1
|
Pavlyshyn H, Sarapuk I, Kozak K. Peculiarities of melatonin levels in preterm infants. Wien Klin Wochenschr 2024; 136:146-153. [PMID: 36434409 DOI: 10.1007/s00508-022-02109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melatonin plays an important role in organism functioning, child growth, and development. Of particular importance is melatonin for preterm infants. The aim of our research was to study the peculiarities of melatonin levels depending on various factors in preterm infants with gestational age (GA) of less than 34 weeks. METHODS The study involved 104 preterm infants with GA less than 34 weeks who were treated in the neonatal intensive care unit (NICU). The level of melatonin in urine samples was determined by an enzyme-linked immunosorbent assay. RESULTS Melatonin concentration was significantly lower in extremely and very preterm infants compared to moderate preterm (3.57 [2.10; 5.06] ng/ml vs. 4.96 [3.20; 8.42] ng/ml, p = 0.007) and was positively correlated with GA (Spearman r = 0.32; p < 0.001). Positive correlations were revealed between melatonin levels and Apgar scores at the 1st (Spearman r = 0.31; p = 0.001) and 5th minutes after birth (Spearman r = 0.35; p < 0.001). Melatonin levels were lower in newborns with respiratory distress syndrome (p = 0.011). No significant correlations were found between melatonin concentration and birth weight (Spearman r = 0.15; p = 0.130). There were no associations of melatonin concentrations and mode of delivery (p = 0.914), the incidence of early-onset sepsis (p = 0.370) and intraventricular hemorrhages (p = 0.501), and mechanical ventilation (p = 0.090). The results of multiple regression showed that gestational age at birth was the most significant predictor of melatonin level in preterm infants (B = 0.507; p = 0.001). CONCLUSION Gestational age and the Apgar score were associated with decreased melatonin levels in preterm infants. The level of melatonin in extremely and very preterm infants was lower compared to moderate preterm infants.
Collapse
Affiliation(s)
- Halyna Pavlyshyn
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| | - Iryna Sarapuk
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine.
| | - Kateryna Kozak
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| |
Collapse
|
2
|
Kitase Y, Madurai NK, Hamimi S, Hellinger RL, Odukoya OA, Ramachandra S, Muthukumar S, Vasan V, Sevensky R, Kirk SE, Gall A, Heck T, Ozen M, Orsburn BC, Robinson S, Jantzie LL. Chorioamnionitis disrupts erythropoietin and melatonin homeostasis through the placental-fetal-brain axis during critical developmental periods. Front Physiol 2023; 14:1201699. [PMID: 37546540 PMCID: PMC10398572 DOI: 10.3389/fphys.2023.1201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Novel therapeutics are emerging to mitigate damage from perinatal brain injury (PBI). Few newborns with PBI suffer from a singular etiology. Most experience cumulative insults from prenatal inflammation, genetic and epigenetic vulnerability, toxins (opioids, other drug exposures, environmental exposure), hypoxia-ischemia, and postnatal stressors such as sepsis and seizures. Accordingly, tailoring of emerging therapeutic regimens with endogenous repair or neuro-immunomodulatory agents for individuals requires a more precise understanding of ligand, receptor-, and non-receptor-mediated regulation of essential developmental hormones. Given the recent clinical focus on neurorepair for PBI, we hypothesized that there would be injury-induced changes in erythropoietin (EPO), erythropoietin receptor (EPOR), melatonin receptor (MLTR), NAD-dependent deacetylase sirtuin-1 (SIRT1) signaling, and hypoxia inducible factors (HIF1α, HIF2α). Specifically, we predicted that EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α alterations after chorioamnionitis (CHORIO) would reflect relative changes observed in human preterm infants. Similarly, we expected unique developmental regulation after injury that would reveal potential clues to mechanisms and timing of inflammatory and oxidative injury after CHORIO that could inform future therapeutic development to treat PBI. Methods: To induce CHORIO, a laparotomy was performed on embryonic day 18 (E18) in rats with transient uterine artery occlusion plus intra-amniotic injection of lipopolysaccharide (LPS). Placentae and fetal brains were collected at 24 h. Brains were also collected on postnatal day 2 (P2), P7, and P21. EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α levels were quantified using a clinical electrochemiluminescent biomarker platform, qPCR, and/or RNAscope. MLT levels were quantified with liquid chromatography mass spectrometry. Results: Examination of EPO, EPOR, and MLTR1 at 24 h showed that while placental levels of EPO and MLTR1 mRNA were