1
|
Wu Y, Liu B, Sun Y, Du Y, Santillan MK, Santillan DA, Snetselaar LG, Bao W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus With Congenital Anomalies of the Newborn. Diabetes Care 2020; 43:2983-2990. [PMID: 33087319 PMCID: PMC7770264 DOI: 10.2337/dc20-0261] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the association of maternal prepregnancy diabetes, gestational diabetes mellitus (GDM), and 12 subtypes of congenital anomalies of the newborn. RESEARCH DESIGN AND METHODS We included 29,211,974 live births with maternal age ranging from 18 to 49 years old documented in the National Vital Statistics System in the U.S. from 2011 to 2018. Information on prepregnancy diabetes, GDM, and congenital anomalies was retrieved from birth certificates. Log-binomial regression was used to estimate risk ratios (RRs) and 95% CIs for congenital anomalies overall and by subtypes. RESULTS Of the 29,211,974 live births, there were 90,061 infants who had congenital anomalies identified at birth. The adjusted RRs of congenital anomalies at birth were 2.44 (95% CI 2.33-2.55) for prepregnancy diabetes and 1.28 (95% CI 1.24-1.31) for GDM. The associations were generally consistent across subgroups by maternal age, race/ethnicity, prepregnancy obesity status, and infant sex. For specific subtypes of congenital anomalies, maternal prepregnancy diabetes or GDM was associated with an increased risk of most subtypes. For example, the adjusted RRs of cyanotic congenital heart disease were 4.61 (95% CI 4.28-4.96) for prepregnancy diabetes and 1.50 (95% CI 1.43-1.58) for GDM; the adjusted RRs of hypospadias were 1.88 (95% CI 1.67-2.12) for prepregnancy diabetes and 1.29 (95% CI 1.21-1.36) for GDM. CONCLUSIONS Prepregnancy diabetes and, to a lesser extent, GDM were associated with several subtypes of congenital anomalies of the newborn. These findings suggest potential benefits of preconception counseling in women with preexisting diabetes or at risk for GDM for the prevention of congenital anomalies.
Collapse
Affiliation(s)
- Yuxiao Wu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Yangbo Sun
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Yang Du
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Linda G Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA.,Obesity Research and Education Initiative, University of Iowa, Iowa City, IA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA .,Obesity Research and Education Initiative, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Bcl-2 expression in a diabetic embryopathy model in presence of polyamines. In Vitro Cell Dev Biol Anim 2019; 55:821-829. [PMID: 31485886 DOI: 10.1007/s11626-019-00400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
The frequency of congenital malformations is 3-5 times higher in mothers with pregestational diabetes mellitus than in general population. Apparently, this problem is due to change in the expression of apoptotic and antiapoptotic genes induced by the oxidative stress derived from the diabetes/hyperglycemia. One of these genes is Bcl-2, which is associated with the control and inhibition of apoptosis. The purpose of the present work was to study the effect of polyamine addition over expression of Bcl-2 gene in a model of diabetic embryopathy. For this, gestational day 10.5 (GD10.5) rat embryos were incubated at 37°C for 24 h in control medium, medium with high glucose, or medium with high glucose and supplemented with spermidine or spermine. Post-cultured embryos were harvested and observed to obtain morphological scores; some of them were subjected to molecular biology studies: DNA isolation plus conventional PCR or RNA isolation plus RT-PCR; other embryos were fixed with paraformaldehyde and used for immunohistochemical detection of Bcl-2 protein. Although Bcl-2 mRNA was similarly expressed in all rat embryo treatments, Bcl-2 protein was found only in control-incubated embryos. In conclusion, it seems that the inhibition of Bcl-2 gene expression induced by glucose was not reversed by polyamines.
Collapse
|
3
|
Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 2016; 215:366.e1-366.e10. [PMID: 27038779 DOI: 10.1016/j.ajog.2016.03.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. OBJECTIVE We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. STUDY DESIGN A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. CONCLUSION Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells.
