of saliva as biological matrix has been identified as a new landmark initiative in the search of novel and useful biomarkers to prevent and diagnose these conditions. Specifically, saliva is a rich reservoir of different proteins and peptides and accessible due to recent advances in molecular biology and specially in targeted and unbiased proteomics technologies. Nonetheless, emerging barriers are an obstacle to the study of the salivary proteome in an effective way. This review aims at giving an overall perspective of salivary biomarkers identified in several oral diseases by means of molecular biology approaches.
Collapse
Affiliation(s)
- Alejandro I. Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Pía López-Jornet
- Department of Oral Medicine, Faculty of Medicine, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - María García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Manuela Alonso-Sampedro
- Department of Internal Medicine and Clinical Epidemiology, Santiago de Compostela University Hospital Complex (CHUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Javier Carballo
- Department of Food Technology, Faculty of Sciences, University of Vigo-Ourense Campus, Ourense, Spain
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
30
|
Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of Salivary Biomarkers in Oral Cancer Detection. Adv Clin Chem 2018; 86:23-70. [PMID: 30144841 DOI: 10.1016/bs.acc.2018.05.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral cancers are the sixth most frequent cancer with a high mortality rate. Oral squamous cell carcinoma accounts for more than 90% of all oral cancers. Standard methods used to detect oral cancers remain comprehensive clinical examination, expensive biochemical investigations, and invasive biopsy. The identification of biomarkers from biological fluids (blood, urine, saliva) has the potential of early diagnosis. The use of saliva for early cancer detection in the search for new clinical markers is a promising approach because of its noninvasive sampling and easy collection methods. Human whole-mouth saliva contains proteins, peptides, electrolytes, organic, and inorganic salts secreted by salivary glands and complimentary contributions from gingival crevicular fluids and mucosal transudates. This diagnostic modality in the field of molecular biology has led to the discovery and potential of salivary biomarkers for the detection of oral cancers. Biomarkers are the molecular signatures and indicators of normal biological, pathological process, and pharmacological response to treatment hence may provide useful information for detection, diagnosis, and prognosis of the disease. Saliva's direct contact with oral cancer lesions makes it more specific and potentially sensitive screening tool, whereas more than 100 salivary biomarkers (DNA, RNA, mRNA, protein markers) have already been identified, including cytokines (IL-8, IL-1b, TNF-α), defensin-1, P53, Cyfra 21-1, tissue polypeptide-specific antigen, dual specificity phosphatase, spermidine/spermineN1-acetyltransferase , profilin, cofilin-1, transferrin, and many more. However, further research is still required for the reliability and validation of salivary biomarkers for clinical applications. This chapter provides the latest up-to-date list of known and emerging potential salivary biomarkers for early diagnosis of oral premalignant and cancerous lesions and monitoring of disease activity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics, College of Dentistry, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Rabia S Khan
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi Colleges, Riyadh, Saudi Arabia
| | - Paul D Slowey
- Oasis Diagnostics Corporation, Vancouver, WA, United States
| | - Ihtesham U Rehman
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
31
|
Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J 2018; 41:63-87. [PMID: 29866603 PMCID: PMC6138769 DOI: 10.1016/j.bj.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Current research efforts on neurological diseases are focused on identifying novel disease biomarkers to aid in diagnosis, provide accurate prognostic information and monitor disease progression. With advances in detection and quantification methods in genomics, proteomics and metabolomics, saliva has emerged as a good source of samples for detection of disease biomarkers. Obtaining a sample of saliva offers multiple advantages over the currently tested biological fluids as it is a non-invasive, painless and simple procedure that does not require expert training or harbour undesirable side effects for the patients. Here, we review the existing literature on salivary biomarkers and examine their validity in diagnosing and monitoring neurodegenerative and neuropsychiatric disorders such as autism and Alzheimer's, Parkinson's and Huntington's disease. Based on the available research, amyloid beta peptide, tau protein, lactoferrin, alpha-synuclein, DJ-1 protein, chromogranin A, huntingtin protein, DNA methylation disruptions, and micro-RNA profiles provide display a reliable degree of consistency and validity as disease biomarkers.
