1
|
Nandi S, Ahmed S, Saxena AK. Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites. Curr Top Med Chem 2022; 22:2029-2044. [PMID: 35382719 DOI: 10.2174/1568026622666220405121643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malaria, a global challenge, is a parasitic disease caused by Plasmodium species. Approximately 229 million cases of malaria were reported in 2019. Major incidences occur in various continents, including African and Eastern Mediterranean Continents and South-East Asia. INTRODUCTION Despite the overall decline in global incidence from 2010 to 2018, the rate of decline has been almost constant since 2014. The morbidity and mortality have been accelerated due to reactive oxygen species (ROS) caused by oxidative stress generated by the parasite responsible for the destruction of host metabolism and cell nutrients. METHODS The excessive release of free radicals is associated with the infection in the animal or human body by the parasites. This may be related to a reduction in nutrients required for the generation of antioxidants and the destruction of cells by parasite activity. Therefore, an intensive literature search has been carried out to find the natural antioxidants used to neutralize the free radicals generated during malarial infection. RESULTS The natural antioxidants may be useful as an adjuvant treatment along with the antimalarial chemotherapeutics to reduce the death rate and enhance the success rate of malaria treatment. CONCLUSION In this manuscript, an attempt has been made to provide significant insight into the antioxidant activities of herbal extracts against malaria parasites.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Anil Kumar Saxena
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| |
Collapse
|
2
|
Role of melatonin and HSF-1\HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennanti. J Therm Biol 2020; 87:102456. [PMID: 32001016 DOI: 10.1016/j.jtherbio.2019.102456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022]
|
3
|
Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J Cell Physiol 2019; 234:12142-12148. [PMID: 30618091 DOI: 10.1002/jcp.28129] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
Skin cancer, particularly melanoma, is a leading cause of death worldwide. The therapeutic methods for this malignancy are not effective, and due to the side effects of these treatments, applying an appropriate alternative or complementary treatment is important. According to available data, melatonin as the main product of the pineal gland has oncostatic and antitumoral properties. Also, melatonin acts as an anti-inflammatory and reactive oxygen species inducer agent which suppresses the growth of tumors. It also has apoptosis induction characteristics through regulating signaling pathways, including heat shock protein 70, nuclear factor-erythroid 2 p45-related factor 2 and others. Thus, adding melatonin to chemo- and radiotherapy may have synergistic therapeutic effects and increase the survival time in patients with skin cancer. Few clinical studies have evaluated the efficacy of melatonin in skin cancer. Based on the related mechanisms, this review discusses about how melatonin may improve outcomes in skin cancer patients.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - Mostafa Mahdavinia
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, I. R. Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
4
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Espinosa Ruiz C, Cabrera L, López-Jiménez JÁ, Zamora S, Pérez-Llamas F. Effects of long-term ingestion of white tea on oxidation produced by aging and acute oxidative damage in rats. J Physiol Biochem 2017; 74:171-177. [DOI: 10.1007/s13105-017-0591-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
|
6
|
Gyuris M, Hackler L, Nagy LI, Alföldi R, Rédei E, Marton A, Vellai T, Faragó N, Ózsvári B, Hetényi A, Tóth GK, Sipos P, Kanizsai I, Puskás LG. Mannich Curcuminoids as Potent Anticancer Agents. Arch Pharm (Weinheim) 2017; 350. [PMID: 28547897 DOI: 10.1002/ardp.201700005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/10/2022]
Abstract
A series of novel curcuminoids were synthesised for the first time via a Mannich-3CR/organocatalysed Claisen-Schmidt condensation sequence. Structure-activity relationship (SAR) studies were performed by applying viability assays and holographic microscopic imaging to these curcumin analogues for anti-proliferative activity against A549 and H1975 lung adenocarcinoma cells. The TNFα-induced NF-κB inhibition and autophagy induction effects correlated strongly with the cytotoxic potential of the analogues. Significant inhibition of tumour growth was observed when the most potent analogue 44 was added in liposomes at one-sixth of the maximally tolerated dose in the A549 xenograft model. The novel spectrum of activity of these Mannich curcuminoids warrants further preclinical investigations.
