1
|
|
2
|
Dolinska MB, Wingfield PT, Sergeev YV. Purification of Recombinant Human Tyrosinase from Insect Larvae Infected with the Baculovirus Vector. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:6.15.1-6.15.12. [PMID: 28762492 DOI: 10.1002/cpps.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purification of an enzyme from insect larvae infected with a baculovirus vector is described. The enzyme tyrosinase is of biomedical importance and catalyzes the first rate-limiting steps in melanin production. Tyrosinase mutations can result in oculocutaneous albinism type 1 (OCA1), an inherited eye disease associated with decreased melanin pigment production and vision defects. To simplify expression and subsequent purification, the extracellular domain is expressed in insect cells, produced in Trichoplusia ni larvae, and purified using affinity and size-exclusion chromatography. The purified recombinant human tyrosinase is a soluble monomeric glycoprotein with an activity that mirrors the tyrosinase in vivo function. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Mahanty S, Kawali AA, Dakappa SS, Mahendradas P, Kurian M, Kharbanda V, Shetty R, Setty SRG. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity. Exp Eye Res 2017; 162:79-85. [PMID: 28712540 PMCID: PMC5563078 DOI: 10.1016/j.exer.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/12/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023]
Abstract
Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p < 0.0001) or Tobramycin-treated eyes (p < 0.0001), which indicated that few quinolones under certain conditions are toxic to the iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently, immunoblotting analysis of the aqueous humor from both Ciprofloxacin- and Moxifloxacin-treated eyes showed the presence of soluble TYR enzyme, thus reflecting its toxicity to iris melanocytes and corresponding to its activity in the aqueous humor. Intriguingly, none of these patients developed any clinically appreciable ocular side effects characteristic of BAIT or BADI. Overall, our results suggest that topical antibiotics cause different levels of iris melanocyte toxicity, releasing dispersed pigments into the aqueous humor, which can be measured through TYR enzyme activity. Hence, we conclude that topical FQLs may cause subclinical toxicity to the iris melanocytes but may not be the sole cause of the development of BAIT or BADI.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ankush A Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore 560010, India
| | - Shruthi Shirur Dakappa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Mathew Kurian
- Department of Cataract, Narayana Nethralaya, Bangalore 560010, India
| | - Varun Kharbanda
- Department of Cataract, Narayana Nethralaya, Bangalore 560010, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Dolinska MB, Kovaleva E, Backlund P, Wingfield PT, Brooks BP, Sergeev YV. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One 2014; 9:e84494. [PMID: 24392141 PMCID: PMC3879332 DOI: 10.1371/journal.pone.0084494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.
Collapse
Affiliation(s)
- Monika B. Dolinska
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Elena Kovaleva
- Chesapeake PERL, Savage, Maryland, United States of America
| | - Peter Backlund
- Eunice Kennedy Shriver National Institute Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Paul T. Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States of America
| | - Brian P. Brooks
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| | - Yuri V. Sergeev
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| |
Collapse
|
5
|
Xu Y, Setaluri V, Takechi Y, Houghton AN. Sorting and secretion of a melanosome membrane protein, gp75/TRP1. J Invest Dermatol 1997; 109:788-95. [PMID: 9406822 DOI: 10.1111/1523-1747.ep12340971] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The melanosome is an organelle specialized for melanin synthesis that is derived from the endocytic pathway. Several melanosome membrane proteins have been identified, forming a family of proteins known as tyrosinase-related proteins. Two members of this family, tyrosinase and gp75, are well-characterized melanocyte differentiation antigens. Our previous studies have shown that gp75, the mouse brown locus protein, is sorted to melanosomes along the endocytic pathway, directed by a hexapeptide sorting signal located in the cytoplasmic tail. In this study, we report the unexpected finding that a portion of gp75 is secreted. Substantial levels of secretory gp75 were detected in melanocytic cells. Cell surface expression of gp75 was also detected, representing 2% of cellular gp75. Characterization of secretory gp75 cells showed that it is: (i) a truncated form that lacks the transmembrane region, the cytoplasmic tail where the endosomal sorting signal is located, and a small portion of the lumenal domain; (ii) more extensively glycosylated than endocytic/melanosomal gp75, containing trans-Golgi processed sugar residues; and (iii) generated post-translationally in an acid sensitive compartment after processing in the trans-Golgi, and secreted rapidly after generation. Thus, these endocytic/melanosomal membrane proteins can be processed to abundant secretory forms, probably in an endocytic compartment through a potentially novel secretory pathway.