Collapse
|
4
|
Abstract
Diabetic embryopathy is a theoretical enigma and a clinical challenge. Both type 1 and type 2 diabetic pregnancy carry a significant risk for fetal maldevelopment, and the precise reasons for the diabetes-induced teratogenicity are not clearly identified. The experimental work in this field has revealed a partial, however complex, answer to the teratological question, and we will review some of the latest suggestions.
Collapse
Affiliation(s)
- Ulf J. Eriksson
- CONTACT Ulf J. Eriksson Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
5
|
Dong D, Reece EA, Lin X, Wu Y, AriasVillela N, Yang P. New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects. Am J Obstet Gynecol 2016; 214:192-202. [PMID: 26432466 PMCID: PMC4744545 DOI: 10.1016/j.ajog.2015.09.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Natalia AriasVillela
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
6
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
7
|
Wang F, Reece EA, Yang P. Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy. Am J Obstet Gynecol 2015; 213:125-34. [PMID: 25595581 DOI: 10.1016/j.ajog.2015.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 01/06/2023]
Abstract
Preexisting maternal diabetes is a high-risk factor of diabetic embryopathy, such as neural tube defects and congenital heart defects. Maternal diabetes significantly increases the production of reactive oxygen species, resulting in oxidative stress and diabetic embryopathy. Multiple cellular and metabolic factors contribute to these processes. Forkhead box O (FoxO)-3a has been demonstrated as a key transcription factor in the signaling transduction pathways responsible for maternal diabetes-induced birth defects. Apoptosis signal-regulating kinase 1 (ASK1) activated by oxidative stress stimulates nuclear translocation of FoxO3a, resulting in the overexpression of tumor necrosis factor receptor 1-associated death domain protein, which, in turn, leads to caspase-8 activation and apoptosis. Maternal diabetes-activated c-Jun N-terminal kinase (JNK)-1/2, downstream effectors of ASK1, can be blocked by superoxide dismutase-1 overexpression, suggesting that oxidative stress is responsible for JNK1/2 signaling activation. Deletion of JNK1/2 significantly suppressed the activity of FoxO3a. These observations indicate that maternal diabetes-induced oxidative stress stimulates the activation of ASK1, JNK1/2, FoxO3a, tumor necrosis factor receptor 1-associated death domain protein, caspase-8 cleavage, and finally, apoptosis and diabetic embryopathy.
Collapse
|
8
|
Yang P, Reece EA, Wang F, Gabbay-Benziv R. Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling. Am J Obstet Gynecol 2015; 212:569-79. [PMID: 25434839 PMCID: PMC4417047 DOI: 10.1016/j.ajog.2014.11.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/25/2022]
Abstract
Maternal diabetes-induced birth defects occur in 6-10% of babies born to mothers with pregestational diabetes, representing a significant maternal-fetal health problem. Currently, these congenital malformations represent a significant maternal-fetal medicine issue, but are likely to create an even greater public health threat as 3 million women of reproductive age (19-44 years) have diabetes in the United States alone, and this number is expected to double by 2030. Neural tube defects (NTDs) and congenital heart defects are the most common types of birth defects associated with maternal diabetes. Animal studies have revealed that embryos under hyperglycemic conditions exhibit high levels of oxidative stress resulting from enhanced production of reactive oxygen species and impaired antioxidant capability. Oxidative stress activates a set of proapoptotic kinase signaling intermediates leading to abnormal cell death in the embryonic neural tube, which causes NTD formation. Work in animal models also has revealed that maternal diabetes triggers a series of signaling intermediates: protein kinase C (PKC) isoforms, PKCα, βII and δ; apoptosis signal-regulating kinase 1; c-Jun-N-terminal kinase (JNK)1/2; caspase; and apoptosis. Specifically, maternal diabetes in rodent models activates the proapoptotic unfolded protein response and endoplasmic reticulum (ER) stress. A reciprocal causation between JNK1/2 activation and ER stress exists in diabetic embryopathy. Molecular studies further demonstrate that deletion of the genes for Prkc, Ask1, Jnk1, or Jnk2 abolishes maternal diabetes-induced neural progenitor apoptosis and ameliorates NTD formation. Similar preventive effects are also observed when apoptosis signal-regulating kinase 1, JNK1/2, or ER stress is inhibited. Cell membrane stabilizers and antioxidant supplements are also effective in prevention of diabetes-induced birth defects. Mechanistic studies have revealed important insights into our understanding the cause of diabetic embryopathy and have provided a basis for future