1
|
Zhang B, Zhu G, Liu J, Zhang C, Yao K, Huang X, Cen X, Zhao Z. Single-cell transcriptional profiling reveals immunomodulatory properties of stromal and epithelial cells in periodontal immune milieu with diabetes in rats. Int Immunopharmacol 2023; 123:110715. [PMID: 37562294 DOI: 10.1016/j.intimp.2023.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Periodontitis is the sixth major complication of diabetes. Gingiva, as an important component of periodontal tissues, serves as the first defense barrier against infectious stimuli. However, relatively little is known about cellular heterogeneity and cell-specific changes in gingiva in response to diabetes-associated periodontitis. To characterize molecular changes linking diabetes with periodontitis, we profiled single-cell transcriptome analyses of a total of 45,259 cells from rat gingiva with periodontitis under normoglycemic and diabetic condition. The single-cell profiling revealed that stromal and epithelial cells of gingiva contained inflammation-related subclusters enriched in functions of immune cell recruitment. Compared to normoglycemic condition, diabetes led to a reduction in epithelial basal cells, fibroblasts and smooth muscle cells in gingiva with periodontitis. Analysis of differentially expressed genes indicated that stromal and epithelial populations were reprogrammed towards pro-inflammatory phenotypes promoting immune cell recruitment in diabetes-related periodontitis. In aspect of immune cells, diabetes prominently enhanced neutrophil and M1 macrophage infiltration in periodontitis lesions. Cell-cell communications revealed enhanced crosstalk between stromal/epithelial cells and immune cells mediating by chemokine/chemokine receptor interplay in diabetes-associated periodontitis. Our findings deconvolved cellular heterogeneity of rat gingiva associated with periodontitis and diabetes, uncovered altered immune milieu caused by the disease, and revealed immunomodulatory functions of stromal and epithelial cells in gingival immune niche. The present study improves the understanding of the link between the diabetes and periodontitis and helps in formulating precise therapeutic strategies for diabetes-enhanced periodontitis.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Nakayama Y, Inoue E, Kato A, Iwai Y, Takai-Yamazaki M, Tsuruya Y, Yamaguchi A, Noda K, Nomoto T, Ganss B, Ogata Y. Follicular dendritic cell-secreted protein gene expression is upregulated and spread in nifedipine-induced gingival overgrowth. Odontology 2020; 108:532-544. [PMID: 31955298 DOI: 10.1007/s10266-020-00483-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 11/27/2022]
Abstract
Follicular dendritic cell-secreted protein (FDC-SP) is secreted protein expressed in follicular dendritic cells, periodontal ligament and junctional epithelium (JE). Its expression could be controlled during inflammatory process of gingiva; however, responsible mechanism for gingival overgrowth and involvement of FDC-SP in clinical condition is still unclear. We hypothesized that JE-specific genes are associated with the initiation of drug-induced gingival enlargement (DIGE) called gingival overgrowth, and investigated the changes of JE-specific gene's expression and their localization in overgrown gingiva from the patients. Immunohistochemical analysis revealed that the FDC-SP localization was spread in overgrown gingival tissues. FDC-SP mRNA levels in GE1 and Ca9-22 cells were increased by time-dependent nifedipine treatments, similar to other JE-specific genes, such as Amelotin (Amtn) and Lamininβ3 subunit (Lamβ3), whereas type 4 collagen (Col4) mRNA levels were decreased. Immunocytochemical analysis showed that FDC-SP, AMTN, and Lamβ3 protein levels were increased in GE1 and Ca9-22 cells. Transient transfection analyses were performed using luciferase constructs including various lengths of human FDC-SP gene promoter, nifedipine increased luciferase activities of -345 and -948FDC-SP constructs. These results raise the possibility that the nifedipine-induced FDC-SP may be related to the mechanism responsible for gingival overgrowth does not occur at edentulous jaw ridges.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan.
- Research Institute of Oral Science, Nihon University School of Dentistry At Matsudo, Matsudo, Japan.
| | - Eiko Inoue
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Ayako Kato
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry At Matsudo, Matsudo, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Mizuho Takai-Yamazaki
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Takato Nomoto
- Research Institute of Oral Science, Nihon University School of Dentistry At Matsudo, Matsudo, Japan
- Department of Special Needs Dentistry, Nihon University School of Dentistry At Matsudo, Matsudo, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry At Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan.