Collapse
Affiliation(s)
- Y Xu
- Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | | | | |
Collapse
|
6
|
Benedito E, Jiménez-Cervantes C, Cubillana JD, Solano F, Lozano JA, García-Borrón JC. Biochemical characterization of the melanogenic system in the eye of adult rodents. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:217-24. [PMID: 7578226 DOI: 10.1016/0167-4838(95)00130-m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The melanogenic activities in the eye of the adult gerbil (Meriones unguiculatus) have been investigated and compared to those found in the B16 mouse melanoma model. Eye extracts contain tyrosine hydroxylase, DOPA oxidase, DOPAchrome tautomerase and DHICA oxidase activities. The subcellular distribution of these activities was investigated by differential centrifugation and detergent solubilization of the particulate fractions. The distribution pattern closely resembled the one found for mouse melanoma, with a higher percentage of activity associated to the particulate fractions but a substantial proportion in the cytosolic fraction. The tyrosine hydroxylase activity was characterized by a KM of 62 microM for L-tyrosine and a stringent requirement for the co-factor L-DOPA (Ka 10.3 microM). The KM for L-DOPA was 0.41 mM. The sensitivity of the eye and mouse melanoma tyrosinase activity to a variety of substrate analogs and metal chelators was found to be identical. In keeping with these kinetic similarities, eye tyrosinase displayed some structural properties resembling those of the melanoma enzyme. The molecular weight of the enzyme, determined by SDS-PAGE and DOPA oxidase activity stain, was 75 kDa for the eye enzyme and 66.2 kDa for melanoma tyrosinase, and both enzymes were apparently dimeric in non ionic detergent solution. Immunoprecipitation with specific antibodies proved that at least 80% of the total tyrosinase activity could be immunoprecipitated with the specific anti-tyrosinase antibody alpha PEP7, while the anti-TRP-1 monoclonal antibody TMH-1 precipitated little, if any, tyrosinase activity. Taken together, these observations provide the first vis-à-vis comparison of an extracutaneous melanogenic system and the melanogenic system of melanoma. Our results prove that, at least in rodents, the melanogenic system in the eye is similar, but not identical, to the melanin biosynthesis machinery of epidermal melanocytes.
Collapse
Affiliation(s)
- E Benedito
- Departamento de Bioquímica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
This paper is a review of what is known about the turnover of melanin in iris, choroid, and retinal pigment epithelium (RPE) of the adult vertebrate eye. Differences in size and structure of choroideal and retinal pigment epithelial melanin granules are shown by electron micrographs. The classical stages of melanin synthesis, including the premelanosome, are shown in the RPE of adult hamsters that had been exposed to intense light. Degradation or synthesis of melanin also seem to occur in the melanocytes of the choroid in these animals. It is postulated that all three pigmented eye tissues (iris, RPE, and choroid) of adult vertebrates form melanin granules in vivo. However, nothing is known about the amount of this turnover.