interventions against birth defects or other pregnancy complications associated with maternal diabetes. The knowledge of a molecular pathway map identified in animal studies has created unique opportunities to identify molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Li X, Xu C, Yang P. c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy. Diabetes 2013; 62:599-608. [PMID: 22961085 PMCID: PMC3554374 DOI: 10.2337/db12-0026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Embryos exposed to high glucose exhibit aberrant maturational and cytoarchitectural cellular changes, implicating cellular organelle stress in diabetic embryopathy. c-Jun-N-terminal kinase 1/2 (JNK1/2) activation is a causal event in maternal diabetes-induced neural tube defects (NTD). However, the relationship between JNK1/2 activation and endoplasmic reticulum (ER) stress in diabetic embryopathy has never been explored. We found that maternal diabetes significantly increased ER stress markers and induced swollen/enlarged ER lumens in embryonic neuroepithelial cells during neurulation. Deletion of either jnk1 or jnk2 gene diminished hyperglycemia-increased ER stress markers and ER chaperone gene expression. In embryos cultured under high-glucose conditions (20 mmol/L), the use of 4-phenylbutyric acid (4-PBA), an ER chemical chaperone, diminished ER stress markers and abolished the activation of JNK1/2 and its downstream transcription factors, caspase 3 and caspase 8, and Sox1 neural progenitor apoptosis. Consequently, both 1 and 2 mmol/L 4-PBA significantly ameliorated high glucose-induced NTD. We conclude that hyperglycemia induces ER stress, which is responsible for the proapoptotic JNK1/2 pathway activation, apoptosis, and NTD induction. Suppressing JNK1/2 activation by either jnk1 or jnk2 gene deletion prevents ER stress. Thus, our study reveals a reciprocal causation of ER stress and JNK1/2 in mediating the teratogenicity of maternal diabetes.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Cheng Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Corresponding author: Peixin Yang,
| |
Collapse
|
10
|
Li X, Weng H, Xu C, Reece EA, Yang P. Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy. Diabetes 2012; 61:2084-92. [PMID: 22688338 PMCID: PMC3402327 DOI: 10.2337/db11-1624] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oxidative stress and apoptosis are implicated in the pathogenesis of diabetic embryopathy. The proapoptotic c-Jun NH(2)-terminal kinases (JNK)1/2 activation is associated with diabetic embryopathy. We sought to determine whether 1) hyperglycemia-induced oxidative stress is responsible for the activation of JNK1/2 signaling, 2) JNK1 contributes to the teratogenicity of hyperglycemia, and 3) both JNK1 and JNK2 activation cause activation of downstream transcription factors, caspase activation, and apoptosis, resulting in neural tube defects (NTDs). Wild-type (WT) embryos from nondiabetic WT dams and WT, superoxide dismutase (SOD)1-overexpressing, jnk1(+/-), jnk1(-/-), and jnk2(-/-) embryos exposed to maternal hyperglycemia were used to assess JNK1/2 activation, NTDs, activation of transcription factors downstream of JNK1/2, caspase cascade, and apoptosis. SOD1 overexpression abolished diabetes-induced activation of JNK1/2 and their downstream effectors: phosphorylation of c-Jun, activating transcription factor 2, and E twenty-six-like transcription factor 1 and dephosphorylation of forkhead box class O3a. jnk1(-/-) embryos had significantly lower incidences of NTDs than those of WT or jnk1(+/-) embryos. Either jnk1 or jnk2 gene deletion blocked diabetes-induced activation of JNK1/2 signaling, caspases 3 and 8, and apoptosis in Sox1(+) neural progenitors of the developing neural tube. Our results show that JNK1 and JNK2 are equally involved in diabetic embryopathy and that the oxidative stress-JNK1/2-caspase pathway mediates the proapoptotic signals and the teratogenicity of maternal diabetes.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, People’s Republic of China
| | - Hongbo Weng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Corresponding author: Peixin Yang,
| |
Collapse
|
11
|
Zhao Z, Yang P, Eckert RL, Reece EA. Caspase-8: a key role in the pathogenesis of diabetic embryopathy. ACTA ACUST UNITED AC 2009; 86:72-7. [PMID: 19194987 DOI: 10.1002/bdrb.20185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Maternal diabetes causes neural tube defects in embryos, which are associated with increased apoptosis in the neuroepithelium. Many factors, including effector caspases, have been shown to be involved in the events. However, the key regulators have not been identified and the underlying mechanisms remain to be addressed. Caspase-8, an initiator caspase, has been shown to be altered in diabetic embryopathy, suggesting a role as an upstream apoptotic regulator. Using mouse embryos as a model system, this