Collapse
Affiliation(s)
| | | | | | | | | | - Annamária Marton
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tibor Vellai
- Faculty of General Medicine, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | | | | | | | - Gábor K Tóth
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Sipos
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
7
|
Hackler L, Ózsvári B, Gyuris M, Sipos P, Fábián G, Molnár E, Marton A, Faragó N, Mihály J, Nagy LI, Szénási T, Diron A, Párducz Á, Kanizsai I, Puskás LG. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS One 2016; 11:e0149832. [PMID: 26943907 PMCID: PMC4778904 DOI: 10.1371/journal.pone.0149832] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Péter Sipos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | | | | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Nóra Faragó
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Tibor Szénási
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Árpád Párducz
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - László G. Puskás
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
8
|
Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-20. [DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
|
9
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MLT) is a neuroendocrine hormone, which is primarily synthesized by the pineal gland in vertebrates. Melatonin is a remarkable molecule with diverse biological and physiological actions and is involved in the regulation of various important functions such as circadian rhythm, energy metabolism, the reproductive system, the cardiovascular system, and the neuropsychiatric system. It also plays a role in disease by having anti-neoplastic and anti-osteoarthritic effects among others. Recently, research has focused on the roles of melatonin in oxidative stress, lipid metabolism, and hepatic steatosis and its potential therapeutic roles.
Collapse
Affiliation(s)
- Hang Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Fang-fang Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
10
|
Kleber A, Ruf CG, Wolf A, Fink T, Glas M, Wolf B, Volk T, Abend M, Mathes AM. Melatonin or ramelteon therapy differentially affects hepatic gene expression profiles after haemorrhagic shock in rat--A microarray analysis. Exp Mol Pathol 2015; 99:189-97. [PMID: 26116814 DOI: 10.1016/j.yexmp.2015.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Melatonin has been demonstrated to reduce liver damage in different models of stress. However, there is only limited information on the impact of this hormone on hepatic gene expression. The aim of this study was, to investigate the influence of melatonin or the melatonergic agonist ramelteon on hepatic gene expression profiles after haemorrhagic shock using a whole genome microarray analysis. METHODS Male Sprague-Dawley rats (200-300 g, n=4/group) underwent haemorrhagic shock (mean arterial pressure 35±5 mmHg). After 90 min of shock, animals were resuscitated with shed blood and Ringer's and treated with vehicle (5% dimethyl sulfoxide), melatonin or ramelteon (each 1.0 mg/kg intravenously). Sham-operated animals were treated likewise but did not undergo haemorrhage. After 2 h of reperfusion, the liver was harvested, and a whole genome microarray analysis was performed. Functional gene expression profiles were determined using the Panther® classification system; promising candidate genes were evaluated by quantitative polymerase chain reaction (PCR). RESULTS Microarray and PCR data showed a good correlation (r(2)=0.84). A strong influence of melatonin on receptor mediated signal transduction was revealed using the functional gene expression profile analysis, whereas ramelteon mainly influenced transcription factors. Shock-induced upregulation of three candidate genes with relevant functions for hepatocytes (ppp1r15a, dusp5, rhoB) was significantly reduced by melatonin (p<0.05 vs. shock/vehicle), but not by ramelteon. Two genes previously known as haemorrhage-induced (il1b, s100a8) were transcriptionally repressed by both drugs. CONCLUSIONS Melatonin and ramelteon appear to induce specific hepatic gene expression profiles after haemorrhagic shock in rats. The observed differences between both substances are likely to be attributable to a distinct mechanism of action in these agents.
Collapse
Affiliation(s)
- Astrid Kleber
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Christian G Ruf
- Department of Urology, Bundeswehrkrankenhaus Koblenz, Germany.
| | - Alexander Wolf
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Tobias Fink
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Michael Glas
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Beate Wolf
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Thomas Volk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, München, Germany.
| | | |
Collapse
|
11
|
Antal O, Péter M, Hackler L, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1271-82. [PMID: 26092623 DOI: 10.1016/j.bbalip.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.
Collapse
Affiliation(s)
- Otilia Antal
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | - Imola Mán
- Avidin Ltd., Szeged H-6726, Hungary(3)
| | | | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720, Hungary
| | - László Vigh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Klára Kitajka
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3)
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Laszló G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3).