- Research Institute of Oral Science, Nihon University School of Dentistry At Matsudo, Matsudo, Japan.
| |
Collapse
|
4
|
Iwai Y, Noda K, Yamazaki M, Mezawa M, Takai H, Nakayama Y, Kitagawa M, Takata T, Ogata Y. Effects of interleukin-1β on human follicular dendritic cell-secreted protein gene expression in periodontal ligament cells. J Oral Sci 2018; 60:601-610. [PMID: 30587692 DOI: 10.2334/josnusd.17-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Follicular dendritic cell-secreted protein (FDC-SP) is expressed in FDCs, human periodontal ligament (HPL) cells, and junctional epithelium. To evaluate the effects of interleukin-1 beta (IL-1β) on FDC-SP gene expression in immortalized HPL cells, FDC-SP mRNA and protein levels in HPL cells following stimulation by IL-1β were measured by real-time polymerase chain reaction and Western blotting. Luciferase (LUC), gel mobility shift, and chromatin immunoprecipitation (ChIP) analyses were performed to study the interaction between transcription factors and promoter regions in the human FDC-SP gene. IL-1β (1 ng/mL) induced the expression of FDC-SP mRNA and protein levels at 3 h, and reached maximum levels at 12 h. IL-1β increased LUC activities of constructs (-116FDCSP - -948FDCSP) including the FDC-SP gene promoter. Transcriptional inductions by IL-1β were partially inhibited by 3-base-pair (3-bp) mutations in the Yin Yang 1 (YY1), GATA, CCAAT-enhancer-binding protein2 (C/EBP2), or C/EBP3 in the -345FDCSP. IL-1β-induced -345FDCSP activities were inhibited by protein kinase A, tyrosine-kinase, mitogen-activated protein kinase (MEK)1/2, and PI3-kinase inhibitors. The results of gel shift and ChIP assays revealed that YY1, GATA, and C/EBP-β interacted with the YY1, GATA, C/EBP2, and C/EBP3 elements that were increased by IL-1β. These studies demonstrate that IL-1β increases FDC-SP gene transcription in HPL cells by targeting YY1, GATA, C/EBP2, and C/EBP3 in the human FDC-SP gene promoter.
Collapse
Affiliation(s)
- Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Masaru Mezawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Science, Hiroshima University
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Science, Hiroshima University
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
5
|
Nakayama Y, Matsui S, Noda K, Yamazaki M, Iwai Y, Ganss B, Ogata Y. TGFβ1-induced Amelotin gene expression is downregulated by Bax expression in mouse gingival epithelial cells. J Oral Sci 2018; 60:232-241. [PMID: 29657250 DOI: 10.2334/josnusd.17-0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amelotin (AMTN) is induced upon initiation of apoptosis by transforming growth factor beta1 (TGFβ1) and is mediated by Smad3 in gingival epithelial cells (GE1 cells). This upregulation of AMTN gene expression is temporary, and the mechanism responsible is still unclear. The present study investigated the transcriptional downregulation of TGFβ1-induced AMTN gene expression in GE1 cells during the progression of apoptosis. To examine time-dependent changes in the levels of AMTN, Smad3 and Bax mRNA induced by TGFβ1, real-time PCR analyses were performed. Immunocytochemistry was carried out to detect the expression of Smad3 and Bax. Transient transfection analyses were performed using mouse AMTN gene promoter constructs of various lengths including Smad response elements (SBEs), in the presence or absence of TGFβ1. Changes in Smad3 binding to SBEs resulting from overexpression of Bax were examined using ChIP assays. Overexpression of Bax dramatically downregulated the levels of TGFβ1-induced AMTN mRNA and transcription of the AMTN gene. Smad3 binding to SBEs in the mouse AMTN gene promoter was induced by overexpression of Smad3 or TGFβ1, and this was inhibited by Bax overexpression. These results show that the levels of AMTN mRNA induced by TGFβ1 and Smad3 are decreased by robust expression of Bax in gingival epithelial cells.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
6
|
Nakayama Y, Matsui S, Noda K, Yamazaki M, Iwai Y, Matsumura H, Izawa T, Tanaka E, Ganss B, Ogata Y. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells. Apoptosis 2018; 21:1057-70. [PMID: 27502207 DOI: 10.1007/s10495-016-1279-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroyoshi Matsumura
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
7
|
Iwai Y, Noda K, Yamazaki M, Kato A, Mezawa M, Takai H, Nakayama Y, Ogata Y. Tumor necrosis factor-α regulates human follicular dendritic cell-secreted protein gene transcription in gingival epithelial cells. Genes Cells 2018; 23:161-171. [DOI: 10.1111/gtc.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Yasunobu Iwai
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Keisuke Noda
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Mizuho Yamazaki
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Ayako Kato
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Masaru Mezawa
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Hideki Takai
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Yohei Nakayama
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Yorimasa Ogata
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| |
Collapse
|
8
|
Nakayama Y, Kobayashi R, Matsui S, Matsumura H, Iwai Y, Noda K, Yamazaki M, Kurita-Ochiai T, Yoshimura A, Shinomura T, Ganss B, Ogata Y. Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva. Odontology 2016; 105:329-337. [PMID: 27807653 DOI: 10.1007/s10266-016-0277-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Ryoki Kobayashi
- Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Sari Matsui
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Hiroyoshi Matsumura
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yasunobu Iwai
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Keisuke Noda
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Mizuho Yamazaki
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Tamayuki Shinomura
- Tissue Regeneration, Department of Bio-Matrix, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
9
|
Ganss B, Abbarin N. Maturation and beyond: proteins in the developmental continuum from enamel epithelium to junctional epithelium. Front Physiol 2014; 5:371. [PMID: 25309457 PMCID: PMC4174742 DOI: 10.3389/fphys.2014.00371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
Enamel, covering the surface of teeth, is the hardest substance in mammals. It is designed to last a lifetime in spite of severe environmental challenges. Enamel is formed in a biomineralization process that is essentially divided into secretory and maturation stages. While the molecular events of enamel formation during the secretory stage have been elucidated to some extent, the mechanisms of enamel maturation are less defined, and little is known about the molecules present beyond the maturation stage. Several genes, all located within the secreted calcium-binding phosphoprotein (SCPP) gene cluster, were recently shown to be expressed during the developmental continuum from maturation stage ameloblasts to junctional epithelium (JE). This review introduces four such genes and their protein products, and presents our current state of knowledge on their roles, primarily in enamel formation and JE biology. The discovery of these proteins, and a more detailed analysis of their biological functions, will likely contribute to a more thorough understanding of the molecular mechanisms of enamel maturation and dentogingival attachment.
