1
|
Sonoda S, Yamaza T. Extracellular vesicles rejuvenate the microenvironmental modulating function of recipient tissue-specific mesenchymal stem cells in osteopenia treatment. Front Endocrinol (Lausanne) 2023; 14:1151429. [PMID: 37033255 PMCID: PMC10073676 DOI: 10.3389/fendo.2023.1151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs), such as bone marrow MSCs (BMMSCs) and stem cells from human exfoliated deciduous teeth (SHED), is considered a prominent treatment for osteopenia. However, the mechanism of action of the transplanted MSCs has been poorly elucidated. In the recipient target tissue, including bone and bone marrow, only a few donor MSCs can be detected, suggesting that the direct contribution of donor MSCs may not be expected for osteopenia treatment. Meanwhile, secretomes, especially contents within extracellular vesicles (EVs) released from donor MSCs (MSC-EVs), play key roles in the treatment of several diseases. In this context, administrated donor MSC-EVs may affect bone-forming function of recipient cells. In this review, we discuss how MSC-EVs contribute to bone recovery recipient tissue in osteopenia. We also summarize a novel mechanism of action of systemic administration of SHED-derived EVs (SHED-EVs) in osteopenia. We found that reduced telomerase activity in recipient BMMSCs caused the deficiency of microenvironmental modulating function, including bone and bone marrow-like niche formation and immunomodulation in estrogen-deficient osteopenia model mice. Systemic administration of SHED-EVs could exert therapeutic effects on bone reduction via recovering the telomerase activity, leading to the rejuvenation of the microenvironmental modulating function in recipient BMMSCs, as seen in systemic transplantation of SHED. RNase-preconditioned donor SHED-EVs diminished the therapeutic benefits of administrated SHED-EVs in the recipient osteopenia model mice. These facts suggest that MSC-EV therapy targets the recipient BMMSCs to rejuvenate the microenvironmental modulating function via telomerase activity, recovering bone density. We then introduce future challenges to develop the reproducible MSC-EV therapy in osteopenia.
Collapse
|
2
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
3
|
Sonoda S, Yamaza T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms23073479. [PMID: 35408840 PMCID: PMC8998830 DOI: 10.3390/ijms23073479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.
Collapse
|
4
|
Wang P, Zhao Y, Wang J, Wu Z, Sui B, Mao X, Shi S, Kou X. Dephosphorylation of Caveolin-1 Controls C-X-C Motif Chemokine Ligand 10 Secretion in Mesenchymal Stem Cells to Regulate the Process of Wound Healing. Front Cell Dev Biol 2021; 9:725630. [PMID: 34790658 PMCID: PMC8592036 DOI: 10.3389/fcell.2021.725630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) secrete cytokines in a paracrine or autocrine manner to regulate immune response and tissue regeneration. Our previous research revealed that MSCs use the complex of Fas/Fas-associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) mediated exocytotic process to regulate cytokine and small extracellular vesicles (EVs) secretion, which contributes to accelerated wound healing. However, the detailed underlying mechanism of cytokine secretion controlled by Cav-1 remains to be explored. We show that Gingiva-derived MSCs (GMSCs) could secrete more C-X-C motif chemokine ligand 10 (CXCL10) but showed lower phospho-Cav-1 (p-Cav-1) expression than skin-derived MSCs (SMSCs). Moreover, dephosphorylation of Cav-1 by a Src kinase inhibitor PP2 significantly enhances CXCL10 secretion, while activating phosphorylation of Cav-1 by H2O2 restraints CXCL10 secretion in GMSCs. We also found that Fas and Fap-1 contribute to the dephosphorylation of Cav-1 to elevate CXCL10 secretion. Tumor necrosis factor-α serves as an activator to up-regulate Fas, Fap-1, and down-regulate p-Cav-1 expression to promote CXCL10 release. Furthermore, local applying p-Cav-1 inhibitor PP2 could accelerate wound healing, reduce the expression of α-smooth muscle actin and increase cleaved-caspase 3 expression. These results indicated that dephosphorylation of Cav-1 could inhibit fibrosis during wound healing. The present study establishes a previously unknown role of p-Cav-1 in controlling cytokine release of MSC and may present a potential therapeutic approach for promoting scarless wound healing.
Collapse
Affiliation(s)
- Panpan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yingji Zhao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhiying Wu
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| |
Collapse
|
5
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
6
|
Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci 2020; 21:E3242. [PMID: 32375269 PMCID: PMC7247346 DOI: 10.3390/ijms21093242] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation. The achievement or debacle of bone regeneration is focused on the primary role of vascularization occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds, in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration. The optimal scaffolds should ensure the development of vascular networks to warrant a positive suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor (VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic growth factors released and through paracrine signaling. For this reason, we concentrated our attention on two principal groups involved in the renewal of bone tissue defects: the cells and the scaffold that should guarantee an effective vascularization process. The application of Mesenchymal Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue engineering and bone development strategies. This review aims to provide an overview of the intimate connection between blood vessels and bone formation that appear during bone regeneration when MSCs, their secretome-Extracellular Vesicles (EVs) and microRNAs (miRNAs) -and bone substitutes are used in combination.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Jacopo Pizzicanella
- ASL02 Lanciano-Vasto-Chieti, “Ss. Annunziata” Hospital, 66100 Chieti, Italy;
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| |
Collapse
|
7
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Bizelli-Silveira C, Abildtrup LA, Spin-Neto R, Foss M, Søballe K, Kraft DCE. Strontium enhances proliferation and osteogenic behavior of bone marrow stromal cells of mesenchymal and ectomesenchymal origins in vitro. Clin Exp Dent Res 2019; 5:541-550. [PMID: 31687189 PMCID: PMC6820574 DOI: 10.1002/cre2.221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Obejective To investigate the effect of increasing Strontium (Sr) concentrations on the growth and osteogenic behavior of human bone marrow stromal cells (BMSCs) from mesenchymal (i.e., fibula) and ectomesenchymal (i.e., mandible) embryonic origins. Materials and methods Fibula and mandible BMSCs were cultured in media without (Ctrl) or with Sr in four diverse concentrations: Sr1, 11.3 × 10−3 mg/L, human seric physiological level; Sr2, 13 mg/L, human seric level after strontium ranelate treatment; Sr3, 130 mg/L, and Sr4, 360 mg/L. Proliferation rate (1, 3, and 7 days), osteogenic behavior (alkaline phosphatase [ALP] activity, 7 and 14 days; expression of osteogenic genes (ALP, osteopontin, and osteocalcin at 7, 14, and 21 days), and formation of mineralized nodules (14 and 21 days) of the BMSCs were assessed. Data was compared group‐ and period‐wise using analysis of variance tests. Results Fibula and mandible BMSCs cultured with Sr4 showed increased proliferation rate, and osteocalcin and osteopontin gene expression together with more evident formation of mineralized nodules, compared all other Sr concentrations. For both cell populations, Sr4 led to lower ALP activity, and ALP gene expression, compared with the other Sr concentrations. Conclusion BMSCs from mesenchymal (i.e., fibula) and ectomesenchymal (i.e., mandible) embryonic origins showed increased cellular proliferation and osteogenic behavior when cultured with Sr4, in vitro.