Collapse
Affiliation(s)
- Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Haraty
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ziad Salame
- Research Department, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
32
|
Salivary Biomarkers in Systemic Sclerosis Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3921247. [PMID: 29721505 PMCID: PMC5867662 DOI: 10.1155/2018/3921247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/14/2018] [Accepted: 02/11/2018] [Indexed: 12/29/2022]
Abstract
Scleroderma or systemic sclerosis (SSc) is frequently detected at an advanced stage due to diagnosis difficulties. Salivary biomarkers, if existing, could be used for predictive diagnosis of this disease. Human saliva contains a large number of proteins that can be used for diagnosis and are of great potential in clinical research. The use of proteomic analysis to characterize whole saliva (WS) in SSc has gained an increasing attention in the last years and the identification of salivary proteins specific for SSc could lead to early diagnosis or new therapeutic targets. This review will present an overview about the use of WS in SSc studies. The proteomic technologies currently used for global identification of salivary proteins in SSc, as well as the advantages and limitations for the use of WS as a diagnostic tool, will be presented.
Collapse
|
33
|
Cassiano LPS, Ventura TMS, Silva CMS, Leite AL, Magalhães AC, Pessan JP, Buzalaf MAR. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study. Caries Res 2018; 52:288-296. [PMID: 29393147 DOI: 10.1159/000485390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
This study detected changes in the protein profile of the acquired enamel pellicle (AEP) formed in vivo after rinsing with whole milk, fat-free milk, or water. Nine subjects in good oral condition took part in the study. The acquired pellicle was formed in the morning, for 120 min, after prophylaxis with pumice. Following this, the volunteers rinsed with 10 mL of whole milk, fat-free milk, or deionized water for 30 s, following a blinded crossover protocol. After 60 min, the pellicle was collected with filter paper soaked in 3% citric acid and processed for analysis by liquid chromatography-electrospray ionization tandem mass spectrometry. The obtained tandem mass spectrometry spectra were searched against a human protein database (Swiss-Prot). The proteomic data related to protein quantification were analysed using the PLGS software. A total of 260 proteins were successfully identified in the AEP samples collected from all groups. Forty-nine were common to all 3 groups, while 72, 62, and 49 were specific to the groups rinsing with whole milk, fat-free milk, and water, respectively. Some were typical components of the AEP, such as cystatin-B, cystatin-SN, isoforms of α-amylase, IgA and IgG, lysozyme C, protein S100 A78, histatin-1, proline-rich protein 27, statherin, and lactotransferrin. Other proteins are not commonly described as part of the AEP but could act in defence of the organism against pathogens. Distinct proteomic profiles were found in the AEP after rinsing with whole or fat-free milk, which could have an impact on bacterial adhesion and tooth dissolution. The use of fat-free milk could favourably modulate the adhesion of bacteria to the AEP as well as biofilm formation when compared with whole milk.
Collapse
Affiliation(s)
- Luiza P S Cassiano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang K, Wang Y, Wang X, Ren Q, Han S, Ding L, Li Z, Zhou X, Li W, Zhang L. Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach. J Transl Med 2018; 16:11. [PMID: 29351798 PMCID: PMC5775567 DOI: 10.1186/s12967-018-1388-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dental caries is a major worldwide oral disease afflicting a large proportion of children. As an important host factor of caries susceptibility, saliva plays a significant role in the occurrence and development of caries. The aim of the present study was to characterize the healthy and cariogenic salivary proteome and determine the changes in salivary protein expression of children with varying degrees of active caries, also to establish salivary proteome profiles with a potential therapeutic use against dental caries. METHODS In this study, unstimulated saliva samples were collected from 30 children (age 10-12 years) with no dental caries (NDC, n = 10), low dental caries (LDC, n = 10), and high dental caries (HDC, n = 10). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with isobaric tags for relative and absolute quantitation, and then they were analyzed with GO annotation, biological pathway analysis, hierarchical clustering analysis, and protein-protein interaction analysis. Targeted verifications were then performed using multiple reaction monitoring mass spectrometry. RESULTS A total of 244 differentially expressed proteins annotated with GO annotation in biological processes, cellular component and molecular function were identified in comparisons among children with varying degrees of active caries. A number of caries-related proteins as well as pathways were identified in this study. As compared with caries-free children, the most significantly enriched pathways involved by the up-regulated proteins in LDC and HDC were the ubiquitin mediated proteolysis pathway and African trypanosomiasis pathway, respectively. Subsequently, we selected 53 target proteins with differential expression in different comparisons, including mucin 7, mucin 5B, histatin 1, cystatin S and cystatin SN, basic salivary proline rich protein 2, for further verification using MRM assays. Protein-protein interaction analysis of these proteins revealed complex protein interaction networks, indicating synergistic action of salivary proteins in caries resistance or cariogenicity. CONCLUSIONS Overall, our results afford new insight into the salivary proteome of children with dental caries. These findings might have bright prospect in future in developing novel biomimetic peptides with preventive and therapeutic benefits for childhood caries.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Xiuqing Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Qian Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Sili Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin South Road, Chengdu, Sichuan China