decreased acutely after CHORIO, cerebral levels of EPO, EPOR and MLTR1 mRNA were increased compared to control. Notably, CHORIO brains at P2 were SIRT1 mRNA deficient with increased HIF1α and HIF2α despite normalized levels of EPO, EPOR and MLTR1, and in the presence of elevated serum EPO levels. Uniquely, brain levels of EPO, EPOR and MLTR1 shifted at P7 and P21, with prominent CHORIO-induced changes in mRNA expression. Reductions at P21 were concomitant with increased serum EPO levels in CHORIO rats compared to controls and variable MLT levels. Discussion: These data reveal that commensurate with robust inflammation through the maternal placental-fetal axis, CHORIO impacts EPO, MLT, SIRT1, and HIF signal transduction defined by dynamic changes in EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α mRNA, and EPO protein. Notably, ligand-receptor mismatch, tissue compartment differential regulation, and non-receptor-mediated signaling highlight the importance, complexity and nuance of neural and immune cell development and provide essential clues to mechanisms of injury in PBI. As the placenta, immune cells, and neural cells share many common, developmentally regulated signal transduction pathways, further studies are needed to clarify the perinatal dynamics of EPO and MLT signaling and to capitalize on therapies that target endogenous neurorepair mechanisms.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Hamimi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan L. Hellinger
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O. Angel Odukoya
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sankar Muthukumar
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vikram Vasan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Riley Sevensky
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon E. Kirk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander Gall
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy Heck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
3
|
Li F, Lai J, Ma F, Cai Y, Li S, Feng Z, Lu Z, Liu X, Ke Q, Hao H, Xiao X. Maternal melatonin supplementation shapes gut microbiota and protects against inflammation in early life. Int Immunopharmacol 2023; 120:110359. [PMID: 37257272 DOI: 10.1016/j.intimp.2023.110359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut microbiota colonization is critical for immune education and nutrient metabolism. Research shows that melatonin has beneficial effects as a therapy for many diseases via modulating gut dysbiosis. However, it is unclear whether melatonin alters gut microbiota colonization in early life. METHODS In the experimental group (Mel), mice were intraperitoneally injected with melatonin at 10 mg/kg body weight for embryonic days 14-16 and received drinking water containing 0.4 mg/mL melatonin until 28 days postpartum. In the control group (Ctrl), mice were injected with the same volume of 2.5% ethanol in saline and provided with standard water. Two more groups were created by treating neonatal mice with 20 mg/kg lipopolysaccharide (LPS) to induce inflammation, resulting in the groups Ctrl + LPS and Mel + LPS, respectively. We examined the gut microbiota of the neonatal mice in the Ctrl and Mel group on Days 7, 14, 21, and 28 post-birth. On Day 14, melatonin and short-chain fatty acids (SCFAs) concentrations were measured in the Ctrl and Mel group and the mice were treated with LPS to be evaluated for intestinal injury and inflammatory response 15 h post treatment. According to the result of the SCFAs concentrations, some neonatal mice were intraperitoneally injected with 500 mg/kg sodium butyrate (SB) from Days 11-13, intraperitoneally injected with 20 mg/kg LPS on Day 14, and then euthanized by carbon dioxide inhalation the next morning. Intestinal injury and inflammatory responses were evaluated in the Ctrl + LPS and SB + LPS groups, respectively. RESULTS By Day 14, it was evident that maternal melatonin supplementation significantly increased the relative abundance of Firmicutes in the ileal [61.03 (35.35 - 76.18) % vs. 98.02 (86.61 - 99.01) %, P = 0.003] and colonic [73.88 (69.77 - 85.99) % vs. 96.16 (94.57 - 96.34) %, P = 0.04] microbiota, the concentration of melatonin (0.79 ± 0.49 ng/ml vs. 6.11 ± 3.48 ng/ml, P = 0.008) in the gut lumen, and the fecal butyric acid (12.91 ± 5.74 μg/g vs. 23.58 ± 10.71 μg/g, P = 0.026) concentration of neonatal mice. Melatonin supplementation, and sodium butyrate treatment markedly alleviated intestinal injury and decreased inflammatory factors in neonatal mice. CONCLUSION This study suggests that maternal melatonin supplementation can shape the gut microbiota and metabolism of offspring under normal physiological conditions and protect them against LPS-induced inflammation in early life.