| |
Collapse
|
12
|
Kleszczyński K, Zwicker S, Tukaj S, Kasperkiewicz M, Zillikens D, Wolf R, Fischer TW. Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes. J Pineal Res 2015; 58:117-26. [PMID: 25424643 DOI: 10.1111/jpi.12197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/21/2014] [Indexed: 12/25/2022]
Abstract
Melatonin, a lipophilic compound synthesized and released from the pineal gland, effectively acts against ultraviolet radiation (UVR), one of the main inducers of epidermal damage, skin cancer, inflammation, and DNA photo damage. One of the common known stress protein induced by UVR is heat shock protein 70 (Hsp70), highly expressed in human keratinocytes, providing cellular resistance to such stressors. Here, using human full-thickness skin and normal human epidermal keratinocytes (NHEK), we investigated the interaction of melatonin and Hsp70 toward UVR-induced inflammatory and apoptotic responses. The following observations were made: (i) UVR upregulated Hsp70 gene expression in human epidermis while melatonin significantly inverted this effect, (ii) similar patterns of regulation were observed within Hsp70 protein level, and (iii) mechanistic studies involving silencing of Hsp70 RNA (Hsp70 siRNA) showed prominent decrease of IκB-α (an inhibitor of NF-κB) and enhanced gene expression of pro-inflammatory cytokines (IL-1β, IL-6, Casp-1) and pro-apoptotic protein (Casp-3) in NHEK. Parallel investigation using melatonin (10(-3) m) significantly inverted these responses regardless depletion of Hsp70 RNA suggesting a compensatory action of this compound in the defense mechanisms. Our findings combined with data reported so far thus enrich existing knowledge about the potent anti-apoptotic and anti-inflammatory action of melatonin.
Collapse
|
13
|
Antal O, Hackler L, Shen J, Mán I, Hideghéty K, Kitajka K, Puskás LG. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis 2014; 13:142. [PMID: 25182732 PMCID: PMC4176829 DOI: 10.1186/1476-511x-13-142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. Methods We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. Results Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. Conclusions Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-142) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - László G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary.
| |
Collapse
|
14
|
Lee IC, Kim SH, Baek HS, Moon C, Bae CS, Kim SH, Yun WK, Nam KH, Kim HC, Kim JC. Melatonin improves adriamycin-induced hepatic oxidative damage in rats. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0033-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (Capra hircus) exposed to heat stress. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Fardet A, Chardigny JM. Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies. Crit Rev Food Sci Nutr 2013; 53:535-90. [DOI: 10.1080/10408398.2010.549596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 2012; 21:819-31. [PMID: 22500582 DOI: 10.1517/13543784.2012.681045] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The possible oncostatic properties of melatonin on different types of neoplasias have been studied especially in hormone-dependent adenocarcinomas. Despite the promising results of these experimental investigations, the use of melatonin in breast cancer treatment in humans is still uncommon. AREAS COVERED This article reviews the usefulness of this indoleamine for specific aspects of breast cancer management, particularly in reference to melatonin's antiestrogenic and antioxidant properties: i) treatments oriented to breast cancer prevention, especially when the risk factors are obesity, steroid hormone treatment or chronodisruption by exposure to light at night (LAN); ii) treatment of the side effects associated with chemo- or radiotherapy. EXPERT OPINION The clinical utility of melatonin depends on the appropriate identification of its actions. Because of its SERM (selective estrogen receptor modulators) and SEEM (selective estrogen enzyme modulators) properties, and its virtual absence of contraindications, melatonin could be an excellent adjuvant with the drugs currently used for breast cancer prevention (antiestrogens and antiaromatases). The antioxidant actions also make melatonin a suitable treatment to reduce oxidative stress associated with chemotherapy, especially with anthracyclines, and radiotherapy.
Collapse
|
18
|
Faragó N, Zvara A, Varga Z, Ferdinandy P, Puskás LG. Purification of high-quality micro RNA from the heart tissue. ACTA BIOLOGICA HUNGARICA 2011; 62:413-25. [PMID: 22119870 DOI: 10.1556/abiol.62.2011.4.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Micro RNAs (miRNA) are an abundant class of small RNAs that regulate the stability and translation of cognate mRNAs. MiRNAs are potential diagnostic markers, moreover, they play an essential role in the development of various heart disesases. In case of limited tissue material, such as, e.g. human biopsies, purification of miRNAs with sufficient yield is critical. Reproducible expression analysis of miRNAs is highly dependent on the quality of the RNA, which is often difficult to achieve from fibrous tissue such as the heart. Several companies developed general purification kits for miRNAs, however, none of them are specialized to fibrotic tissues. Here we describe an optimized miRNA purification protocol that results in high miRNA yield as compared to other methods including trizol-based and column-based protocols. By using our improved protocol, miRNA obtained from heart tissue gave more reproducible results in QRT-PCR analysis and obtained more significant calls (172 vs. 118) during DNA microarray analysis when compared to the commercially available kit. In addition to the heart tissue, the present protocol can be applied to other fibrotic tissues, such as lung or skeletal muscle to isolate high-purity miRNA.