Collapse
Affiliation(s)
- Carolina Bizelli-Silveira
- Department of Dentistry and Oral Health, Faculty of Health Aarhus University Aarhus Denmark.,Department of Orthopaedic Surgery Aarhus University Hospital Aarhus Denmark
| | - Lisbeth Ann Abildtrup
- Department of Dentistry and Oral Health, Faculty of Health Aarhus University Aarhus Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Faculty of Health Aarhus University Aarhus Denmark
| | - Morten Foss
- Interdisciplinary Nanoscience Center (iNANO), Department of Physics and Astronomy, Faculty of Science and Technology Aarhus University Aarhus Denmark
| | - Kjeld Søballe
- Department of Orthopaedic Surgery Aarhus University Hospital Aarhus Denmark
| | | |
Collapse
|
9
|
Long Noncoding RNA H19 Participates in the Regulation of Adipose-Derived Stem Cells Cartilage Differentiation. Stem Cells Int 2019; 2019:2139814. [PMID: 31191668 PMCID: PMC6525810 DOI: 10.1155/2019/2139814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are multipotent and have received increasing attention for their applications in medicine. Cell-based therapies are optimal for diseases with loss or damage to tissues or organs. ADSCs and bone marrow mesenchymal stem cells (BMSCs) can differentiate into many cell lineages. Because of their advantages in accessibility and volume, ADSCs are regarded as a desirable alternative to BMSCs. In this study, we focused on the chondrocytic differentiation potential of ADSCs and the underlying mechanism. We found that the long noncoding RNA H19 plays an important role in this process. Overexpression of H19 in ADSCs induced differentiation towards chondrocytes. H19 is abundantly expressed during embryonic development and downregulated after birth, implying its regulatory role in determining cell fate. However, in our experiments, H19 exerted its regulatory function during cartilage differentiation of ADSCs through competing miRNA regulation of STAT2.
Collapse
|
10
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
11
|
Human Bone Marrow Mesenchymal Stromal Cells Promote Bone Regeneration in a Xenogeneic Rabbit Model: A Preclinical Study. Stem Cells Int 2018; 2018:7089484. [PMID: 30123292 PMCID: PMC6079361 DOI: 10.1155/2018/7089484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023] Open
Abstract
Significant research efforts have been undertaken during the last decades to treat musculoskeletal disorders and improve patient's mobility and quality of life. The goal is the return of function as quickly and completely as possible. Cellular therapy has been increasingly employed in this setting. The design of this study was focused on cell-based alternatives. The present study aimed at investigating the bone regeneration capacity of xenogeneic human bone marrow-derived mesenchymal stromal cell (hMSC) implantation with tricalcium phosphate (TCP) granules in an immunocompetent rabbit model of critical-size bone defects at the femoral condyles. Two experimental groups, TCP and hMSC + TCP, were compared. Combination of TCP and hMSC did not affect cell viability or osteogenic differentiation. We also observed significantly higher bone regeneration in vivo in the hMSC + TCP group, which also displayed better TCP osteointegration. Also, evidence of hMSC contribution to a better TCP osteointegration was noticed. Finally, no inflammatory reaction was detected, besides the xenotransplantation of human cells into an immunocompetent recipient. In summary, hMSC combined with TCP granules is a potential combination for bone regeneration purposes that provides better preclinical results compared to TCP alone.
Collapse
|
12
|
Wang F, Zhou Y, Zhou J, Xu M, Zheng W, Huang W, Zhou W, Shen Y, Zhao K, Wu Y, Zou D. Comparison of Intraoral Bone Regeneration with Iliac and Alveolar BMSCs. J Dent Res 2018; 97:1229-1235. [PMID: 29772189 DOI: 10.1177/0022034518772283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study compared the osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) of iliac and alveolar origins (I-BMSCs and Al-BMSCs, respectively), which were transplanted in combination with β tricalcium phosphate (β-TCP) in peri-implant bone defects to investigate the osseointegration between dental implants and tissue-engineered bone in dogs. Specifically, I-BMSCs and Al-BMSCs were cultured, characterized, and seeded on β-TCP and subjected to immunoblotting analyses and alkaline phosphatase activity assays. Subsequently, these cell-seeded scaffolds were implanted into defects that were freshly generated in the mandibular premolar areas of 4 dogs. The defects were covered with β-TCP + Al-BMSCs ( n = 6), β-TCP + I-BMSCs ( n = 6), or β-TCP ( n = 6) or served as the blank control ( n = 6). After healing for 12 wk, the formation and mineralization of new bones were assessed through micro-computed tomographic, histologic, and histomorphometric analyses, and bone-to-implant contacts were measured in the specimens. It was evident that in this large animal model, I-BMSCs and Al-BMSCs manifested similarly strong osteogenic potential, as significantly more new bone was formed in the Al-BMSC and I-BMSC groups than otherwise ( P < 0.01). Therefore, Al-BMSCs are emerging as an efficient alternative for autologous mesenchymal stem cells in regenerative dental and maxillofacial therapies. I-BMSCs, if not restricted in their bioavailability, can also be of great utility in bone tissue-engineering applications.