study demonstrates that caspase-8 is required for the production of hyperglycemia-associated embryonic malformations. Caspase-8 was shown to be expressed in the developing neural tube. Its activity, as evidenced by enhanced cleavage, was increased by hyperglycemia. These changes were associated with increased formation of the active cleavage of Bid. Inhibition of caspase-8 activity in high glucose-challenged embryos reduced the rate of embryonic malformation and this was associated with decreased apoptosis in the neuroepithelium of the neural tube. Inhibition of caspase-8 activity also reduced hyperglycemia-induced Bid activation and caspase-9 cleavage. These data suggest that caspase-8 may control diabetic embryopathy-associated apoptosis via regulation of the Bid-stimulated mitochondrion/caspase-9 pathway.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Congenital malformations are more common in infants of diabetic women than in children of non-diabetic women. The etiology, pathogenesis and prevention of the diabetes-induced malformations have spurred considerable clinical and basic research efforts. The ultimate aim of these studies has been to obtain an understanding of the teratogenic process, which may enable precise preventive therapeutic measures in diabetic pregnancies. The results of the clinical and basic studies support the view of an early gestational induction of the malformations in diabetic pregnancy by a teratogenic process of multifactorial etiology. There may be possible targets for new therapeutic efforts revealed by the research work. Thus, future additions to the therapeutic efforts may include supplementation with antioxidants and/or folic acid, although more research is needed to delineate the dosages and compounds to be used. As the research into genetic predisposition for the teratogenic induction of malformations by maternal diabetes starts to reveal new genes and gene products involved in the etiology of the malformations, a set of new targets for intervention may arise.
Collapse
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-75123 Uppsala, Sweden.
| |
Collapse
|
13
|
Zhiyong Zhao, Wu YK, Reece EA. Demonstration of the essential role of protein kinase C isoforms in hyperglycemia-induced embryonic malformations. Reprod Sci 2008; 15:349-56. [PMID: 18497343 DOI: 10.1177/1933719108316986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To address the role of PKC isoforms in hyperglycemia-induced apoptosis and malformations in the embryos of diabetic pregnancies, expression of PKCalpha, beta1, beta 2, gamma, delta, epsilon, and zeta was examined in the neural tube of rat embryos and showed to overlap with the regions of increased apoptosis. Levels of activated (phosphorylated) PKCalpha , beta2, and delta were increased in the embryos of diabetic dams whereas those of PKCepsilon and zeta were decreased when compared with those in control groups. Cytosolic phospholipase A(2) (cPLA(2)) was also activated. Blocking the activity of PKCalpha , beta2, and delta using isoform-specific inhibitors in embryos cultured in hyperglycemia (40 mM) reduced malformation rates when compared with those in untreated hyperglycemic and euglycemic (8.3 mM) groups. These observations demonstrate that PKCalpha, beta2, and delta play an essential role in diabetic embryopathy. Activation of cPLA(2) was also decreased, suggesting that PKCs mediate the hyperglycemic effects through the cPLA(2)-phospholipid peroxidation pathway.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
14
|
Gäreskog M, Cederberg J, Eriksson UJ, Wentzel P. Maternal diabetes in vivo and high glucose concentration in vitro increases apoptosis in rat embryos. Reprod Toxicol 2006; 23:63-74. [PMID: 17034987 DOI: 10.1016/j.reprotox.2006.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Apoptosis may be involved in diabetes-induced embryonic dysmorphogenesis. We estimated the occurrence of apoptosis in embryos of a rat model for diabetic pregnancy. We found decreased Bcl-2, increased Bax and cleaved Caspase 3 proteins in embryos from diabetic rats. Moreover, we found increased activation of Caspase 3 in cells from embryos previously exposed to a diabetes-like environment (in vivo, in vitro) compared to cells from control embryos, which was normalized by supplementation of N-acetylcysteine or apoptosis inhibitor. We detected increased propidium iodide uptake in embryonic cells exposed to maternal diabetes, a finding confirmed by vital staining. Additionally, we found increased dysmorphogenesis in embryos exposed to a diabetic environment in vivo and in vitro. Exposure to a diabetic milieu during organogenesis increases apoptosis in embryonic cells and dysmorphogenesis in embryos. Enhanced apoptotic rate may have a role in diabetic embryopathy by inducing disturbed embryonic maturation, increased rates of resorptions and congenital malformations.