Collapse
Affiliation(s)
- Nóra Faragó
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | |
Collapse
|
19
|
Fabian G, Farago N, Feher LZ, Nagy LI, Kulin S, Kitajka K, Bito T, Tubak V, Katona RL, Tiszlavicz L, Puskas LG. High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity. Int J Mol Sci 2011; 12:6116-34. [PMID: 22016648 PMCID: PMC3189772 DOI: 10.3390/ijms12096116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/24/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment.
Collapse
Affiliation(s)
| | - Nora Farago
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Liliana Z. Feher
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Lajos I. Nagy
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Sandor Kulin
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Klara Kitajka
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Tamas Bito
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Szeged, Semmelweis u. 1., Szeged H-6725, Hungary; E-Mail:
| | - Vilmos Tubak
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
| | - Robert L. Katona
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
- Laboratory of Chromosome Structure and Function, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Laszlo Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H-6725, Hungary; E-Mail:
| | - Laszlo G. Puskas
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-62-546-973; Fax: +36-62-546-972
| |
Collapse
|
20
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
21
|
Melatonin as the most effective organizer of the rhythm of protein synthesis in hepatocytesin vitroandin vivo. Cell Biol Int 2010; 34:1199-204. [DOI: 10.1042/cbi20100036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Fuentes-Broto L, Martínez-Ballarín E, Miana-Mena J, Berzosa C, Piedrafita E, Cebrián I, Reiter RJ, García JJ. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids. Free Radic Res 2009; 43:1080-9. [DOI: 10.1080/10715760903176927] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat. Crit Care Med 2008; 36:2863-70. [DOI: 10.1097/ccm.0b013e318187b863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Gavazza M, Catalá A. Relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing non-enzymatic lipid peroxidation of rat testicular microsomes and mitochondria. Mol Cell Biochem 2008; 321:37-43. [PMID: 18758914 DOI: 10.1007/s11010-008-9907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/19/2008] [Indexed: 12/01/2022]
Abstract
In this study, we examined the relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing ascorbate-Fe(2+) lipid peroxidation (LPO) of rat testicular microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids (PUFAs) C20:4 n6 and C22:5 n6. The LPO of testicular microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. Both long-chain PUFAs were protected when the antioxidants were incorporated either in microsomes or mitochondria. By comparison of the IC50 values obtained between alpha-tocopherol and both indolamines, it was observed that alpha-tocopherol was the most efficient antioxidant against the LPO induced by ascorbate-Fe(2+) under experimental conditions in vitro, IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.14 mM) than in mitochondria (0.08 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6] + [C22:5 n6] in microsomes than that in mitochondria. Melatonin and N-acetyl-serotonin were more effective in inhibiting the LPO in mitochondria than that in microsomes. Thus, a concentration of 1 mM of both indolamines was sufficient to inhibit in approximately 70% of the light emission in mitochondria, whereas a greater dosage of 10 times (10 mM) was necessary to produce the same effect in microsomes. It is proposed that the vulnerability to LPO of rat testicular microsomes and mitochondria in the presence of both indolamines is different because of the different proportion of PUFAs in these organelles.
Collapse
Affiliation(s)
- Mariana Gavazza
- Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | |
Collapse
|
25
|
Gesing A, Karbownik-Lewinska M. Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats. Cell Biochem Funct 2008; 26:314-9. [PMID: 17868196 DOI: 10.1002/cbf.1438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Reactive oxygen species are considered to participate in the main mechanism of aflatoxin toxicity. Melatonin (Mel) is a hormone which has antioxidative activities. N-acetylserotonin (NAc-5HT) is an immediate precursor of Mel. Melatonin is documented to be completely safe in humans and animals. The aim of our study was to examine the potential protective effects of Mel or NAc-5HT against lipid peroxidation (LPO), caused by AFB1 in male Wistar rats. Mel and NAc-5HT were intraperitoneally (i.p.) injected for 3 weeks in late afternoon (16:00-18:00) injections (20 mg kg(-1) BW/daily). AFB1 (50 microg kg(-1) BW/daily) was administered i.p. 6 h prior to indoleamine injections. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), as an index of LPO, were measured in liver, brain, lung, testis and kidney homogenates. The level of LPO in tissue homogenates was expressed as the amount of MDA + 4-HDA (nmol) per milligram of protein. AFB1 increased LPO in the liver, lung, brain and testis, but not the kidney. The increase of LPO caused by AFB1 injections was completely prevented by either Mel or NAc-5HT in all the tissues examined. Melatonin can be considered as a protective pharmacological agent in intoxication with AFB1 and the protective effect of NAc-5HT against aflatoxin-induced LPO broadens the knowledge about its antioxidative properties.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Chair of Endocrinology and Metabolic Diseases, Medical University of Łódź, Poland.