Collapse
Affiliation(s)
- F Wang
- 1 Department of Oral Implantology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Y Zhou
- 2 Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - J Zhou
- 2 Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - M Xu
- 2 Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - W Zheng
- 2 Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - W Huang
- 1 Department of Oral Implantology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - W Zhou
- 3 Second Dental Clinic, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Y Shen
- 3 Second Dental Clinic, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - K Zhao
- 4 Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Y Wu
- 4 Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - D Zou
- 5 Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Yan Z, Guo Y, Wang Y, Li Y, Wang J. MicroRNA profiles of BMSCs induced into osteoblasts with osteoinductive medium. Exp Ther Med 2018; 15:2589-2596. [PMID: 29456662 DOI: 10.3892/etm.2018.5723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in cell differentiation and functions as a regulator. Therefore, miRNA is important in the process of bone marrow mesenchymal stem cells (BMSCs) being induced into osteoblasts. In this study, mouse BMSCs were induced with osteoinductive medium, the indices related to osteoblastic differentiation were assayed, including alkaline phosphatase, the deposit of calcium and protein levels of osteocalcin. Using miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the cells, which were induced with osteoinductive medium, were selected and identified. The target genes of the differentially expressed miRNAs were then predicted using bioinformatics analysis. The results revealed that osteoinductive medium promoted osteoblastic differentiation of BMSCs, and let-7c-5p, miR-181c-3p, miR-3092-3p and miR-5132-3p were identified as differentially expressed miRNAs in the cells treated with osteoinductive medium for 14 and 21 days. Certain target genes and signal pathways related to osteoblastic differentiation of the four miRNAs were predicted. These findings indicated the four differently expressed miRNAs may be potential regulators of osteoblastic differentiation, providing a basis for further study on the regulation of miRNAs in the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Zhixiong Yan
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yang Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanan Li
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Jiahui Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
14
|
TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J Craniomaxillofac Surg 2017; 45:2054-2060. [DOI: 10.1016/j.jcms.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023] Open
|
15
|
Mekhemar MK, Adam-Klages S, Kabelitz D, Dörfer CE, Fawzy El-Sayed KM. TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells. Cell Immunol 2017; 326:60-67. [PMID: 28093098 DOI: 10.1016/j.cellimm.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
During therapeutic application, mesenchymal stem cells (MSCs) may interact with their environment via their expressed toll-like-receptors (TLRs) leading to pro- or anti-inflammatory immune responses. The present study aimed to describe the gingival margin-derived stem/progenitor cells' (G-MSCs) TLR-induced immune regulatory response to specific TLR agonists. Gingival cells were obtained, immunomagnetically sorted via anti-STRO-1 antibodies and seeded out to achieve colony forming units (CFUs). G-MSCs were investigated for stem cell characteristics and TLR expression. Specific TLR agonists were applied and m-RNA expression of pro- and anti-inflammatory factors was analyzed via real-time polymerase chain reaction. G-MSCs showed all characteristics of stem/progenitor cells. All TLR agonists induced pro-inflammatory cytokines, except for the TLR3 agonist, which significantly promoted the anti-inflammatory response. (p⩽0.05, Wilcoxon-Signed-Ranks-Test). TLR-induced immunomodulation by G-MSCs could impact their therapeutic potential in vivo. Two distinctive pro-inflammatory and an anti-inflammatory TLR-induced phenotypes of G-MSCs become noticeable in this study.
Collapse
Affiliation(s)
- Mohamed K Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany.
| | - Sabine Adam-Klages
- Universitätsklinikum Schleswig Holstein, Institut für Immunologie, Kiel, Germany.
| | - Dietrich Kabelitz
- Universitätsklinikum Schleswig Holstein, Institut für Immunologie, Kiel, Germany.
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany.
| | - Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt.
| |
Collapse
|
16
|
Santamaría S, Sanchez N, Sanz M, Garcia-Sanz JA. Comparison of periodontal ligament and gingiva-derived mesenchymal stem cells for regenerative therapies. Clin Oral Investig 2016; 21:1095-1102. [PMID: 27270903 DOI: 10.1007/s00784-016-1867-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tissue-engineering therapies using undifferentiated mesenchymal cells (MSCs) from intra-oral origin have been tested in experimental animals. This experimental study compared the characteristics of undifferentiated mesenchymal stem cells from either periodontal ligament or gingival origin, aiming to establish the basis for the future use of these cells on regenerative therapies. MATERIALS AND METHODS Gingiva-derived mesenchymal stem cells (GMSCs) were obtained from de-epithelialized gingival biopsies, enzymatically digested and expanded in conditions of exponential growth. Their growth characteristics, phenotype, and differentiation ability were compared with those of periodontal ligament-derived mesenchymal stem cells (PDLMSCs). RESULTS Both periodontal ligament- and gingiva-derived cells displayed a MSC-like phenotype and were able to differentiate into osteoblasts, chondroblasts, and adipocytes. These cells were genetically stable following in vitro expansion and did not generate tumors when implanted in immunocompromised mice. Furthermore, under suboptimal growth conditions, GMSCs proliferated with higher rates than PDLMSCs. CONCLUSIONS Stem cells derived from gingival biopsies represent bona fide MSCs and have demonstrated genetic stability and lack of tumorigenicity. CLINICAL RELEVANCE Gingiva-derived MSCs may represent an accessible source of messenchymal stem cells to be used in future periodontal regenerative therapies.