| |
Collapse
|
35
|
Kulhavá L, Eckhardt A, Pataridis S, Bartoš M, Foltán R, Mikšík I. Effects of Leukaemia Inhibitory Factor Receptor on the Early Stage of Osteogenic Differentiation of Human Bone Marrow Mesenchymal Cells. Folia Biol (Praha) 2018; 64:195-203. [PMID: 30938677 DOI: 10.14712/fb2018064050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Most people worldwide suffer from dental caries. Only a small part of the population is cariesresistant and the reason for this resistance in unknown. Only a few studies compared the saliva protein composition of persons with carious teeth and persons with no caries. Our study is the first to relate proteomic analysis of the caries aetiology with gender. In this study, we compared the differences in the abundances of proteins in the saliva between cariesresistant and caries-susceptible females and males by nano-liquid chromatography-tandem mass spectrometry (Label-Free Quantitative Proteomics). Our results demonstrate that the observed differences in the protein levels might have an influence on anticaries resistance. A total of 19 potential markers of tooth caries were found, for example proteins S100A8 and annexin A1 with higher expression in the cariessusceptible group in comparison with the caries-free group and mucin-5B, lactoferrin, lysozyme C with higher expression in the caries-free group in comparison with the caries-susceptible group. The presented study is the first complex proteomic and gender project where the saliva protein content of caries-free and caries-susceptible persons were compared by label-free MS. The newly detected potential protein markers of dental caries can be a good basis for further research and for possible future therapeutic use.
Collapse
Affiliation(s)
- L Kulhavá
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - A Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - S Pataridis
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Bartoš
- Department of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - R Foltán
- Department of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - I Mikšík
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
36
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
37
|
Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci 2017; 9:e1. [PMID: 29125139 PMCID: PMC5775330 DOI: 10.1038/ijos.2017.35] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease.
Collapse
Affiliation(s)
- Abdullah S Hemadi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Abstract
AbstractBackground: Dental caries disease is a dynamic process with a multi-factorial etiology. It is manifested by demineralization of enamel followed by damage spreading into the tooth inner structure. Successful early diagnosis could identify caries-risk and improve dental screening, providing a baseline for evaluating personalized dental treatment and prevention strategies. Methodology: Salivary proteome of the whole unstimulated saliva (WUS) samples was assessed in caries-free and caries-susceptible individuals of older adolescent age with permanent dentition using a nano-HPLC and MALDI-TOF/TOF mass spectrometry. Results: 554 proteins in the caries-free and 695 proteins in the caries-susceptible group were identified. Assessment using bioinformatics tools and Gene Ontology (GO) term enrichment analysis revealed qualitative differences between these two proteomes. Members of the caries-susceptible group exhibited a branch of cytokine binding gene products responsible for the regulation of immune and inflammatory responses to infections. Inspection of molecular functions and biological processes of caries-susceptible saliva samples revealed significant categories predominantly related to the activity of proteolytic peptidases, and the regulation of metabolic and catabolic processes of carbohydrates. Conclusions: Proteomic analysis of the whole saliva revealed information about potential risk factors associated with the development of caries-susceptibility and provides a better understanding of tooth protection mechanisms.
Collapse
|
39
|
Ventura TMDS, Cassiano LDPS, Souza E Silva CMD, Taira EA, Leite ADL, Rios D, Buzalaf MAR. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol 2017; 79:20-29. [PMID: 28282514 DOI: 10.1016/j.archoralbio.2017.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study evaluated the variation in the protein profile of the acquired enamel pellicle (AEP) formed in vivo according to its location in the dental arches. DESIGN The AEP was formed for 120min in 9 volunteers. Pellicle formed at upper+lower anterior facial (ULAFa; teeth 13-23 and 33-43), upper anterior palatal (UAPa; teeth 13-23), lower anterior lingual (LALi; teeth 33-43), upper+lower posterior facial (ULPFa; teeth 14-17 24-27, 34-37 and 44-47), upper posterior palatal (UPPa; teeth 14-17 and 24-27) and lower posterior lingual (LPLi; teeth 34-37 and 44-47) regions were collected separately and processed for analysis by label-free LC-ESI-MS/MS. RESULTS Three-hundred sixty three proteins were identified in total, twenty-five being common to all the locations, such as Protein S100-A8, Lysozyme C, Lactoferrin, Statherin, Ig alpha-2, ALB protein, Myeloperoxidase and SMR3B. Many proteins were found exclusively in the AEP collected from one of the regions (46-UAPa, 33-LALi, 59-ULAFa, 31-ULPFa, 44-LPLi and 39-UPPa). CONCLUSIONS The protein composition of the AEP varied according to its location in the dental arches. These results provide important insights for understanding the differential protective roles of the AEP as a function of its location in the dental arches.