| | | |
Collapse
|
26
|
Cruz A, Túnez I, Martínez R, Muñoz-Castañeda JR, Ramírez LM, Recio M, Ochoa L, Arjona A, Montilla P, Muntané J, Padillo FJ. Melatonin prevents brain oxidative stress induced by obstructive jaundice in rats. J Neurosci Res 2008; 85:3652-6. [PMID: 17671989 DOI: 10.1002/jnr.21436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the study was to analyze the impact of melatonin on brain oxidative stress in experimental biliary obstruction. Cholestasis was done by a double ligature and section of the extrahepatic biliary duct. Melatonin was injected intraperitoneally (500 microg/kg/day). Malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) contents were determined in the brain tissue. Biliary obstruction raised MDA and reduced GSH contents in the cortex, cerebellum, and hypothalamus areas. Moreover, the scavenger enzyme activity significantly dropped in all areas of the brain. Melatonin drastically reduced MDA concentration and enhanced GSH concentration, as well as all antioxidant enzyme activity in all brain areas obtained from the bile duct-ligated animals. In conclusion, the treatment with melatonin decreased lipid peroxidation and recovered the antioxidant status in the brain from cholestatic animals.
Collapse
Affiliation(s)
- Adolfo Cruz
- Department of General Surgery, Reina Sofía University Hospital, Avenida Menendez Pidal s/n, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guha M, Maity P, Choubey V, Mitra K, Reiter RJ, Bandyopadhyay U. Melatonin inhibits free radical-mediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J Pineal Res 2007; 43:372-81. [PMID: 17910606 DOI: 10.1111/j.1600-079x.2007.00488.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We showed earlier that malarial infection significantly induces liver apoptosis mediated by oxidative stress mechanisms. Thus, a nontoxic antioxidant-antiapoptotic molecule may be beneficial for hepatoprotection. Melatonin remarkably prevents hepatocyte apoptosis in mice induced during malaria as indicated by caspase 3 and TUNEL assays as well as transmission electron microscopy (TEM) of the liver tissue. The mitochondrial apoptotic pathway, which plays a critical role in liver cell death during malarial infection, was almost completely suppressed by melatonin as it corrects both the overexpression of Bax and down-regulation of bcl-2 as revealed by semiquantitative RT-PCR. Fluorometric studies using JC-1 documented that melatonin also restores mitochondrial transmembrane potential (DeltaPsim) in malaria-infected mice liver. The antiapoptotic effect of melatonin is associated with its antioxidant role because melatonin protects liver from oxidative stress induced during malaria by scavenging the hydroxyl radicals, preventing the depletion of reduced glutathione, inhibiting lipid peroxidation and protein carbonyl formation. The effective antioxidant dose of melatonin to protect liver from oxidative stress during malaria is 20 times lower than that of known antioxidants, vitamin C and vitamin E. Apoptosis of hepatocytes during malarial infection is well correlated with dysfunction of the liver while melatonin offers hepatoprotective effects as indicated by different liver function tests. Thus, melatonin may well be effective in combating oxidative stress-induced apoptosis and liver damage during malaria infection.
Collapse
Affiliation(s)
- Mithu Guha
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | | | | | | | | | |
Collapse
|
28
|
Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 2006; 38:1482-95. [PMID: 16621670 DOI: 10.1016/j.biocel.2006.02.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/24/2022]
Abstract
The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. This article provides current information on the origin and function of polyunsaturated fatty acids in nature, lipid peroxidation of cellular membranes: enzymatic (lipoxygenases) and non-enzymatic. The latest knowledge on in vivo biomarkers of lipid peroxidation including isoprostanes, isofurans and neuroprostanes are discussed. A further focus is placed on analytical methods for studying lipid peroxidation in membranes with emphasis in chemiluminescence and its origin, rod outer segments of photoreceptors, the effect of antioxidants, fatty acid hydroperoxides and lipid protein modifications. Since rhodopsin, the major integral protein of rod outer segments is surrounded by phospholipids highly enriched in docosahexaenoic acid, the author proposes the outer segments of photoreceptors as an excellent model to study lipid peroxidation using the chemiluminescence assay since these membranes contain the highest concentration of polyunsaturated fatty acids of any vertebrate tissue and are highly susceptible to oxidative damage.
Collapse
Affiliation(s)
- Angel Catalá
- INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CIC. CC 16, Sucursal 4, 1900 La Plata, Argentina.
| |
Collapse
|