Collapse
Affiliation(s)
- Silvia Santamaría
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Nerea Sanchez
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jose A Garcia-Sanz
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Fawzy-El-Sayed K, Mekhemar M, Adam-Klages S, Kabelitz D, Dörfer C. TlR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal 2016; 21:e30-8. [PMID: 26615501 PMCID: PMC4765758 DOI: 10.4317/medoral.20593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Gingival margin-derived stem/progenitor cells (G-MSCs) show remarkable periodontal regenerative potential in vivo. During regeneration, G-MSCs may interact with their inflammatory environment via toll-like-receptors (TLRs). The present study aimed to depict the G-MSCs TLRs expression profile. MATERIAL AND METHODS Cells were isolated from free gingival margins, STRO-1-immunomagnetically sorted and seeded to obtain single colony forming units (CFUs). G-MSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, CD146 and STRO-1 expression, and for multilineage differentiation potential. Following G-MSCs' incubation in basic or inflammatory medium (IL-1β, IFN-γ, IFN-α, TNF-α) a TLR expression profile was generated. RESULTS G-MSCs showed all stem/progenitor cells' characteristics. In basic medium G-MSCs expressed TLRs 1, 2, 3, 4, 5, 6, 7, and 10. The inflammatory medium significantly up-regulated TLRs 1, 2, 4, 5, 7 and 10 and diminished TLR 6 (p≤0.05, Wilcoxon-Signed-Ranks-Test). CONCLUSIONS The current study describes for the first time the distinctive TLRs expression profile of G-MSCs under uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim Fawzy-El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-Universität zu Kiel, Arnold-Heller-Str. 3, Haus 26, 24105 Kiel, Germany,
| | | | | | | | | |
Collapse
|
18
|
Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. ACTA ACUST UNITED AC 2015; 12:183-7. [PMID: 26604947 DOI: 10.11138/ccmbm/2015.12.2.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autologous bone, for its osteoconductive, osteoinductive and osteogenetic properties, has been considered to be the gold standard for maxillary sinus augmentation procedures. Autograft procedures bring also some disadvantages: sometimes the limited amount of available intraoral bone makes necessary to obtain bone from an extraoral site, and this carries an associated morbidity. To overcome this problem we started using homologous freeze-dried bone in maxillary sinus augmentation procedures. This bone is industrially processed with γ-irradiation to eliminate its disease transmission potential and it's considered safe, but this treatment also eliminates the osteoinductive and osteogenetic properties, making it just an inert scaffold for regeneration. Mesenchymal stem cells are successfully used in and orthopedic surgery for their amplification potential of healing mechanisms. We assumed that mesenchymal stem cells can restore the osteogenetic and osteoinductive properties in homologous bone grafts. The aim of this study was an histological evaluation of bone regeneration in maxillary sinus elevation using: 1) mesenchymal stem cells engineered freeze-dried bone allografts; 2) freeze-dried bone allografts. Twenty patients (10M, 10F) with a mean age of 55.2 years affected by severe maxillary atrophy were treated with bilateral maxillary sinus floor elevation. For each patient were randomly assigned a "test" side and a "control" side, different from each other exclusively in the composition of the graft material. The "control" sides were composed by corticocancellous freeze-dried bone chips and the "test" sides were composed by corticocancellous freeze-dried bone chips engineered in a bone marrow mesenchymal stem cells concentrate. After three months bone biopsies were performed on the grafts and histological specimens were made in order to evaluate the healed bone from an histological point of view. Histologically all the specimens showed active remodelling signs and all the tissues were free of inflammatory cells. "Control" side specimens showed a substantial persistence of the grafted bone and, with the interposition of connective tissue, a considerable amount of newly formed bone. "Test" side specimens showed a much more represented cellular component compared to the "control" sides. The grafted bone trabeculae, when detectable, were completely imprisoned inside new formed bone, in direct contact with it and without interposition of connective tissue. Freeze-dried bone can be used successfully as graft material in the treatment of maxillary atrophy. The same bone engineered with stem cells showed a greater histological integration potential comparable with autografts histological morphology. Further studies are needed to confirm these hypotheses.
Collapse
Affiliation(s)
- Roberto Bertolai
- Surgery and Translational Medicine Department, Maxillofacial Unit, Health School of Human Sciences, University of Florence, Florence, Italy
| | - Carlo Catelani
- Surgery and Translational Medicine Department, Maxillofacial Unit, Health School of Human Sciences, University of Florence, Florence, Italy
| | - Alessandro Aversa
- Surgery and Translational Medicine Department, Maxillofacial Unit, Health School of Human Sciences, University of Florence, Florence, Italy
| | - Alessandro Rossi
- Surgery and Translational Medicine Department, Maxillofacial Unit, Health School of Human Sciences, University of Florence, Florence, Italy
| | - Domenico Giannini
- Surgery and Translational Medicine Department, Maxillofacial Unit, Health School of Human Sciences, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Health School of Human Sciences, University of Florence, Florence, Italy
| |
Collapse
|
19
|
El-Sayed KMF, Paris S, Graetz C, Kassem N, Mekhemar M, Ungefroren H, Fändrich F, Dörfer C. Isolation and characterisation of human gingival margin-derived STRO-1/MACS(+) and MACS(-) cell populations. Int J Oral Sci 2015; 7:80-8. [PMID: 25257881 PMCID: PMC4817556 DOI: 10.1038/ijos.2014.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/19/2022] Open
Abstract
Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- 1] Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany [2] Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Neemat Kassem
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Hendrick Ungefroren
- Clinic for Applied Cellular Therapy, Christian Albrechts University, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Therapy, Christian Albrechts University, Kiel, Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
20
|
Fawzy El-Sayed KM, Mekhemar MK, Beck-Broichsitter BE, Bähr T, Hegab M, Receveur J, Heneweer C, Becker ST, Wiltfang J, Dörfer CE. Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. J Clin Periodontol 2015; 42:448-57. [DOI: 10.1111/jcpe.12401] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology; School of Dental Medicine; Christian Albrechts University; Kiel Germany
- Oral Medicine and Periodontology Department; Faculty of Oral and Dental Medicine; Cairo University; Cairo Egypt
| | - Mohamed K. Mekhemar
- Clinic for Conservative Dentistry and Periodontology; School of Dental Medicine; Christian Albrechts University; Kiel Germany
| | | | - Telse Bähr
- Animal Experiment Division; Clinic for Heart- and Vascular-Surgery; University Hospital Schleswig-Holstein; Kiel Germany
