1
|
Danckert NP, Freidin MB, Granville Smith I, Wells PM, Naeini MK, Visconti A, Compte R, MacGregor A, Williams FMK. Treatment response in rheumatoid arthritis is predicted by the microbiome: a large observational study in UK DMARD-naive patients. Rheumatology (Oxford) 2024; 63:3486-3495. [PMID: 38291926 PMCID: PMC11637416 DOI: 10.1093/rheumatology/keae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES Disease-modifying antirheumatic drugs (DMARDs) are a first-line treatment in rheumatoid arthritis (RA). Treatment response to DMARDs is patient-specific, dose efficacy is difficult to predict and long-term results are variable. The gut microbiota are known to play a pivotal role in prodromal and early-disease RA, manifested by Prevotella spp. enrichment. The clinical response to therapy may be mediated by microbiota, and large-scale studies assessing the microbiome are few. This study assessed whether microbiome signals were associated with, and predictive of, patient response to DMARD treatment. Accurate early identification of those who will respond poorly to DMARD therapy would allow selection of alternative treatment (e.g. biologic therapy) and potentially improve patient outcome. METHODS A multicentre, longitudinal, observational study of stool- and saliva microbiome was performed in DMARD-naive, newly diagnosed RA patients during introduction of DMARD treatment. Clinical data and samples were collected at baseline (n = 144) in DMARD-naive patients and at six weeks (n = 117) and 12 weeks (n = 95) into DMARD therapy. Samples collected (n = 365 stool, n = 365 saliva) underwent shotgun sequencing. Disease activity measures were collected at each timepoint and minimal clinically important improvement determined. RESULTS In total, 26 stool microbes were found to decrease in those manifesting a minimal clinically important improvement. Prevotella spp. and Streptococcus spp. were the predominant taxa to decline following six weeks and 12 weeks of DMARDs, respectively. Furthermore, baseline microbiota of DMARD-naive patients were indicative of future response. CONCLUSION DMARDs appear to restore a perturbed microbiome to a eubiotic state. Moreover, microbiome status can be used to predict likelihood of patient response to DMARD.
Collapse
Affiliation(s)
- Nathan P Danckert
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
| | - Maxim B Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Isabelle Granville Smith
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
| | - Philippa M Wells
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Maryam Kazemi Naeini
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
| | - Roger Compte
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
| | - Alexander MacGregor
- Norwich Medical School, University of East Anglia, Norwich, UK
- Rheumatology Department, Norfolk and Norwich University Hospitals NHS Trust, Norwich, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, King’s College London, London, UK
- Guy’s and St Thomas’ NHS Trust, London, UK
| |
Collapse
|
2
|
Wu C, Fujiki J, Mathieu J, Schwarz C, Cornell C, Alvarez PJJ. Phage-based biocontrol of Porphyromonas gingivalis through indirect targeting. Appl Environ Microbiol 2024; 90:e0095124. [PMID: 39248462 PMCID: PMC11497834 DOI: 10.1128/aem.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Bacteriophages offer an opportunity for chemical-free, precise control of problematic bacteria, but this approach can be limited when lytic phages are difficult to obtain for the target host. In such cases, phage-based targeting of cooperating or cross-feeding bacteria (e.g., Streptococcus gordonii) can be an effective approach to control the problematic bacteria (e.g., Porphyromonas gingivalis). Using a dual-species biofilm system, phage predation of S. gordonii (108 PFU·mL-1) decreased the abundance of pathogenic P. gingivalis by >99% compared with no-treatment controls, while also inhibiting the production of cytotoxic metabolic end products (butyric and propionic acids). Phage treatment upregulated genes associated with interspecies co-adhesion (5- to 8-fold) and quorum sensing (10-fold) in residual P. gingivalis, which is conducive to increased potential to bind to S. gordonii. Counterintuitively, lower-titer phage applications (104 PFU·mL-1) increased the production of extracellular polymeric substance (EPS) by 22% and biofilm biomass by 50%. This overproduction of EPS may contribute to the phenomenon where the biofilm separated into two distinct species layers, as observed by confocal laser scanning microscopy. Although more complex mixed-culture systems should be considered to delineate the merits and limitations of this novel biocontrol approach (which would likely require the use of phage cocktails), our results offer proof of concept that indirect phage-based targeting can expand the applicability of phage-based control of pathogenic bacteria for public health protection. IMPORTANCE Lytic phages are valuable agents for targeted elimination of bacteria in diverse applications. Nevertheless, lytic phages are difficult to isolate for some target pathogens. We offer proof of concept that this limitation may be overcome via indirect phage targeting, which involves knocking out species that interact closely with and benefit the primary problematic target bacteria. Our target (P. gingivalis) only forms a periodontal pathogenic biofilm if the pioneer colonizer (S. gordonii) offers its surface for P. gingivalis to attach. Phage predation of the co-adhesive S. gordonii significantly reduced abundance of the target pathogen by >99%, decreased the total biofilm biomass by >44%, and suppressed its production of cytotoxic metabolic byproducts. Thus, this research extends the scope of phage-based biocontrol for public health protection.