Collapse
Affiliation(s)
- Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Fei Ma
- Department of Pediatrics, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhoushan Feng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhendong Lu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
4
|
Neuroprotective Agents for Neonates with Hypoxic-Ischemic Encephalopathy. Neonatal Netw 2021; 40:406-413. [PMID: 34845092 DOI: 10.1891/11-t-755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) remains a significant source of long-term neurodevelopmental impairment despite overall improvements in survival without disability in neonates who undergo therapeutic hypothermia. Each phase in the evolution of hypoxic-ischemic injury presents potential pharmacologic targets for neuroprotective agents. Melatonin is a promising emerging therapy for early phases of ischemic injury, but utility is currently limited by the lack of pharmaceutical-grade products. Magnesium has been extensively studied for its neuroprotective effects in the preterm population. Studies in neonates with HIE have produced mixed outcomes. Erythropoietin use in HIE with or without therapeutic hypothermia appears to be safe and may provide additional benefit. Dexmedetomidine, N-acetylcysteine, xenon, and topiramate all have promising animal data, but need additional human trials to elucidate what role they may play in HIE. Frequent review of existing literature is required to ensure provision of evidence-based pharmacologic agents for neuroprotection following HIE.
Collapse
|
5
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
6
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
7
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
8
|
Pipová Kokošová N, Kisková T, Vilhanová K, Štafuriková A, Jendželovský R, Račeková E, Šmajda B. Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation. Eur J Neurosci 2020; 52:3575-3594. [PMID: 31985866 DOI: 10.1111/ejn.14687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Formation of new neurons and glial cells in the brain is taking place in mammals not only during prenatal embryogenesis but also during adult life. As an enhancer of oxidative stress, ionizing radiation represents a potent inhibitor of neurogenesis and gliogenesis in the brain. It is known that the pineal hormone melatonin is a potent free radical scavenger and counteracts inflammation and apoptosis in brain injuries. The aim of our study was to establish the effects of melatonin on cells in the hippocampus and selected forms of behaviour in prenatally irradiated rats. The male progeny of irradiated (1 Gy of gamma rays; n = 38) and sham-irradiated mothers (n = 19), aged 3 weeks or 2 months, were used in the experiment. Melatonin was administered daily in drinking water (4 mg/kg b. w.) to a subset of animals from each age group. Prenatal irradiation markedly suppressed proliferative activity in the dentate gyrus in both age groups. Melatonin significantly increased the number of proliferative BrdU-positive cells in hilus of young irradiated animals, and the number of mature NeuN-positive neurons in hilus and granular cell layer of the dentate gyrus in these rats and in CA1 region of adult irradiated rats. Moreover, melatonin significantly improved the spatial memory impaired by irradiation, assessed in Morris water maze. A significant correlation between the number of proliferative cells and cognitive performances was found, too. Our study indicates that melatonin may decrease the loss of hippocampal neurons in the CA1 region and improve cognitive abilities after irradiation.