| | - Marwa Hegab
- Clinic for Conservative Dentistry and Periodontology; School of Dental Medicine; Christian Albrechts University; Kiel Germany
| | - Jan Receveur
- Clinic for Conservative Dentistry and Periodontology; School of Dental Medicine; Christian Albrechts University; Kiel Germany
| | - Carola Heneweer
- Clinic of Radiology and Neuroradiology; University Hospital Schleswig-Holstein; Kiel Germany
| | - Stephan T. Becker
- Department of Oral and Maxillofacial Surgery; Christian Albrechts University; Kiel Germany
| | - Joerg Wiltfang
- Department of Oral and Maxillofacial Surgery; Christian Albrechts University; Kiel Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology; School of Dental Medicine; Christian Albrechts University; Kiel Germany
| |
Collapse
|
21
|
Yao W, Lane NE. Targeted delivery of mesenchymal stem cells to the bone. Bone 2015; 70:62-5. [PMID: 25173607 PMCID: PMC4268265 DOI: 10.1016/j.bone.2014.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000 2014; 67:251-67. [DOI: 10.1111/prd.12070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/26/2022]
|
23
|
Salehi R, Aghazadeh M, Rashidi MR, Samadi N, Salehi S, Davaran S, Samiei M. Bioengineering of Dental Pulp Stem Cells in a Microporous PNIPAAm-PLGA Scaffold. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.879449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Abstract
Microencapsulation is a technique used in both controlled delivery of materials over time as well as preservation of these materials while delivery is occurring. The range of materials able to be encapsulated is variable, from drugs to living cells. The latter is described here. Electrospray microencapsulation applies a high-voltage field, through which a polymeric material is extruded. A gelling bath, comprising a cross-linking material, is used to create a stable hydrogel containing secondary substances intended for delivery. Control of extrusion parameters, such as flow rate and voltage, allows for specification of diameter and pore sizes of the microcapsules.
Collapse
|
25
|
Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. J Craniomaxillofac Surg 2013; 42:568-76. [PMID: 24080138 DOI: 10.1016/j.jcms.2013.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.
Collapse
|
26
|
El-Sayed KMF, Paris S, Becker S, Kassem N, Ungefroren H, Fändrich F, Wiltfang J, Dörfer C. Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J Craniomaxillofac Surg 2012; 40:735-42. [DOI: 10.1016/j.jcms.2012.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/19/2022] Open
|
27
|
Fawzy El-Sayed KM, Paris S, Becker ST, Neuschl M, De Buhr W, Sälzer S, Wulff A, Elrefai M, Darhous MS, El-Masry M, Wiltfang J, Dörfer CE. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol 2012; 39:861-70. [PMID: 22694281 DOI: 10.1111/j.1600-051x.2012.01904.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/11/2022]
Abstract
AIM This study investigated the periodontal regenerative potential of gingival margin-derived multipotent postnatal stem/progenitor cells. MATERIAL AND METHODS Periodontal defects were induced at six sites in eight miniature pigs in the premolar/molar area (-4 weeks). Autologous cells isolated from the gingival margin were magnetically sorted using STRO-1 antibodies and characterized flow cytometrically for the expression of CD14, CD31, CD34, CD45, CD117 and STRO-1 surface markers. Colony formation and multilineage differentiation potential were tested. The cells were expanded and loaded on deproteinized bovine cancellous bone (DBCB) and Collagen scaffolds. Within every miniature pig, six periodontal defects were randomly treated with loaded-DBCB (test group 1), unloaded-DBCB (control group 1), loaded-Collagen scaffolds (test group 2), unloaded-Collagen scaffolds (control group 1), scaling and root planing (negative control 1) or left untreated (negative control 2). Differences in clinical attachment level (ΔCAL), probing depth (ΔPD), gingival recession (ΔGR) and radiographic defect volume (ΔRDV) between baseline and 12 weeks, as well as histological attachment level (HAL), junctional epithelium length (JE) and connective tissue adhesion (CTA) after 12 weeks were evaluated. RESULTS Isolated cells showed stem/progenitor cell characteristics. Cell-loaded scaffolds showed higher ΔCAL, ΔPD, ΔGR, HAL and lower JE and CTA compared with unloaded scaffolds and negative controls. The sort of scaffold had no significant influence on the measured outcomes. CONCLUSION Gingival margin-derived stem/progenitor cells show significant periodontal regenerative potential.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim YT, Park JC, Choi SH, Cho KS, Im GI, Kim BS, Kim CS. The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model. J Periodontal Res 2012; 47:514-24. [PMID: 22308979 DOI: 10.1111/j.1600-0765.2011.01463.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Human periodontal ligament stem cells (hPDLSCs) have been reported to play the pivotal role in periodontal regeneration. However, the dynamic cellular healing process initiated by hPDLSCs still remains to be elucidated. In the present study, the sequence of regeneration by hPDLSCs was assessed using histological and immunohistochemical observation in an ectopic transplantation model, which is a well-standardized assessment tool that excludes the innate healing factors from the animals. MATERIAL AND METHODS Human periodontal ligament stem cells that were isolated and characterized from teeth (n=12) extracted for the purpose of orthodontic treatment were transplanted with carriers into ectopic subcutaneous pouches in immunocompromised mice (n=20). Animals were killed after several different healing periods: 3 d (n=4), 1 (n=4), 2 (n=4), 4 (n=4) and 8 wk (n=4). Histological analysis for regenerated tissues formed by hPDLSCs was conducted using hematoxylin and eosin, Masson's trichrome and picrosirius red staining. In addition, immunohistochemical staining was performed to observe the sequential expression of osteogenic/cementogenic and periodontal ligament tissue-specific markers associated with periodontal regeneration. RESULTS The whole healing process by transplanted hPDLSCs could be broadly divided into four distinctive phases. In the first phase, proliferated hPDLSCs migrated evenly all over the carrier, and collagenous tissues appeared in the form of amorphous collagen matrices. In the second phase, collagen fibers were well arranged among the carriers, and cementoid-like tissues were observed. In the third phase, the formation of mature collagen fibers, resembling Sharpey's fibers, was associated with active mineralization of cementum-like tissues, and in the fourth phase, the maturation of cementum-like tissues was observed on carrier surfaces. Various osteogenic/cementogenic markers related to the regeneration processes were expressed in a well-orchestrated time order. Interestingly, well-organized cementum-like and periodontal ligament fiber-like tissues and cells with early and late osteogenic/cementogenic markers were frequently observed in the secluded area of carrier surfaces. We termed this area the cell-rich zone. CONCLUSION The results from this study clearly demonstrated the sequential histological changes during periodontal tissue regeneration by hPDLSCs. Understanding of this process would potentially enable us to develop better cell-based treatment techniques.
