1
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
2
|
Güler Ş, Cetinkaya BO, Kurt Bayrakdar S, Ayas B, Keles GC. Comparison of the effectiveness of Ankaferd Blood Stopper ® and Emdogain in periodontal regeneration. Oral Dis 2021; 28:1947-1957. [PMID: 33740823 DOI: 10.1111/odi.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The present study was performed to compare the effectiveness of Ankaferd Blood Stopper® (ABS) with enamel matrix derivatives (EMD) for treating fenestration defects in rats. MATERIALS AND METHODS Forty-eight male Wistar rats were randomly divided into six groups (each n = 8). Fenestration defects were created in all rats, to which ABS, EMD, or saline (S) was then applied. The rats were grouped and sacrificed at one of two different time points, as follows: ABS-10-group, ABS-treatment/sacrifice on day 10; EMD-10-group, EMD-treatment/sacrifice on day 10; S-10-group, S-treatment/sacrifice on day 10; ABS-38-group, ABS-treatment/sacrifice on day 38; EMD-38-group, EMD-treatment/sacrifice on day 38; and S-38-group, S-treatment/sacrifice on day 38. Then, histomorphometric analysis including measurements of new bone area (NBA) and new bone ratio (NBR), and immunohistochemical analysis including the determination of osteopontin (OPN) and type-III-collagen (C-III) expression were performed. RESULTS The NBA and NBR were significantly higher in the ABS-10-group and EMD-10-group compared to the S-10-group (p < .05), and in the EMD-38-group compared to the S-38-group (p < .05). The levels of C-III and OPN immunoreactivity were significantly higher in the ABS-10-group compared to the S-10-group (p < .017). CONCLUSIONS The results of this study suggested that ABS can promote early periodontal regeneration, although its efficacy seems to decrease over time.
Collapse
Affiliation(s)
- Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University, Bolu, Turkey
| | - Burcu Ozkan Cetinkaya
- Department of Periodontology, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gonca Cayir Keles
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University, İstanbul, Turkey
| |
Collapse
|
3
|
Cochran DL, Cobb CM, Bashutski JD, Chun YHP, Lin Z, Mandelaris GA, McAllister BS, Murakami S, Rios HF. Emerging regenerative approaches for periodontal reconstruction: a consensus report from the AAP Regeneration Workshop. J Periodontol 2014; 86:S153-6. [PMID: 25317603 DOI: 10.1902/jop.2015.140381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Historically, periodontal regeneration has focused predominantly on bone substitutes and/or barrier membrane application to provide for defect fill and/or selected cell repopulation of the lesion. More recently, a number of technologies have evolved that can be viewed as emerging therapeutic approaches for periodontal regeneration, and these technologies were considered in the review paper and by the consensus group. The goal of this consensus report on emerging regenerative approaches for periodontal hard and soft tissue reconstruction was to develop a consensus document based on the accompanying review paper and on additional materials submitted before and at the consensus group session. METHODS The review paper was sent to all the consensus group participants in advance of the consensus conference. In addition and also before the conference, individual consensus group members submitted additional material for consideration by the group. At the conference, each consensus group participant introduced themselves and provided disclosure of any potential conflicts of interest. The review paper was briefly presented by two of the authors and discussed by the consensus group. A discussion of each of the following topics then occurred based on the content of the review: a general summary of the topic, implications for patient-reported outcomes, and suggested research priorities for the future. As each topic was discussed based on the review article, supplemental information was then added that the consensus group agreed on. Last, an updated reference list was created. RESULTS The application of protein and peptide therapy, cell-based therapy, genetic therapy, application of scaffolds, bone anabolics, and lasers were found to be emerging technologies for periodontal regeneration. Other approaches included the following: 1) therapies directed at the resolution of inflammation; 2) therapies that took into account the influence of the microbiome; 3) therapies involving the local regulation of phosphate and pyrophosphate metabolism; and 4) approaches directed at harnessing current therapies used for other purposes. The results indicate that, with most emerging technologies, the specific mechanisms of action are not well understood nor are the specific target cells identified. Patient-related outcomes were typically not addressed in the literature. Numerous recommendations can be made for future research priorities for both basic science and clinical application of emerging therapies. The need to emphasize the importance of regeneration of a functional periodontal organ system was noted. The predictability and efficacy of outcomes, as well as safety concerns and the cost-to-benefit ratio were also identified as key factors for emerging technologies. CONCLUSIONS A number of technologies appear viable as emerging regenerative approaches for periodontal hard and soft tissue regeneration and are expanding the potential of reconstructing the entire periodontal organ system. The cost-to-benefit ratio and safety issues are important considerations for any new emerging therapies. Clinical Recommendation: At this time, there is insufficient evidence on emerging periodontal regenerative technologies to warrant definitive clinical recommendations.