Collapse
Affiliation(s)
| | | | | | - Even Akemi Taira
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Aline de Lima Leite
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Daniela Rios
- Department of Pediatric Dentistry, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | |
Collapse
|
40
|
Borghi GN, Rodrigues LP, Lopes LM, Parisotto TM, Steiner-Oliveira C, Nobre-Dos-Santos M. Relationship among α amylase and carbonic anhydrase VI in saliva, visible biofilm, and early childhood caries: a longitudinal study. Int J Paediatr Dent 2017; 27:174-182. [PMID: 27430359 DOI: 10.1111/ipd.12249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This longitudinal study investigated the relationship among early childhood caries (ECC), α amylase, carbonic anhydrase VI (CA VI), and the presence of visible biofilm, besides detecting if these variables could predict risk for ECC. DESIGN One hundred children were divided into two groups: caries group (n = 45) and caries-free group (n = 55). Visible biofilm on maxillary incisors was recorded, followed by caries diagnosis in preschoolers at baseline and at follow-up. Saliva samples were collected, and activities of CA VI and α amylase were determined. Data normality was assessed by Shapiro-Wilk test and then Mann-Whitney, Spearman correlation, and chi-square tests followed by multiple logistic regression analysis (α = 0.05, 95% confidence interval). RESULTS CA VI activity was significantly higher in saliva of children with caries (P ≤ 0.05), and α amylase activity was significantly higher in saliva of caries-free children (P < 0.0001). Children with α amylase activity in saliva lower than 122.8 U/mL (OR = 3.33 P = 0.042) and visible biofilm on maxillary incisors (OR = 3.6 P = 0.009) were more likely to develop ECC than caries-free children. A negative correlation between caries and α amylase activity was found (P = 0.0008). CONCLUSIONS The presence of visible biofilm and low salivary activity of α amylase may be considered risk predictors for ECC.
Collapse
Affiliation(s)
- Gabriela N Borghi
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Lívia P Rodrigues
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Lenita M Lopes
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Thais M Parisotto
- Department of Microbiology and Molecular Biology, Sao Francisco University, Bragança Paulista, Brazil
| | - Carolina Steiner-Oliveira
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Marinês Nobre-Dos-Santos
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| |
Collapse
|
41
|
Ao S, Sun X, Shi X, Huang X, Chen F, Zheng S. Longitudinal investigation of salivary proteomic profiles in the development of early childhood caries. J Dent 2017; 61:21-27. [PMID: 28438560 DOI: 10.1016/j.jdent.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To investigate differentially expressed salivary peptides in the development of early childhood caries (ECC) in 3-4 year-old children. MATERIALS AND METHODS Eighty-two caries-free children at baseline were followed-up for 1year, during which period 15 of them had developed ECC (Group C), whilst another 15 cases out of the 31 individuals who remained healthy were marked as Group H. Stimulated whole saliva samples were collected at 0, 6 and 12 months, and analyzed using weak cation exchange magnetic beads combined with matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Corresponding peptide mass fingerprints were obtained to develop a discriminating model for ECC development. Q-Exactive mass spectrometry was then performed to identify the possible proteins where these peptides might derive from. RESULTS Nine peptide peaks were found to be significantly different in Group C among the three sampling time points and might correlate with development of caries. Levels of three of them increased over time, whilst that of the other six decreased gradually. We chose three peptides (1346.6, 2603.5 and 3192.8Da) which exhibited the best capability of classification, to establish a model for children at high risk of caries. One peptide (1346.6Da) was identified to be salivary histatin-rich peptide. CONCLUSIONS Our results indicate that peptidomic methods can be applied to help identify new candidate biomarkers for the occurrence and development of ECC. CLINICAL SIGNIFICANCE The change of salivary peptides may be an indicator of ECC, facilitating more effective measures to be taken in prevention of this disease.