Collapse
Affiliation(s)
- Y-T Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Isolating stromal stem cells from periodontal granulation tissues. Clin Oral Investig 2011; 16:1171-80. [DOI: 10.1007/s00784-011-0600-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/29/2011] [Indexed: 01/09/2023]
|
30
|
Mitrano TI, Grob MS, Carrión F, Nova-Lamperti E, Luz PA, Fierro FS, Quintero A, Chaparro A, Sanz A. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 2010; 81:917-25. [PMID: 20450355 DOI: 10.1902/jop.2010.090566] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tissue engineering using mesenchymal stem cells (MSCs) is a recent therapeutic modality that has several advantages. MSCs have high proliferation potential and may be manipulated to permit differentiation before being transplanted, suggesting they may be an ideal candidate for regenerative procedures. Precise identification of cells capable of regenerating the periodontium is valuable because no predictable regeneration procedure has yet been described. The purpose of this study is to determine the presence of MSCs in human gingival connective tissue and their morphologic and functional characteristics. METHODS Gingival connective tissue samples were obtained from five healthy students. The samples were deepithelialized, leaving only connective tissue. The explants were minced and cultured on tissue culture dishes for 3 to 4 weeks, after which cells were characterized by flow cytometry. Differentiation into osteogenic, chondrogenic, and adipogenic lineages was induced and evaluated by culture staining. An immunoregulation assay was also performed. RESULTS The results show that gingival tissue cells fulfill the minimal criteria proposed by the International Society for Cellular Therapy to be defined as MSCs. Cell characterization was consistently positive for CD90, CD105, CD73, CD44, and CD13 markers and negative for hematopoietic markers CD34, CD38, CD45, and CD54. We observed differentiation in positive staining of adipogenic, chondrogenic, and osteogenic lineages. Furthermore, gingival cells showed immunomodulative capacity. CONCLUSION Gingival connective tissue could be a reservoir of MSCs that could be used in regenerative procedures based on tissue engineering.
Collapse
Affiliation(s)
- Tomas I Mitrano
- Faculty of Dentistry, University of the Andes, Avenue San Carlos de Apoquindo 2200, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Pan RL, Zhang XL, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Induction of hepatic differentiation of mouse bone marrow stromal stem cells by the histone deacetylase inhibitor VPA. J Cell Mol Med 2010; 13:2582-2592. [PMID: 18705698 DOI: 10.1111/j.1582-4934.2008.00471.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow stromal stem cells (BMSSCs) may have potential to differentiate in vitro and in vivo into hepatocytes. Here, we investigated the effects of valproic acid (VPA) involved in epigenetic modification, a direct inhibitor of histone deacetylase, on hepatic differentiation of mouse BMSSCs. Following the treatment of 2.5 mM VPA for 72 hrs, the in vitro expanded, highly purified and functionally active mouse BMSSCs from bone marrow were either exposed to some well-defined cytokines and growth factors in a sequential way (fibroblast growth factor-4 [FGF-4], followed by HGF, and HGF + OSM + ITS + dexamethasone, resembling the order of secretion during liver embryogenesis) or transplanted (caudal vein) in mice submitted to a protocol of chronic injury (chronic i.p. injection of CCl4). Additional exposure of the cells to VPA considerably improved the in vitro differentiation, as demonstrated by a more homogeneous cell population exhibited epithelial morphology, increasing expression of hepatic special genes and enhanced hepatic functions. Further more, in vivo results indicate that the pre-treatment of VPA significantly increased the homing efficiency of BMSSCs to the site of liver injury and, additionally, for supporting hepatic differentiation as well as in vitro. We have demonstrated the usefulness of VPA in the transdifferentiation of BMSSCs into hepatocytes both in vitro and in vivo, and regulation of fibroblast growth factor receptors (FGFRs) and c-Met gene expression through post-translational modification of core histones might be the primary initiating event for these effects. This mode could be helpful for liver engineering and clinical therapy.