Collapse
Affiliation(s)
- Natália Pipová Kokošová
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Terézia Kisková
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Katarína Vilhanová
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Andrea Štafuriková
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Rastislav Jendželovský
- Department of Cell Biology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Beňadik Šmajda
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
9
|
Biran V, Decobert F, Bednarek N, Boizeau P, Benoist JF, Claustrat B, Barré J, Colella M, Frérot A, Garnotel R, Graesslin O, Haddad B, Launay JM, Schmitz T, Schroedt J, Virlouvet AL, Guilmin-Crépon S, Yacoubi A, Jacqz-Aigrain E, Gressens P, Alberti C, Baud O. Melatonin Levels in Preterm and Term Infants and Their Mothers. Int J Mol Sci 2019; 20:ijms20092077. [PMID: 31035572 PMCID: PMC6540351 DOI: 10.3390/ijms20092077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
The prevention of perinatal brain damage following preterm birth remains a public health priority. Melatonin has been shown to be a promising neuroprotectant in neonatal preclinical models of brain damage, but few studies have investigated melatonin secretion in newborns. We hypothesized that melatonin circulating levels would be lower in preterm compared to term infants. We conducted a prospective, longitudinal, multicenter study to assess melatonin, and 6-sulfatoxy-melatonin (aMT6s) concentrations, measured by radioimmunoassay. Among 209 neonates recruited, 110 were born before 34 gestational weeks (GW) and 99 born after 34 GW. Plasma melatonin concentrations, measured at birth and on Day 3 were below detectable levels (≤7 pg/mL) in 78% and 81%, respectively, of infants born before 34 GW compared to 57% and 34%, respectively, of infants born after 34 GW. The distribution of plasma melatonin concentrations was found to be correlated with gestational age at both time-points (p < 0.001). Median urine aMT6s concentrations were significantly lower in infants born before 34 GW, both on Day 1 (230 ng/L vs. 533 ng/L, p < 0.0001) and on Day 3 (197 ng/L vs. 359 ng/L, p < 0.0001). In conclusion, melatonin secretion appears very low in preterm infants, providing the rationale for testing supplemental melatonin as a neuroprotectant in clinical trials.
Collapse
Affiliation(s)
- Valérie Biran
- Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, University Paris Diderot, Sorbonne Paris-Cité, 75019 Paris, France.
- PROTECT, Inserm 1141, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France.
- PremUP Foundation, 75014 Paris, France.
| | - Fabrice Decobert
- PremUP Foundation, 75014 Paris, France.
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal, 94010 Créteil, France.
| | - Nathalie Bednarek
- Neonatal Intensive Care Unit, American Memorial Hospital, 51100 Reims, France.
| | - Priscilla Boizeau
- Unit of Clinical Epidemiology, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, University Paris Diderot, Sorbonne Paris-Cité, Inserm U1123 and CIC-EC 1426, 75019 Paris, France.
| | - Jean-François Benoist
- Biochemistry Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, 75019 Paris, France.
| | - Bruno Claustrat
- Hormonology Department, Groupement hospitalier Est-Hospices Civils de Lyon, 69500 Bron, France.
| | - Jérôme Barré
- Centre de Ressources Biologiques, Centre Hospitalier Intercommunal Créteil, 94010 Créteil, France.
| | - Marina Colella
- Neonatal Intensive Care Unit, Robert Debré Hospital, 75019 Paris, France.
| | - Alice Frérot
- Neonatal Intensive Care Unit, Robert Debré Hospital, 75019 Paris, France.
| | - Roselyne Garnotel
- Biochemistry Laboratory, American Memorial Hospital Reims, 51100 Reims, France.
| | - Olivier Graesslin
- Department of Gynecology and Obstetrics, American Memorial Hospital Reims, 51100 Reims, France.
| | - Bassam Haddad
- Department of Gynecology and Obstetrics, Centre Hospitalier Intercommunal Créteil, 94010 Créteil, France.
| | - Jean-Marie Launay
- Biochemistry and Molecular Laboratory, Lariboisière Hospital, 75019 Paris, France.
| | - Thomas Schmitz
- Department of Gynecology and Obstetrics, Robert Debré Hospital, 75019 Paris, France.
| | | | | | | | - Adyla Yacoubi
- UEC CIC 1426, Robert Debré Hospital, 75019 Paris, France.
| | - Evelyne Jacqz-Aigrain
- Department of Pharmacology and Pharmacogenetics, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, 75019 Paris, France.
| | - Pierre Gressens
- PROTECT, Inserm 1141, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France.
- PremUP Foundation, 75014 Paris, France.
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, UK.
| | - Corinne Alberti
- Unit of Clinical Epidemiology, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, University Paris Diderot, Sorbonne Paris-Cité, Inserm U1123 and CIC-EC 1426, 75019 Paris, France.
| | - Olivier Baud
- Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, University Paris Diderot, Sorbonne Paris-Cité, 75019 Paris, France.
- PROTECT, Inserm 1141, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France.
- PremUP Foundation, 75014 Paris, France.