Collapse
Affiliation(s)
- Shuang Ao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiangru Shi
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xin Huang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
42
|
Kirsch J, Hannig C, Pötschke S, Basche S, Bowen WH, Rupf S, Trautmann S, Umanskaya N, Hannig M. Enzymology and Ultrastructure of the in situ Pellicle in Caries-Active and Caries-Inactive Patients. Caries Res 2017; 51:109-118. [DOI: 10.1159/000452226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/02/2016] [Indexed: 11/19/2022] Open
Abstract
Aim: The present study aimed to evaluate the impact of caries activity on the key enzymes and the ultrastructure of the in situ pellicle. Methods: Pellicle formation was performed on bovine enamel slabs. Intraoral exposure (3, 30, and 120 min) was accomplished by 14 caries-active (DMFS: 22.7 ± 12.1) and 13 caries-inactive (DMFS: 1.5 ± 1.8) individuals. The enzyme activities (lysozyme, peroxidase, α-amylase, glycosyltransferase [GTF]) in the in situ pellicle and resting saliva of all participants were analyzed directly after oral exposure. In addition, a simultaneous visualization of these enzymes, extracellular glucans, and adherent bacteria was carried out. Fluorescent patterns were analyzed with fluorescence labeling and 4′,6-diamidino-2-phenylindole/concanavalin A staining. In addition, the distribution of GTF B, C, and D and the ultrastructure of the pellicle were examined by gold immunolabeling and transmission electron microscopy with selected samples. Results: Enzyme activities of amylase, peroxidase, lysozyme, and GTF were detected on all enamel slabs in an active conformation. Neither exposure time nor caries activity had an impact on the enzyme activities. Gold immunolabeling indicated that the pellicle of caries-active subjects tends to more GTF D molecules. The pellicles of caries-inactive and -active individuals revealed a similar ultrastructural pattern. Conclusion: The enzyme activities as well as the pellicle's ultrastructure are of high similarity in caries-active and -inactive subjects. Thereby, oral exposure time has no significant influence. This reflects a high uniformity during the initial phase of bioadhesion (3-120 min) concerning enzymatic functions. However, there is a tendency towards more GTF D in caries-active individuals.
Collapse
|
43
|
Hertel S, Pötschke S, Basche S, Delius J, Hoth-Hannig W, Hannig M, Hannig C. Effect of Tannic Acid on the Protective Properties of the in situ Formed Pellicle. Caries Res 2016; 51:34-45. [PMID: 27960156 DOI: 10.1159/000451036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In the present in situ/ex vivo study the impact of tannic acid on the erosion-protective properties of the enamel pellicle was tested. Additionally, the antiadherent and antibacterial effects of tannic acid were evaluated. METHODS The pellicle was formed in situ on bovine enamel samples fixed on individual splints worn by 6 subjects. Following 1 min of pellicle formation the volunteers rinsed for 10 min with tannic acid. After further oral exposure for 19 min, 109 min, and 8 h overnight, respectively, slabs were incubated in HCl ex vivo (pH 2.0, 2.3, 3.0) over 120 s. Subsequently, kinetics of calcium and phosphate release were measured photometrically. Samples after a 1-min fluoride mouth rinse as well as enamel samples with and without a 30-min in situ pellicle served as controls. Antiadherent effects were evaluated after a 1-min rinse with tannic acid and oral exposure of the slabs overnight. DAPI (4',6-diamidino-2-phenylindole) combined with concanavalin A staining and live/dead staining was used for fluorescence microscopic visualization and quantification of adherent bacteria and glucans. Modification of the pellicle's ultrastructure by tannic acid was evaluated by transmission electron microscopy (TEM). RESULTS Tannic acid significantly improved the erosion-protective properties of the pellicle in a pH-dependent manner. Bacterial adherence and glucan formation on enamel were significantly reduced after rinses with tannic acid as investigated by fluorescence microscopy. TEM imaging indicated that rinsing with tannic acid yielded a sustainable modification of the pellicle; it was distinctly more electron dense. CONCLUSION Tannic acid offers an effective and sustainable approach for the prevention of caries and erosion.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, Zheng S. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med 2016; 14:240. [PMID: 27527350 PMCID: PMC4986381 DOI: 10.1186/s12967-016-0996-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe early childhood caries (s-ECC), which has quite high prevalence among children, is a widespread problem with significant impacts among both developing and developed countries. At present, it is widely known that no early detective techniques and diagnostic tests could have high sensitivity and specificity when using for clinical screening of s-ECC. In this study, we had applied magnetic bead (MB)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to screen distinctive candidate biomarkers of this disease, so as to establish protein profiles and diagnostic models of s-ECC. METHODS Firstly, we used the technique mentioned above to detect specifically expressed peptides in saliva samples from ten children with s-ECC, separately