Collapse
Affiliation(s)
- Chuncheng Wu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jumpei Fujiki
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Carolyn Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
4
|
Dewake N, Ma X, Sato K, Nakatsu S, Yoshimura K, Eshita Y, Fujinaka H, Yano Y, Yoshinari N, Yoshida A. β-Glycyrrhetinic acid inhibits the bacterial growth and biofilm formation by supragingival plaque commensals. Microbiol Immunol 2021; 65:343-351. [PMID: 33860563 DOI: 10.1111/1348-0421.12884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
β-Glycyrrhetinic acid (BGA) is a natural antibacterial agent. Previous studies reported that BGA has antibacterial effects against several bacteria. This study evaluated the effects of BGA on the regulation of supragingival plaque bacteria. First, the minimum inhibitory concentrations (MICs) of BGA against oral bacteria were measured. Next, the minimum concentrations for inhibition of biofilm formation were evaluated against Streptococcus mutans and Streptococcus sobrinus, possessing insoluble glucan synthesis abilities. The MICs of biofilm formation by these bacteria ranged from 1/8 to 2× MIC. Furthermore, the inhibition effects of BGA against the coaggregation of Porphyromonas gingivalis and Streptococcus gordonii were evaluated. BGA at 32 or 64 μg/mL inhibited the coaggregation of these bacteria after a 30 min incubation. Lastly, the inhibition effects of BGA against human supragingival plaque bacteria were evaluated. Human supragingival plaque samples were obtained from 12 healthy donors. The inhibition effects of BGA against biofilm formation by these plaque bacteria were evaluated. Of 12 samples, the biofilm formation by 11 was significantly attenuated by 128-256 μg/mL of BGA. The number of colony forming units in these biofilms was also significantly attenuated. In conclusion, it was revealed that BGA inhibits the growth and biofilm formation of bacteria, furthermore, the same effect was confirmed with supragingival plaque bacteria. BGA is a good candidate for a natural agent that prevents the outbreak and progression of periodontal disease because it suppresses not only the growth and biofilm formation of bacteria, but also the coaggregation of P. gingivalis with plaque bacteria.
Collapse
Affiliation(s)
- Nanae Dewake
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Xiangtao Ma
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kayo Sato
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Susumu Nakatsu
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Kenji Yoshimura
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Yoshiyuki Eshita
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Hidetake Fujinaka
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Yoshitaka Yano
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
5
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Sha Q, Chen C. Effect of different Aggregatibacter actinomycetemcomitans strains on dual-species biofilms formed with Porphyromonas gingivalis or Dialister pneumosintes. Eur J Oral Sci 2020; 128:136-144. [PMID: 31977126 DOI: 10.1111/eos.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
There are five evolutionarily divergent clades of Aggregatibacter actinomycetemcomitans, with possible differences in phenotype and virulence potential among strains. This study examined the formation of biofilm by each of 11 distinct strains of A. actinomycetemcomitans, alone or after coculture with two species of oral bacteria (Porphyromonas gingivalis ATCC33277 or Dialister pneumosintes ATCC33048). Confocal laser scanning microscopy (CLSM) and electron microscopy were used to characterize the dual-species biofilms of interest. A reduction in dual-species A. actinomycetemcomitans-P. gingivalis biofilms was observed for A. actinomycetemcomitans RHAA1, suggesting an antagonistic relationship. The amounts of dual-species A. actinomycetemcomitans-D. pneumosintes biofilms were either increased or decreased in some - but not all - strains, indicative of strain-specific phenotypes. The CLSM analyses confirmed the existence of an antagonistic relationship between A. actinomycetemcomitans D7S-1 and P. gingivalis ATCC33277, and a synergistic relationship between A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048. The electron microscopy analyses revealed distinct morphological features of A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048 dual-species biofilms. The results indicate that the relationship between A. actinomycetemcomitans and oral bacteria may vary among strains, which could lead to distinct strain-specific patterns of niche sharing in subgingival microbiota.
Collapse
Affiliation(s)
- Qiong Sha
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, Shizukuishi S, Lamont RJ. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol 2006; 60:121-39. [PMID: 16556225 DOI: 10.1111/j.1365-2958.2006.05099.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dental plaque biofilm formation proceeds through a developmental pathway initiated by the attachment of pioneer organisms, such as Streptococcus gordonii, to tooth surfaces. Through a variety of synergistic interactions, pioneer organisms facilitate the colonization of later arrivals including Porphyromonas gingivalis, a potential periodontal pathogen. We have investigated genes of S. gordonii required to support a heterotypic biofilm community with P. gingivalis. By screening a plasmid integration library of S. gordonii, genes were identified that are crucial for the accumulation of planktonic P. gingivalis cells into a multispecies biofilm. These genes were further investigated by specific mutation and complementation analyses. The biofilm-associated genes can be grouped into broad categories based on putative function as follows: (i) intercellular or intracellular signalling (cbe and spxB), (ii) cell wall integrity and maintenance of adhesive proteins (murE, msrA and atf), (iii) extracellular capsule biosynthesis (pgsA and atf), and (iv) physiology (gdhA, ccmA and ntpB). In addition, a gene for a hypothetical protein was identified. Biofilm visualization and quantification by confocal microscopy confirmed the role of these genes in the maturation of the multispecies community, including biofilm architectural development. The results suggest that S. gordonii governs the development of heterotypic oral biofilms through multiple genetic pathways.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|