Collapse
Affiliation(s)
- Mattias Gäreskog
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. ACTA ACUST UNITED AC 2006; 12:549-57. [PMID: 16325743 DOI: 10.1016/j.jsgi.2005.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 01/23/2023]
Abstract
A high frequency of birth defects is seen in infants born to diabetic mothers. The mechanisms by which maternal hyperglycemia, the major teratogenic factor, induces embryonic malformations remain to be addressed. It has been shown that increases in programmed cell death are one of the factors causing embryonic malformations. Hyperglycemia-induced apoptosis is associated with oxidative stress, lipid peroxidation, and decreased antioxidant defense capacity in the embryos. Recent studies have revealed that mitogen-activated protein kinases as intracellular signaling factors are involved in hyperglycemia-induced embryopathy. Based on the findings, interventions to prevent embryonic malformations have been explored. Strategies include supplementation of molecules that are deficient in the embryos under hyperglycemic conditions and antioxidants to alleviate the adverse effects of oxidative stress. The ultimate goal is to develop multi-nutrient dietary supplements to eliminate embryonic abnormalities induced by maternal diabetes.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics and Gynecology, The Arkansas Center for Birth Defects Research and Prevention, Little Rock, Arkansas, USA
| | | |
Collapse
|
16
|
Mammon K, Keshet R, Savion S, Pekar O, Zaslavsky Z, Fein A, Toder V, Torchinsky A. Diabetes-induced fetal growth retardation is associated with suppression of NF-kappaB activity in embryos. Rev Diabet Stud 2005; 2:27-34. [PMID: 17491656 PMCID: PMC1762494 DOI: 10.1900/rds.2005.2.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mechanisms underlying diabetes-induced fetal growth retardation remain largely undefined. Two events such as the persistent activation of apoptosis or suppression of cell proliferation in embryos might directly result in fetal growth retardation. Evidence implicating the transcription factor NF-kappaB in the regulation of the physiological and teratogen-induced apoptosis as well as cell proliferation suggests that it may be a component of mechanisms underlying this pathology. To address this issue, this study was designed to test: 1) whether diabetes-induced fetal growth retardation is preceded by the modulation of NF-kappaB activity in embryos at the late stage of organogenesis and 2) whether apoptosis is altered in these embryos. METHODS The embryos and placentas of streptozotocin-induced diabetic mice collected on days 13 and 15 of pregnancy were used to evaluate the expression of NF-kappaB, IkappaBalpha and phosphorylated (p)-IkappaBalpha proteins by Western blot analysis and NF-kappaB DNA binding by an ELISA-based method. The detection of apoptotic cells was performed by the TUNEL assay and the expression of a proapoptotic protein Bax was evaluated by the Western blot. RESULTS The embryos of diabetic mice were significantly growth retarded, whereas the placental weight did not differ in diabetic or control females. Levels of NF-kappaB and p-IkappaBalpha proteins as well as the amount of NF-kappaB DNA binding was lower in embryos of diabetic mice as compared to those in controls. However, neither excessive apoptosis nor an increased Bax expression was found in growth-retarded embryos and their placentas. CONCLUSION The study herein revealed that diabetes-induced fetal growth retardation is associated with the suppression of NF-kappaB activity in embryos, which seems to be realized at the level of IkappaB degradation.