Collapse
Affiliation(s)
- Ye Chen
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Xiao-Lei Zhang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Xue-Jun Dong
- The Molecular Medicine Center of Shaoxing People's Hospital, The First Affiliate Hospital of Shaoxing University, Shaoxing, P. R. China
| | - Guo-Rong Zhang
- The Molecular Medicine Center of Shaoxing People's Hospital, The First Affiliate Hospital of Shaoxing University, Shaoxing, P. R. China
| |
Collapse
|
32
|
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:219-55. [PMID: 19860551 DOI: 10.1089/ten.teb.2009.0562] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The management of periodontal tissue defects that result from periodontitis represents a medical and socioeconomic challenge. Concerted efforts have been and still are being made to accelerate and augment periodontal tissue and bone regeneration, including a range of regenerative surgical procedures, the development of a variety of grafting materials, and the use of recombinant growth factors. More recently, tissue-engineering strategies, including new cell- and/or matrix-based dimensions, are also being developed, analyzed, and employed for periodontal regenerative therapies. Tissue engineering in periodontology applies the principles of engineering and life sciences toward the development of biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum. It is based on an understanding of the role of periodontal formation and aims to grow new functional tissues rather than to build new replacements of periodontium. Although tissue engineering has merged to create more opportunities for predictable and optimal periodontal tissue regeneration, the technique and design for preclinical and clinical studies remain in their early stages. To date, the reconstruction of small- to moderate-sized periodontal bone defects using engineered cell-scaffold constructs is technically feasible, and some of the currently developed concepts may represent alternatives for certain ideal clinical scenarios. However, the predictable reconstruction of the normal structure and functionality of a tooth-supporting apparatus remains challenging. This review summarizes current regenerative procedures for periodontal healing and regeneration and explores their progress and difficulties in clinical practice, with particular emphasis placed upon current challenges and future possibilities associated with tissue-engineering strategies in periodontal regenerative medicine.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | | |
Collapse
|
33
|
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46:1639-51. [PMID: 20193787 PMCID: PMC2881695 DOI: 10.1016/j.bone.2010.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/15/2022]
Abstract
In the past few years there have been significant advances in the identification of putative stem cells also referred to as "mesenchymal stem cells" (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted molars displayed a reduced number of cells, contained a higher percentage of CD45+ and a lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and were infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Melissa J. Caimano
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Victor P. Francone
- Department of Neuroscience, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
34
|
Kim SH, Kim KH, Seo BM, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Chung CP, Lee YM. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol 2009; 80:1815-23. [PMID: 19905951 DOI: 10.1902/jop.2009.090249] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The present study was undertaken to evaluate the potential of periodontal ligament stem cells (PDLSCs) and bone marrow SCs (BMSCs) on alveolar bone regeneration in a canine peri-implant defect model. METHODS Four adult, male beagle dogs were used in this study. Autologous BMSCs from the iliac crests and PDLSCs from extracted teeth were cultured. Three months after extraction, BMSC- and PDLSC-loaded hydroxyapatite/beta-tricalcium phosphate (HA/TCP) (test groups) and cell-free HA/TCP (control group) were implanted in three rectangular, saddle-like peri-implant defects, respectively. The left side of the mandible was initially prepared, and after 8 weeks, the right side was also prepared. The animals were sacrificed after an 8-week healing period. Undecalcified ground sections were prepared. New bone formation and bone-to-implant contact (BIC) were measured histomorphometrically. BMSCs and PDLSCs were fluorescently labeled and traced. RESULTS Alveolar bone regeneration in surgically created peri-implant saddle-like defects was more effective in test groups than the control group. The BMSC group had the highest new bone formation (34.99% and 40.17% at healing times of 8 and 16 weeks, respectively) followed by the PDLSC group (31.90% and 36.51%) and control group (23.13% and 28.36%), respectively. Test groups exhibited a significantly higher new bone formation than the control group at 8 weeks, but the same was true for only the BMSC group at 16 weeks (P <0.05). Fluorescently labeled cells were identified adjacent to HA/TCP carriers and, partly, near connective tissues and osteoids. CONCLUSION This study demonstrated the feasibility of using stem cell-mediated bone regeneration to treat peri-implant defects.
Collapse
Affiliation(s)
- Su-Hwan Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials 2009; 30:6374-85. [DOI: 10.1016/j.biomaterials.2009.07.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023]
|
36
|
Nait Lechguer A, Kuchler-Bopp S, Lesot H. Crown formation during tooth development and tissue engineering. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:399-407. [PMID: 19132735 DOI: 10.1002/jez.b.21256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Considering tooth crown engineering, three main parameters have to be taken into account: (1) the relationship between crown morphology and tooth functionality, (2) the growth of the organ, which is hardly compatible with the use of preformed scaffolds, and (3) the need for easily available nondental competent cell sources. In vitro reassociation experiments using either dental tissues or bone marrow-derived cells (BMDC) have been designed to get information about the mechanisms to be preserved in order to allow crown engineering. As the primary enamel knot (PEK) is involved in signaling crown morphogenesis, the formation and fate of this structure was investigated (1) in heterotopic reassociations between embryonic day 14 (ED14) incisor and molar enamel organs and mesenchymes, and (2) in reassociations between ED14 molar enamel organs and BMDC. A PEK formed in cultured heterotopic dental tissue reassociations. The mesenchyme controls the fate of the EK cells, incisor or molar-specific using apoptosis as criterion, and functionality to drive single/multiple cusps tooth development. Although previous investigations showed that they might differentiate as odontoblast- or ameloblast-like cells, BMDC reassociated to an enamel organ could not support the development of multicusp teeth. These cells apparently could neither maintain nor stimulate the formation of a PEK.
Collapse
|
37
|
Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 2009; 29:472-513. [PMID: 19260070 DOI: 10.1002/med.20144] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
38
|
Yu V, Damek-Poprawa M, Nicoll SB, Akintoye SO. Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 2009; 386:661-5. [PMID: 19555657 DOI: 10.1016/j.bbrc.2009.06.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 01/09/2023]
Abstract
The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress.
Collapse
Affiliation(s)
- V Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TMG, Hockema JJ, Woods EJ, Goebel WS. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2009; 14:149-56. [PMID: 18489245 DOI: 10.1089/ten.tec.2008.0031] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that mesenchymal stem cells (MSC) with the potential for cell-mediated therapies and tissue engineering applications can be isolated from extracted dental tissues. Here, we investigated the collection, processing, and cryobiological characteristics of MSC from human teeth processed under current good tissue practices (cGTP). Viable dental pulp-derived MSC (DPSC) cultures were isolated from 31 of 40 teeth examined. Of eight DPSC cultures examined more thoroughly, all expressed appropriate cell surface markers and underwent osteogenic, adipogenic, and chondrogenic differentiation in appropriate differentiation medium, thus meeting criteria to be called MSC. Viable DPSC were obtained up to 120 h postextraction. Efficient recovery of DPSC from cryopreserved intact teeth and second-passage DPSC cultures was achieved. These studies indicate that DPSC isolation is feasible for at least 5 days after tooth extraction, and imply that processing immediately after extraction may not be required for successful banking of DPSC. Further, the recovery of viable DPSC after cryopreservation of intact teeth suggests that minimal processing may be needed for the banking of samples with no immediate plans for expansion and use. These initial studies will facilitate the development of future cGTP protocols for the clinical banking of MSC.