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital and University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
10
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10:317. [PMID: 30962427 PMCID: PMC6453953 DOI: 10.1038/s41419-019-1556-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
Collapse
|
11
|
Paprocka J, Kijonka M, Rzepka B, Sokół M. Melatonin in Hypoxic-Ischemic Brain Injury in Term and Preterm Babies. Int J Endocrinol 2019; 2019:9626715. [PMID: 30915118 PMCID: PMC6402213 DOI: 10.1155/2019/9626715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/05/2022] Open
Abstract
Melatonin may serve as a potential therapeutic free radical scavenger and broad-spectrum antioxidant. It shows neuroprotective properties against hypoxic-ischemic brain injury in animal models. The authors review the studies focusing on the neuroprotective potential of melatonin and its possibility of treatment after perinatal asphyxia. Melatonin efficacy, low toxicity, and ability to readily cross through the blood-brain barrier make it a promising molecule. A very interesting thing is the difference between the half-life of melatonin in preterm neonates (15 hours) and adults (45-60 minutes). Probably, the use of synergic strategies-hypothermia coupled with melatonin treatment-may be promising in improving antioxidant action. The authors discuss and try to summarize the evidence surrounding the use of melatonin in hypoxic-ischemic events in term and preterm babies.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| | - Beata Rzepka
- Students' Scientific Society, Department Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| |
Collapse
|
12
|
Azizi M, Pasbakhsh P, Nadji SA, Pourabdollah M, Mokhtari T, Sadr M, Omidi N, Kashani IR, Zendehdel A. Therapeutic effect of perinatal exogenous melatonin on behavioral and histopathological changes and antioxidative enzymes in neonate mouse model of cortical malformation. Int J Dev Neurosci 2018; 68:1-9. [DOI: 10.1016/j.ijdevneu.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Maryam Azizi
- Department of Anatomical Sciences, Faculty of MedicineTehran University of Medical SciencesTehranIran
| | - Parichehr Pasbakhsh
- Department of Anatomical Sciences, Faculty of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Alireza Nadji
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical SciencesTehranIran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical SciencesTehranIran
| | - Tahmineh Mokhtari
- Research center of Nervous system stem cellsDepartment of AnatomySchool of Medicine, Semnan University of Medical SciencesSemnanIran
| | - Makan Sadr
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical SciencesTehranIran
| | - Negar Omidi
- Tehran Heart Center, Tehran University of Medical SciencesTehranIran
| | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences, Faculty of MedicineTehran University of Medical SciencesTehranIran
| | - Adib Zendehdel
- Institute of Neuroanatomy, RWTH Aachen UniversityAachenGermany
- Giulan Neuroscience Research CenterDepartment of Anatomical Sciences, Faculty of MedicineGuilan University of Medical SciencesRashtIran
| |
Collapse
|
13
|
Björkqvist J, Pesonen AK, Kuula L, Matinolli HM, Lano A, Sipola-Leppänen M, Tikanmäki M, Wolke D, Järvelin MR, Eriksson JG, Andersson S, Vääräsmäki M, Heinonen K, Räikkönen K, Hovi P, Kajantie E. Premature birth and circadian preference in young adulthood: evidence from two birth cohorts. Chronobiol Int 2018; 35:555-564. [DOI: 10.1080/07420528.2017.1420078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Johan Björkqvist
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Liisa Kuula
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna-Maria Matinolli
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Aulikki Lano
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Marika Sipola-Leppänen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marjaana Tikanmäki
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Warwick, United Kingdom
| | - Marjo-Riitta Järvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Johan G Eriksson
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Sture Andersson
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Marja Vääräsmäki
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Petteri Hovi
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki and Oulu, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z, Wang J, Ji P, Song Y, He P, Han H, Fu J, Lian Z, Liu G. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res 2017; 63. [PMID: 28273380 DOI: 10.1111/jpi.12406] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/02/2017] [Indexed: 01/02/2023]
Abstract
Melatonin as a potent antioxidant exhibits important nutritional and medicinal values. To produce melatonin-enriched milk will benefit the consumers. In this study, a sheep bioreactor which generates melatonin-enriched milk has been successfully developed by the technology that combined CRISPR/Cas9 system and microinjection. The AANAT and ASMT were cloned from pineal gland of Dorper sheep (Ovis aries). The in vitro studies found that AANAT and ASMT were successfully transferred to the mammary epithelial cell lines and significantly increased melatonin production in the culture medium compared to the nontransgenic cell lines. In addition, the Cas9 mRNA, sgRNA, and the linearized vectors pBC1-AANAT and pBC1-ASMT were co-injected into the cytoplasm of pronuclear embryos which were implanted into ewes by oviducts transferring. Thirty-four transgenic sheep were generated with the transgenic positive rate being roughly 35% which were identified by Southern blot and sequencing. Seven carried transgenic AANAT, two carried ASMT, and 25 carried both of AANAT and ASMT genes. RT-PCR and Western blot demonstrated that the lambs expressed these genes in their mammary epithelial cells and these animals produced melatonin-enriched milk. This is the first report to show a functional AANAT and ASMT transgenic animal model which produce significantly high levels of melatonin milk compared to their wild-type counterparts. The advanced technologies used in the study laid a foundation for generating large transgenic livestock, for example, the cows, which can produce high level of melatonin milk.