Collapse
Affiliation(s)
- Bernhard Ganss
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Nastaran Abbarin
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
10
|
Takahashi S, Fukuda M, Mitani A, Fujimura T, Iwamura Y, Sato S, Kubo T, Sugita Y, Maeda H, Shinomura T, Noguchi T. Follicular dendritic cell-secreted protein is decreased in experimental periodontitis concurrently with the increase of interleukin-17 expression and the Rankl/Opg mRNA ratio. J Periodontal Res 2013; 49:390-7. [PMID: 23869744 DOI: 10.1111/jre.12118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE T-helper type 17 (Th17) cells produce interleukin-17 (IL-17) and help to protect against inflammation and infection in periodontal disease. Furthermore, while follicular dendritic cell-secreted protein (FDC-SP) may be involved in the inflammation of periodontal tissue, the biological role of FDP-SP in periodontal disease is still unknown. The purpose of the present study was to clarify the expression of IL-17 and FDC-SP in experimental periodontitis in rats. MATERIAL AND METHODS Seven-week-old male Wistar rats were divided into baseline control, sham and test groups. Experimental periodontitis was induced by placing a ligature in the mesiopalatal area, and untreated rats served as a baseline control group. Morphological changes in alveolar bone were investigated 7, 14 and 28 d after treatment. Expression of the Rankl, osteoprotegerin (Opg) and Il17 genes was analyzed 5 and 7 d after the induction of experimental periodontitis. RESULTS Alveolar bone resorption progressed in the test group for 7 d, but not thereafter. At 5 d after the induction of periodontitis, the Rankl/Opg mRNA ratio and the expression of IL-17 in the test group were significantly increased compared with the respective values in the baseline control group; however, there were no significant differences between the test and control groups at 7 d. The expression of FDC-SP was significantly decreased in the test group compared with the baseline control group at 5 and 7 d after the induction of periodontitis, and this value had returned to normal levels at 14 and 28 d. CONCLUSION These results suggest that both IL-17 and FDC-SP could be involved in the inflammatory response, and FDC-SP in the junctional epithelium might play an important role in the Th17 cell-related immune response.
Collapse
Affiliation(s)
- S Takahashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dabija-Wolter G, Bakken V, Cimpan MR, Johannessen AC, Costea DE. In vitro reconstruction of human junctional and sulcular epithelium. J Oral Pathol Med 2012; 42:396-404. [PMID: 22947066 PMCID: PMC3664418 DOI: 10.1111/jop.12005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to develop and characterize standardized in vitro three-dimensional organotypic models of human junctional epithelium (JE) and sulcular epithelium (SE). METHODS Organotypic models were constructed by growing human normal gingival keratinocytes on top of collagen matrices populated with gingival fibroblasts (GF) or periodontal ligament fibroblasts (PLF). Tissues obtained were harvested at different time points and assessed for epithelial morphology, proliferation (Ki67), expression of JE-specific markers (ODAM and FDC-SP), cytokeratins (CK), transglutaminase, filaggrin, and basement membrane proteins (collagen IV and laminin1). RESULTS The epithelial component in 3- and 5-day organotypics showed limited differentiation and expressed Ki-67, ODAM, FDC-SP, CK 8, 13, 16, 19, and transglutaminase in a similar fashion to control JE samples. PLF supported better than GF expression of CK19 and suprabasal proliferation, although statistically significant only at day 5. Basement membrane proteins started to be deposited only from day 5. The rate of proliferating cells as well as the percentage of CK19-expressing cells decreased significantly in 7- and 9-day cultures. Day 7 organotypics presented higher number of epithelial cell layers, proliferating cells in suprabasal layers, and CK expression pattern similar to SE. CONCLUSION Both time in culture and fibroblast type had impact on epithelial phenotype. Five-day cultures with PLF are suggested as JE models, 7-day cultures with PLF or GF as SE models, while 9-day cultures with GF as gingival epithelium (GE) models. Such standard, reproducible models represent useful tools to study periodontal bacteria–host interactions in vitro.
Collapse
Affiliation(s)
- G Dabija-Wolter
- The Gade Institute, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|