Collapse
Affiliation(s)
- David L Cochran
- Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jacques J, Hotton D, De la Dure-Molla M, Petit S, Asselin A, Kulkarni AB, Gibson CW, Brookes SJ, Berdal A, Isaac J. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS One 2014; 9:e99626. [PMID: 24933156 PMCID: PMC4059656 DOI: 10.1371/journal.pone.0099626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/16/2014] [Indexed: 01/05/2023] Open
Abstract
Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling.
Collapse
Affiliation(s)
- Jaime Jacques
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Unit of Periodontology, Department of Stomatology, University of Talca, Talca, Chile
| | - Dominique Hotton
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Muriel De la Dure-Molla
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Center of Rare Malformations of the Face and Oral Cavity (MAFACE), Hospital Rothschild, AP-HP, Paris, France
| | - Stephane Petit
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Audrey Asselin
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carolyn Winters Gibson
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steven Joseph Brookes
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Center of Rare Malformations of the Face and Oral Cavity (MAFACE), Hospital Rothschild, AP-HP, Paris, France
| | - Juliane Isaac
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- Laboratory of Morphogenesis Molecular Genetics, Department of Developmental and Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Lu X, Ito Y, Atsawasuwan P, Dangaria S, Yan X, Wu T, Evans CA, Luan X. Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway. Bone 2013; 54:157-168. [PMID: 23385480 PMCID: PMC5023015 DOI: 10.1016/j.bone.2013.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/29/2012] [Accepted: 01/19/2013] [Indexed: 11/28/2022]
Abstract
Proteins of the extracellular matrix often have multiple functions to facilitate complex tasks ranging from signaling to structural support. Here we have focused on the function of one of the matrix proteins expressed in bones and teeth, the matrix adhesion protein ameloblastin (AMBN). Transgenic mice with 5-fold elevated AMBN levels in mandibles suffered from root cementum resorption, delamination, and reduced alveolar bone thickness. AMBN gain of function also resulted in a significant reduction in trabecular bone volume and bone mass dentistry in 42 days postnatal mouse jaws. In an in vitro model of osteoclastogenesis, AMBN modulated osteoclast differentiation from bone marrow derived monocytes (BMMCs), and dramatically increased osteoclast numbers and resorption pits. Furthermore, AMBN more than doubled BMMC adhesion, accelerated cell spreading, and promoted podosome belt and actin ring formation. These effects were associated with elevated ERK1/2 and AKT phosphorylation as well as higher expression of osteoclast activation related genes. Blocking integrin α2β1 and ERK 1/2 pathways alleviated the effects of AMBN on osteoclast differentiation. Together, our data indicate that AMBN increases osteoclast number and differentiation as well as mineralized tissue resorption by regulating cell adhesion and actin cytoskeleton polymerization, initiating integrin-dependent extracellular matrix signaling cascades and enhancing osteoclastogenesis.
Collapse
Affiliation(s)
- Xuanyu Lu
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
| | - Yoshihiro Ito
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
| | - Phimon Atsawasuwan
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Orthodontics, USA
| | - Smit Dangaria
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
| | - Xiulin Yan
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
| | - Tuojiang Wu
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
| | - Carla A. Evans
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Orthodontics, USA
| | - Xianghong Luan
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, USA
- University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Orthodontics, USA
- Corresponding author at: University of Illinois College of Dentistry, Brodie Laboratory for Craniofacial Genetics, Department of Oral Biology, 801 South Paulina, Chicago, IL 60612, USA., (X. Luan)
| |
Collapse
|
6
|
Xiang C, Ran J, Yang Q, Li W, Zhou X, Zhang L. Effects of enamel matrix derivative on remineralisation of initial enamel carious lesions in vitro. Arch Oral Biol 2013; 58:362-9. [DOI: 10.1016/j.archoralbio.2012.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
7
|
Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries. Med Hypotheses 2011; 76:391-4. [DOI: 10.1016/j.mehy.2010.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022]
|