Collapse
|
40
|
Pieri F, Lucarelli E, Corinaldesi G, Iezzi G, Piattelli A, Giardino R, Bassi M, Donati D, Marchetti C. Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 2008; 35:539-46. [PMID: 18422697 DOI: 10.1111/j.1600-051x.2008.01220.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Autologous, allogenic, and alloplastic materials for sinus augmentation have specific drawbacks, which has stimulated an ongoing search for new materials and tissue-engineering constructs. We investigated whether mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) seeded on a fluorohydroxyapatite (FH) scaffold can improve bone formation and bone-to-implant contact (BIC) in maxillary sinus grafting. MATERIAL AND METHODS Bilateral sinus augmentation procedures were performed in eight minipigs. MSCs, PRP, and FH scaffold (test site) or FH alone (control site) were grafted in each maxillary sinus. Distal to the osteotomy, one dental implant per sinus was placed in the grafting material through the facial sinus wall. The animals were killed 3 months after grafting, and block sections of the implant sites were harvested and prepared for histomorphometric analysis. RESULTS After 12 weeks, a significant increase in bone formation occurred in the test sites compared with the control sites (42.51%versus 18.98%; p=0.001). In addition, BIC was significantly greater in the test sites compared with the control sites in the regenerated area (23.71%versus 6.63%; p=0.028). CONCLUSIONS These findings show that sinus augmentation with MSCs-PRP, combined with FH may enhance bone formation and osseointegration of dental implants compared with FH alone in minipigs.
Collapse
Affiliation(s)
- Francesco Pieri
- Department of Odontostomatological Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen Y, Dong XJ, Zhang GR, Shao JZ, Xiang LX. In vitro differentiation of mouse bone marrow stromal stem cells into hepatocytes induced by conditioned culture medium of hepatocytes. J Cell Biochem 2007; 102:52-63. [PMID: 17340623 DOI: 10.1002/jcb.21275] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The differentiation potential of adult stem cells has long been believed to be limited to the tissue or germ layer of their origin. However, recent studies have demonstrated that adult stem cells may encompass a greater potential than once thought. In the present study, we examined whether murine bone marrow derived stromal stem cells (BMSSCs) are able to differentiate into functional hepatocytes in vitro. BMSSCs were isolated from murine femora and tibiae, and the mesodermal multilineage differentiation potentials of these cells were functionally characterized. To effectively induce hepatic differentiation, we designed a novel protocol by using hepatocyte-conditioned medium. Hepatic differentiation from mouse BMSSCs was examined by a variety of assays at morphological and molecular levels. Morphologically, mouse BMSSCs became round and epithelioid, binucleated after induction. Differentiated cells were harvested on Days 0, 10, and 20 and subjected to examination of hepatocyte characteristics by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. We detected AFP, HNF-3beta, CK19, CK18, ALB, TAT, and G-6-Pase at the mRNA and/or protein levels, hepatocyte-like cells by culture in conditioned medium further demonstrated in vitro functions characteristic of liver cells, including glycogen storage, and urea secretion. Moreover, transplantation of the differentiated cells into liver-injured mice partially restored serum albumin level and significantly suppressed transaminase activity. Our findings indicated the transdifferentiation potential of mouse BMSSCs developing into the functional hepatocyte-like cells by conditioned culture medium and, hence, may serve as a model system for the study of mechanisms involved in the transdifferentiation, and a cell source for cell therapy of hepatic diseases.
Collapse
Affiliation(s)
- Ye Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | | | | | | | | |
Collapse
|
42
|
Wilson H, Huelsmeyer M, Chun R, Young KM, Friedrichs K, Argyle DJ. Isolation and characterisation of cancer stem cells from canine osteosarcoma. Vet J 2007; 175:69-75. [PMID: 17851099 DOI: 10.1016/j.tvjl.2007.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/03/2007] [Accepted: 07/17/2007] [Indexed: 11/24/2022]
Abstract
There is increasing evidence that cancer is a stem cell disease. This study sought to isolate and characterise cancer stem cells from canine osteosarcoma. One human and three canine cell lines were cultured in non-adherent culture conditions using serum-starved, semi-solid media. Primitive sarcosphere colonies from all cell lines were identified under these conditions and were characterised using molecular and cytochemical techniques for embryonic stem cell markers. Expression of the embryonic stem cell-associated genes Nanog, Oct4 and STAT3 indicated a primitive phenotype. Sarcospheres could be reproduced consistently when passaged multiple times and produced adherent cell cultures when returned to normal growth conditions. Similarities between human and canine osteosarcoma cell lines add credence to the potential of the dog as a model for human disease.
Collapse
Affiliation(s)
- H Wilson
- Departments of Medical Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99:465-74. [PMID: 17371295 DOI: 10.1042/bc20070013] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Although adult bone-marrow-derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non-dental stem-cell-mediated odontogenesis remain an open question. RESULTS STRO-1(+) (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic-activated cell-sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2-day-old rat incisors. Co-cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up-regulated alkaline phosphatase activity, cell-cycle modification, and the expression of tooth-specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth-shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin-pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin-like structures and fibrous connective tissues respectively. CONCLUSIONS DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non-dental stem cell populations.
Collapse
Affiliation(s)
- Jinhua Yu
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Harold C Slavkin
- School of Dentistry, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|