Collapse
Affiliation(s)
- Teng Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, China
| | - Shoulong Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Feng
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, China
| | - Zhenzhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yukun Song
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juncai Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Corrales A, Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Diego M, Wilhem Filho D, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome. Behav Brain Res 2017; 334:142-154. [PMID: 28743603 DOI: 10.1016/j.bbr.2017.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Eduardo B Parisotto
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verónica Vidal
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Marian Diego
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Danilo Wilhem Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emilio J Sanchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
16
|
Abstract
Brain injury related to preterm birth and neonatal asphyxia is a leading cause of childhood neuromotor and cognitive disabilities. Unfortunately, the strategies to prevent perinatal brain damages remain limited. Among the candidate molecules, melatonin appears to be one of the most promising agents for its antioxidant and neuromodulatory action. Robust preclinical evidences and few clinical studies have suggested a neuroprotective benefit conferred by neonatal exposure to melatonin. This review recapitulates current basic research, safety and pharmacokinetic data and ongoing clinical trials on the use of melatonin as a neuroprotective agent in the newborn.
Collapse
Affiliation(s)
- Marina Colella
- Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's hospital, University Paris-Diderot, Sorbone Paris Cité, Inserm U1141, Paris, France
| | - Valérie Biran
- Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's hospital, University Paris-Diderot, Sorbone Paris Cité, Inserm U1141, Paris, France
| | - Olivier Baud
- Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's hospital, University Paris-Diderot, Sorbone Paris Cité, Inserm U1141, Paris, France.
| |
Collapse
|
17
|
Winchester SB, Sullivan MC, Roberts MB, Granger DA. Prematurity, Birth Weight, and Socioeconomic Status Are Linked to Atypical Diurnal Hypothalamic-Pituitary-Adrenal Axis Activity in Young Adults. Res Nurs Health 2015; 39:15-29. [PMID: 26676400 DOI: 10.1002/nur.21707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
In a prospective, case-controlled longitudinal design, 180 preterm and fullterm infants who had been enrolled at birth participated in a comprehensive assessment battery at age 23. Of these, 149 young adults, 34 formerly full-term and 115 formerly preterm (22 healthy preterm, 48 with medical complications, 21 with neurological complications, and 24 small for gestational age) donated five saliva samples from a single day that were assayed for cortisol to assess diurnal variation of the hypothalamic-pituitary-adrenal (HPA) axis. Analyses were conducted to determine whether prematurity category, birth weight, and socioeconomic status were associated with differences in HPA axis function. Pre- and perinatal circumstances associated with prematurity influenced the activity of this environmentally sensitive physiological system. Results are consistent with the theory of Developmental Origins of Health and Disease and highlight a possible mechanism for the link between prematurity and health disparities later in life.