Collapse
|
17
|
Reece EA, Ma XD, Zhao Z, Wu YK, Dhanasekaran D. Aberrant patterns of cellular communication in diabetes-induced embryopathy in rats: II, apoptotic pathways. Am J Obstet Gynecol 2005; 192:967-72. [PMID: 15746699 DOI: 10.1016/j.ajog.2004.10.592] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The objective was to test the hypothesis that hyperglycemia-induced injury of yolk sac cell membranes is associated with disruption of cellular apoptotic signaling pathways. STUDY DESIGN Pregnant rats were induced to become diabetic by injection of streptozotocin. Fourteen normal control and 24 diabetic rats were killed on day 12 of gestation. Yolk sac membranes in 3 conceptus groups (nondiabetic, diabetic with normal, or diabetic with malformed conceptus) were collected for study. DNA was extracted from yolk sac cells and assayed for fragmentation by using gel electrophoresis, which indicates apoptosis. Protein expression was evaluated by Western blot assays. Statistical analyses were performed with the Student t -test. RESULTS The level of phosphorylated Akt was significantly decreased, whereas that of the proapoptotic protein Bax was increased. These changes were correlated with the presence of DNA fragmentation in yolk sac cells of the diabetic malformed conceptuses. CONCLUSION Hyperglycemia-induced embryopathy involves apoptosis, during which the expression of proapoptotic protein Bax is upregulated and the activity of the cell-survival factor, Akt kinase, is decreased in yolk sac cells. These observations suggest that hyperglycemia of maternal diabetes triggers apoptotic signaling pathways and inhibits cell survival pathways, leading to embryonic malformations.
Collapse
Affiliation(s)
- E Albert Reece
- Department of Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Free radicals derived from molecular oxygen and nitrogen are highly reactive metabolites called reactive oxygen species (ROS). Cells continuously produce free radicals and ROS as part of the metabolic process. They are involved in the various functions of the reproductive system. Antioxidants are enzymes or compounds that scavenge and reduce the presence of free radicals. Normally, a balance exists between concentrations of reactive oxygen species and antioxidant scavenging systems. The disruption of the delicate balance between pro- and antioxidants results in oxidative stress. Oxidative stress has been implicated in embryo fragmentation, DNA damage, apoptosis and poor pregnancy outcome. It has also been implicated in a large number of gynecologic diseases, such as endometriosis, pre-eclampsia and maternal diabetes. The use of antioxidants may be beneficial in combating the harmful effects of oxidative stress in many of these diseases. The present review outlines the importance of these species in the pathology of various gynecologic diseases. (Reprod Med Biol 2004; 3: 177 - 199).
Collapse
Affiliation(s)
- Rakesh K Sharma
- Center for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute and Department of Obstetrics and Gynecology, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ashok Agarwal
- Center for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute and Department of Obstetrics and Gynecology, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring of diabetic mothers--animal and human studies. Rev Endocr Metab Disord 2003; 4:79-93. [PMID: 12618562 DOI: 10.1023/a:1021879504372] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
20
|
Toder V, Carp H, Fein A, Torchinsky A. The role of pro- and anti-apoptotic molecular interactions in embryonic maldevelopment. Am J Reprod Immunol 2002; 48:235-44. [PMID: 12516634 DOI: 10.1034/j.1600-0897.2002.01130.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Pregnancy loss and the occurrence of inborn structural anomalies are often preceded by excessive apoptosis in targeted embryonic and extraembryonic tissues. Apoptogenic stimuli activate both death and survival, signaling cascades consisting of molecules acting as activators and effectors, or negative regulators of apoptosis. The interplay between these cascades determines whether the cell which is exposed to an apoptogenic stimulus dies or survives. This review summarizes the functioning of pro- and anti-apoptotic molecules in embryos responding to various teratogens. The effect of potentiation of the maternal immune system on these molecules is also discussed. METHODS OF STUDY The data on the functioning of various pro- and anti-apoptotic molecules in embryos exposed to various developmental toxicants, and embryos developing in a diabetic environment are reviewed. Techniques such as the TUNEL method, DNA fragmentation