at the time point of before, 1 and 4 weeks after dental treatment. Then a diagnostic model for s-ECC was established with the K nearest-neighbour method, which was validated in another six children in the next stage of study. After that, linear ion trap-orbitrap-mass spectrometry (LTQ-Orbitrap-MS) was performed to identify which of the proteins in saliva might be the origination of these peptides. RESULTS We found that seven peptide peaks were significantly different when comparing the three time points, among them two were higher, while other five were lower in the pre-treatment s-ECC group compared with post-treatment. The sensitivity and specificity of the diagnostic model we built were both 83.3 %. Two of these peptides were identified to be segments of histatin-1, which was one important secretory protein in saliva. CONCLUSIONS Hereby we confirmed that MB-based MALDI-TOF MS is an effective method for screening distinctive peptides from the saliva of junior patients with s-ECC, and histatin-1 may probably be one important candidate biomarker of this common dental disease. These findings might have bright prospect in future in establishing new diagnostic methods for s-ECC.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xu Tan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.,Stomatological Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yan Si
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
45
|
Proteomic analysis of human tooth pulp proteomes – Comparison of caries-resistant and caries-susceptible persons. J Proteomics 2016; 145:127-136. [DOI: 10.1016/j.jprot.2016.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/08/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
46
|
Huq NL, Myroforidis H, Cross KJ, Stanton DP, Veith PD, Ward BR, Reynolds EC. The Interactions of CPP-ACP with Saliva. Int J Mol Sci 2016; 17:ijms17060915. [PMID: 27294918 PMCID: PMC4926448 DOI: 10.3390/ijms17060915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022] Open
Abstract
The repair of early dental caries lesions has been demonstrated by the application of the remineralisation technology based on casein phosphopeptide-stabilised amorphous calcium phosphate complexes (CPP-ACP). These complexes consist of an amorphous calcium phosphate mineral phase stabilised and encapsulated by the self-assembly of milk-derived phosphopeptides. During topical application of CPP-ACP complexes in the oral cavity, the CPP encounters the enamel pellicle consisting of salivary proteins and peptides. However the interactions of the CPP with the enamel salivary pellicle are not known. The studies presented here reveal that the predominant peptides of CPP-ACP complexes do interact with specific salivary proteins and peptides of the enamel pellicle, and provide a mechanism by which the CPP-ACP complexes are localised at the tooth surface to promote remineralisation.
Collapse
Affiliation(s)
- Noorjahan Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - Helen Myroforidis
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - David P Stanton
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - Brent R Ward
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, 720 Swanston Street, Melbourne 3010, Australia.
| |
Collapse
|
47
|
Gao X, Jiang S, Koh D, Hsu CYS. Salivary biomarkers for dental caries. Periodontol 2000 2015; 70:128-41. [DOI: 10.1111/prd.12100] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
|
48
|
Identification of acid-resistant proteins in acquired enamel pellicle. J Dent 2015; 43:1470-5. [DOI: 10.1016/j.jdent.2015.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/22/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
|
49
|
Algarni AA, Mussi MCM, Moffa EB, Lippert F, Zero DT, Siqueira WL, Hara AT. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. PLoS One 2015; 10:e0128196. [PMID: 26030135 PMCID: PMC4452394 DOI: 10.1371/journal.pone.0128196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 04/24/2015] [Indexed: 02/07/2023] Open
Abstract
Objectives To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment). Methods In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry. Results Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%), Sn (67%) and F (42%) compared to DIW (all significantly different, p<0.05). Conclusion This study highlighted that anti-erosion rinses (e.g. Sn+F) can modify quantitatively and qualitatively the AEP formed on bovine enamel. Moreover, our study demonstrated a combinatory effect that amplified the anti-erosive protection on tooth surface.
Collapse
Affiliation(s)
- A. A. Algarni
- Oral Health Research Institute, Indiana University School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
| | - M. C. M. Mussi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - E. B. Moffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - F. Lippert
- Oral Health Research Institute, Indiana University School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
| | - D. T. Zero
- Oral Health Research Institute, Indiana University School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
| | - W. L. Siqueira
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - A. T. Hara
- Oral Health Research Institute, Indiana University School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
50
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|