Collapse
Affiliation(s)
- Suzy Barcelos Winchester
- College of Nursing, University of Rhode Island, White Hall 39 Butterfield Road, Kingston, RI, 02881
| | - Mary C Sullivan
- College of Nursing, University of Rhode Island, Kingston, RI
| | - Mary B Roberts
- Center for Primary Care and Prevention, Memorial Hospital of Rhode Island, Pawtucket, RI
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, Tempe, AZ.,School of Nursing and Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
18
|
Merchant NM, Azzopardi DV, Hawwa AF, McElnay JC, Middleton B, Arendt J, Arichi T, Gressens P, Edwards AD. Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol 2014; 76:725-33. [PMID: 23432339 DOI: 10.1111/bcp.12092] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/07/2013] [Indexed: 11/26/2022] Open
Abstract
AIMS Preterm infants are deprived of the normal intra-uterine exposure to maternal melatonin and may benefit from replacement therapy. We conducted a pharmacokinetic study to guide potential therapeutic trials. METHODS Melatonin was administered to 18 preterm infants in doses ranging from 0.04-0.6 μg kg(-1) over 0.5-6 h. Pharmacokinetic profiles were analyzed individually and by population methods. RESULTS Baseline melatonin was largely undetectable. Infants receiving melatonin at 0.1 μg kg(-1) h(-1) for 2 h showed a median half-life of 15.82 h and median maximum plasma concentration of 203.3 pg ml(-1) . On population pharmacokinetics, clearance was 0.045 l h(-1) , volume of distribution 1.098 l and elimination half-life 16.91 h with gender (P = 0.047) and race (P < 0.0001) as significant covariates. CONCLUSIONS A 2 h infusion of 0.1 μg kg(-1) h(-1) increased blood melatonin from undetectable to approximately peak adult concentrations. Slow clearance makes replacement of a typical maternal circadian rhythm problematic. The pharmacokinetic profile of melatonin in preterm infants differs from that of adults so dosage of melatonin for preterm infants cannot be extrapolated from adult studies. Data from this study can be used to guide therapeutic clinical trials of melatonin in preterm infants.
Collapse
Affiliation(s)
- Nazakat M Merchant
- Centre for the Developing Brain, King's College London, London, UK; Centre for the Developing Brain, Imperial College, London, UK; Division of Neonatology, Imperial College Healthcare NHS Trust, London, UK; Division of Neonatology, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 2014; 71:2997-3025. [PMID: 24554058 PMCID: PMC11113552 DOI: 10.1007/s00018-014-1579-2] [Citation(s) in RCA: 728] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Biran V, Phan Duy A, Decobert F, Bednarek N, Alberti C, Baud O. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol 2014; 56:717-23. [PMID: 24575840 DOI: 10.1111/dmcn.12415] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Abstract
The prevention of neurological disabilities following preterm birth remains a major public health challenge and efforts are still needed to test the neuroprotective properties of candidate molecules. Melatonin serves as a neuroprotectant in adult models of cerebral ischemia through its potent antioxidant and anti-inflammatory effects. An increasing number of preclinical studies have consistently demonstrated that melatonin protects the damaged developing brain by preventing abnormal myelination and an inflammatory glial reaction, a major cause of white matter injury. The main questions asked in this review are whether preclinical data on the neuroprotective properties of melatonin are sufficient to translate this concept into the clinical setting, and whether melatonin can reduce white matter damage in preterm infants. This review provides support for our view that melatonin is now ready to be tested in human preterm neonates, and discusses ongoing and planned clinical trials.
Collapse
Affiliation(s)
- Valérie Biran
- Neonatal Intensive Care Unit, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France; PremUP Foundation, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Björkqvist J, Paavonen J, Andersson S, Pesonen AK, Lahti J, Heinonen K, Eriksson J, Räikkönen K, Hovi P, Kajantie E, Strang-Karlsson S. Advanced sleep-wake rhythm in adults born prematurely: confirmation by actigraphy-based assessment in the Helsinki Study of Very Low Birth Weight Adults. Sleep Med 2014; 15:1101-6. [PMID: 24980065 DOI: 10.1016/j.sleep.2014.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/24/2014] [Accepted: 04/18/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Previous studies have suggested a propensity towards morningness in teenagers and adults born preterm. We set out to study sleep in a subsample from The Helsinki Study of Very Low Birth Weight Adults cohort, with emphasis on sleep timing, duration, and quality. We compared young adults who were born prematurely at very low birth weight (VLBW; <1500 g) with controls born at term. METHODS We measured sleep by actigraphy in young adults aged 21-29 years. A total of 75 individuals (40 VLBW and 35 controls) provided adequate data. Group differences in sleep parameters were analyzed using t-test and linear regression models. RESULTS VLBW adults woke up on average 40 min earlier [95% confidence interval (CI), 9-70] and reported 40 min earlier get up time (95% CI, 8-71) than did the controls. The difference remained after adjustment for confounders. We found no group difference in sleep duration or measures of sleep quality. CONCLUSION Our findings of earlier rising in the VLBW group are suggestive of an advanced sleep phase in that group. These results reinforce previous suggestions that chronotype may be programmed early during life.