assay, electromobility shift assay (EMSA), fluorometric assay, immunohistochemistry, Western blot, In situ hybridization, have been used in our studies to detect apoptosis, and evaluate the functioning of molecules such as TNFalpha, caspases, NF-kappaB and IkappaB, p53, and bcl-2 in different embryonic and extraembryonic tissues. RESULTS Our and other data summarized in this review have demonstrated that the doses of developmental toxicants required to induce pregnancy loss and gross structural anomalies induce excessive apoptosis shortly after treatment. Depending on the intensity and type of targeted tissues, this apoptosis was accompanied by alterations in the activity of the molecules which act as activators and effectors (e.g. caspase 3, caspase 8, caspase 2, p53) or negative regulators (bcl-2, NF-kappaB) of apoptosis. Maternal immunopotentiation, which decreases the level of induced and spontaneous pregnancy loss and the incidence and severity of teratogen-induced structural anomalies has been shown to modulate the expression of these molecules both in embryonic tissues and at the feto-maternal interface. CONCLUSIONS The data presented in this review suggest that molecules such as TNFalpha, caspase 3, caspase 8, NF-kappaB, p53 and bcl-2, which are involved in the regulation of apoptosis, may also be involved in determining the sensitivity of the embryo to developmental toxicants. Maternal immunopotentiation may modulate the functioning of these molecules.
Collapse
Affiliation(s)
- V Toder
- Department of Embryology and Teratology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
21
|
Abstract
Mammalian embryonic death is the most common outcome of fertilization. This review focuses on the recent advances concerning genetic regulation of preimplantation embryo survival. The predominant role of the Ped(preimplantation embryo development) gene, which regulates fast or slow cleavage of preimplantation mouse embryos, and its implication on embryo survival are discussed. Recent morphological and biochemical observations suggested that programmed cell death was an essential mechanism in preimplantation embryo fragmentation and survival, thus leading to original investigations on apoptosis and apoptosis-related genes. Other genes, transcripts, or proteins seem to be involved in embryo development and control of survival. In particular, the role of heat shock proteins (HSP), telomerase activity (human telomerase catalytic subunit hTCS), and the developmental significance of regulatory protein polarization (leptin, STAT 3) in preimplantation embryos are discussed.
Collapse
Affiliation(s)
- R Levy
- Laboratoire de Biologie de la Reproduction du Pr. J. L. Laurent, Hôpital Nord, Saint Etienne, France
| |
Collapse
|
22
|
Mu J, Kanzaki T, Tomimatsu T, Fukuda H, Wasada K, Fujii E, Endoh M, Kozuki M, Murata Y, Sugimoto Y, Ichikawa A. Expression of apoptosis in placentae from mice lacking the prostaglandin F receptor. Placenta 2002; 23:215-23. [PMID: 11945089 DOI: 10.1053/plac.2001.0759] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the changes in apoptosis in the placenta and decidua of pregnant mice lacking the prostaglandin F receptor. Mouse placentae were removed from fetuses on days 10-23 of pregnancy. Apoptotic cells were examined by a DNA fragmentation assay and the terminal deoxynucleotidyl transferase-mediated dUDP nick end-labelling (TUNEL) technique. The placenta and decidual weight increased before day 18 and 14 of pregnancy, and then decreased with gestational day. After day 19, the fetuses gradually died in the uterus. All fetuses died in the uterus on day 23 of pregnancy. The number of apoptosis was not significantly different between wild type and FP-deficient mice before day 18 of pregnancy by DNA fragmentation and TUNEL staining. The DNA fragmentation was always more pronounced in decidual tissue on each day of pregnancy. DNA laddering on placentae was more extensive on day 22 than day 18. In placenta, most TUNEL-positive cells were detected in trophoblast and stromal cells. A higher intensity of apoptotic cells was in the decidual basalis. The main area was the centre of the decidual basalis, and was in decrease toward to margin of placenta. The index of TUNEL positive cells increased as gestation progressed toward termination. Especially, it was prominent in the placentae on day 22 compared with that day 18 of pregnancy. The increased TUNEL-positive staining in syncytiotrophoblast surface was found in placenta at post-term, compared with those at term. Apoptosis may provide insights into both normal placental development and placental dysfunction during an abnormal pregnancy from post-term pregnancy.