Collapse
Affiliation(s)
- U Schraermeyer
- Institut für Biologie II (Zoologie), RWTH, Aachen, Germany
| |
Collapse
|
8
|
Karg E, Odh G, Wittbjer A, Rosengren E, Rorsman H. Hydrogen Peroxide as an Inducer of Elevated Tyrosinase Level in Melanoma Cells. J Invest Dermatol 1993. [DOI: 10.1111/1523-1747.ep12465218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Winder AJ, Wittbjer A, Rosengren E, Rorsman H. Fibroblasts expressing mouse c locus tyrosinase produce an authentic enzyme and synthesize phaeomelanin. J Cell Sci 1993; 104 ( Pt 2):467-75. [PMID: 8505373 DOI: 10.1242/jcs.104.2.467] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent advances in the study of the molecular biology of mouse pigmentation have led to the discovery of a family of proteins involved in the control of melanin synthesis. It has been confirmed that the product of the mouse c (albino) locus is the key melanogenic enzyme tyrosinase, but study of its function and regulation have been hampered by the presence of closely related proteins within melanin-synthesising cells. To overcome these problems, we have established lines of mouse fibroblasts expressing the c locus mouse tyrosinase. Here we describe characterisation of the tyrosinase synthesised by these cells and demonstrate considerable similarity between the expressed tyrosinase and the native enzyme. The expressed tyrosinase is proteolytically cleaved to produce membrane-bound and soluble forms of the expected molecular mass and is rich in N-linked carbohydrate, suggesting that melanocytic differentiation is not a prerequisite for post-translational modification of the protein. The expressed enzyme has tyrosinase activity, but not catalase or dopachrome tautomerase activity, confirming that it is an authentic tyrosinase. Transfected fibroblasts expressing tyrosinase are shown to share several physiological characteristics with melanoma cell lines, including increased pigmentation and tyrosinase activity in response to increased cell density. Since tyrosinase is expressed under a heterologous promoter, these shared characteristics probably reflect translational or post-translational controls that operate in both non-melanocytic and melanocytic cell types. We demonstrate that pigmented fibroblasts contain the melanin synthesis intermediates 5-S-cysteinyldopa and 5-S-glutathionyl-dopa, and produce a phaeomelanin-like pigment, but do not contain detectable eumelanin. Expression of tyrosine is therefore sufficient for the synthesis of a form of melanin pigment in fibroblasts.
Collapse
Affiliation(s)
- A J Winder
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
10
|
|
11
|
Valverde P, García-Borrón JC, Solano F, Lozano JA. Proteolysis with trypsin of mammalian tyrosinase isoforms from B16 mouse melanoma. Arch Biochem Biophys 1992; 297:221-7. [PMID: 1497341 DOI: 10.1016/0003-9861(92)90665-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In spite of the central role of tyrosinase in mammalian pigmentation, few data are available on its structure and structure-function relationships based on direct analysis of the protein. A number of reasons have been invoked to account for this situation, including the problems for its purification and its resistance to proteases. However, no study on the effects of proteases on purified tyrosinase has been reported. We have purified the melanosomal and cytosolic tyrosinases from B16 mouse melanoma and analyzed their susceptibility to trypsin digestion. Both isoforms are sensitive to trypsin, and display similar peptide maps and kinetics of proteolysis, suggesting that they are products of the same gene. The peptide maps and the kinetics of appearance of the fragments were consistent with the sequential removal of N-terminal peptides, leading to a core of 55.3 kDa for the melanosomal form and 48.6 kDa for the cytosolic enzyme. This core was apparently resistant to further proteolysis and catalytically inactive. The difference in molecular weight for the core of the cytosolic and melanosomal forms is the same as that calculated for the native isoforms. The kinetics of enzyme inactivation indicate that the tyrosine hydroxylase and Dopa oxidase activities of tyrosinase are lost at the same rate, and should therefore display similar if not identical structural requirements. The results are discussed in terms of the relationship of both isoforms and of the putative protein sequences deduced from the cDNA clones proposed for tyrosinase.
Collapse
Affiliation(s)
- P Valverde
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Murcia
| | | | | | | |
Collapse
|
12
|
Sarna T. Properties and function of the ocular melanin--a photobiophysical view. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 12:215-58. [PMID: 1635010 DOI: 10.1016/1011-1344(92)85027-r] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the biosynthesis and physicochemical properties of the ocular melanin. Age-related changes of melanin granules and the corresponding formation of lipofuscin pigments in the retinal pigment epithelium (RPE) are also described. Adverse photoreactions of the eye and, in particular, light-induced damage to the RPE-retina are reviewed in relation to the ocular pigmentation. A hypothesis on the photoprotective role of the RPE melanin is presented that is based on the ability of the cellular melanin to bind redoxactive metal ions. Since bound-to-melanin metal ions are expected to be less damaging to the pigment cells, it is proposed that sequestration of heavy metal ions by the RPE melanin is an efficient detoxifying mechanism. It is postulated that oxidative degradation of RPE melanin may lower its metal-binding capability and decrease its anti-oxidant efficiency. Cellular and environmental factors that may contribute to possible oxidative damage of the RPE melanin are discussed in connection with the etiology of age-related macular degeneration.
Collapse
Affiliation(s)
- T Sarna
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| |
Collapse
|