Collapse
Affiliation(s)
- J Mu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka, 565-0871 Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab 2001; 12:78-82. [PMID: 11167126 DOI: 10.1016/s1043-2760(00)00341-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Congenital malformations are the leading cause of perinatal death among infants of diabetic women. Abnormal fuel metabolism and hyperglycemia have been shown to disturb embryogenesis during the earliest pre- and postimplantation stages in mice. This review presents a new model to explain, in part, adverse pregnancy outcomes associated with diabetes. In this model, by altering gene expression in developing tissues, raised glucose concentrations led to premature programmed cell death in key progenitor cells of the mouse blastocyst or in emerging organ structures in the mouse postimplantation embryo, resulting in abnormal morphogenesis or miscarriage. Although recent studies are still somewhat speculative and have currently only been explored in the mouse, this paradigm is supported by examples in other cell systems, which include human-derived cell lines, thereby suggesting that these findings are also applicable to human pregnancy.
Collapse
Affiliation(s)
- K H Moley
- Dept of Obstetrics and Gynecology, Washington University, St Louis, MO 63110, USA.
| |
Collapse
|
24
|
Eriksson UJ, Borg LA, Cederberg J, Nordstrand H, Simán CM, Wentzel C, Wentzel P. Pathogenesis of diabetes-induced congenital malformations. Ups J Med Sci 2000; 105:53-84. [PMID: 11095105 DOI: 10.1517/03009734000000055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The increased rate of fetal malformation in diabetic pregnancy represents both a clinical problem and a research challenge. In recent years, experimental and clinical studies have given insight into the teratological mechanisms and generated suggestions for improved future treatment regimens. The teratological role of disturbances in the metabolism of inositol, prostaglandins, and reactive oxygen species has been particularly highlighted, and the beneficial effect of dietary addition of inositol, arachidonic acid and antioxidants has been elucidated in experimental work. Changes in gene expression and induction of apoptosis in embryos exposed to a diabetic environment have been investigated and assigned roles in the teratogenic processes. The diabetic environment appears to simultaneously induce alterations in several interrelated teratological pathways. The complex pathogenesis of diabetic embryopathy has started to unravel, and future research efforts will utilize both clinical intervention studies and experimental work that aim to characterize the human applicability and the cell biological components of the discovered teratological mechanisms.
Collapse
Affiliation(s)
- U J Eriksson
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
25
|
Brill A, Torchinsky A, Carp H, Toder V. The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet 1999; 16:512-9. [PMID: 10575578 PMCID: PMC3455372 DOI: 10.1023/a:1020541019347] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Programmed cell death or apoptosis is a widespread biological phenomenon. Apoptosis is characterized by typical cell features such as membrane blebbing, chromatin condensation, and DNA fragmentation. It involves a number of membrane receptors (e.g., Fas, TNFR) and a cascade of signal transduction steps resulting in the activation of a number of cysteine proteases known as caspases. Disordered apoptosis may lead to carcinogenesis and participates in the pathogenesis of Alzheimer disease, Parkinson disease, or AIDS. Programmed cell death plays an important role in the processes of gamete maturation as well as in embryo development, contributing to the appropriate formation of various organs and structures. Apoptosis is one of the mechanisms of action of various cytotoxic agents and teratogens. Teratogen-induced excessive death of embryonic cells is undoubtedly one of the most important events preceding the occurrence of structural abnormalities, regardless of their nature. Therefore understanding the mechanisms involved in physiological as well as in disturbed or dysregulated apoptosis may lead to the development of new methods of preventive treatment of various developmental abnormalities. The present review summarizes data on the mechanisms of programmed cell death and concentrates on apoptosis involved in normal or disturbed gametogenesis and in normal and abnormal embryonic development.
Collapse
Affiliation(s)
- A Brill
- Department of Embryology and Teratology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
26
|
|