Collapse
Affiliation(s)
- Johan Björkqvist
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland.
| | - Juulia Paavonen
- Child Psychiatry, Helsinki and Uusimaa Hospital District, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | | | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Kati Heinonen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Johan Eriksson
- National Institute for Health and Welfare, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; Vasa Central Hospital, Vasa, Finland; Unit of General Practice, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Petteri Hovi
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Sonja Strang-Karlsson
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
22
|
Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci 2013; 14:9379-95. [PMID: 23629670 PMCID: PMC3676788 DOI: 10.3390/ijms14059379] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023] Open
Abstract
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Collapse
|
23
|
Melatonin protection from chronic, low-level ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:7-14. [DOI: 10.1016/j.mrrev.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/02/2023]
|
24
|
Kilic U, Yilmaz B, Ugur M, Yüksel A, Reiter RJ, Hermann DM, Kilic E. Evidence that membrane-bound G protein-coupled melatonin receptors MT1 and MT2 are not involved in the neuroprotective effects of melatonin in focal cerebral ischemia. J Pineal Res 2012; 52:228-35. [PMID: 21913972 DOI: 10.1111/j.1600-079x.2011.00932.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melatonin is synthesized and released by the pineal gland in a circadian rhythm, and many of its peripheral actions are mediated via membrane MT1 and MT2 receptors. Apart from its metabolic functions, melatonin is a potent neuroprotective molecule owing to its antioxidative actions. The roles of MT1 and MT2 in the neuroprotective effects of melatonin and cell signaling after cerebral ischemia remain unknown. With the use of MT1 and MT2 knockout (mt1/2(-/-) ) mice treated with melatonin, we evaluated brain injury, edema formation, inducible nitric oxide synthase (iNOS) activity, and signaling pathways, including CREB, ATF-1, p21, Jun kinase (JNK)1/2, p38 phosphorylation, resulting from ischemia/reperfusion injury. We show that the infarct volume and brain edema do not differ between mt1/2(-/-) and wild-type (WT) animals, but melatonin treatment decreases infarct volume in both groups and brain edema in WT animals after middle cerebral artery occlusion. Notably, melatonin's neuroprotective effect was even more pronounced in mt1/2(-/-) animals compared to that in WT animals. We also demonstrate that melatonin treatment decreased CREB, ATF-1, and p38 phosphorylation in both mt1/2(-/-) and WT mice, while p21 and JNK1/2 were reduced only in melatonin-treated WT animals in the ischemic hemisphere. Furthermore, melatonin treatment lowered iNOS activity only in WT animals. We provide evidence that the absence of MT1 and MT2 has no unfavorable effect on ischemic brain injury. In addition, the neuroprotective effects of melatonin appear to be mediated through a mechanism independent of its membrane receptors. The underlying mechanism(s) should be further studied using selective melatonin receptor agonists and antagonists.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
25
|
Melatonin combats molecular terrorism at the mitochondrial level. Interdiscip Toxicol 2011; 1:137-49. [PMID: 21218104 PMCID: PMC2993480 DOI: 10.2478/v10102-010-0030-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 12/15/2022] Open
Abstract
The intracellular environmental is a hostile one. Free radicals and related oxygen and nitrogen-based oxidizing agents persistently pulverize and damage molecules in the vicinity of where they are formed. The mitochondria especially are subjected to frequent and abundant oxidative abuse. The carnage that is left in the wake of these oxygen and nitrogen-related reactants is referred to as oxidative damage or oxidative stress. When mitochondrial electron transport complex inhibitors are used, e.g., rotenone, 1-methyl-1-phenyl-1,2,3,6-tetrahydropyridine, 3-nitropropionic acid or cyanide, pandemonium breaks loose within mitochondria as electron leakage leads to the generation of massive amounts of free radicals and related toxicants. The resulting oxidative stress initiates a series of events that leads to cellular apoptosis. To alleviate mitochondrial destruction and the associated cellular implosion, the cell has at its disposal a variety of free radical scavengers and antioxidants. Among these are melatonin and its metabolites. While melatonin stimulates several antioxidative enzymes it, as well as its metabolites (cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine), likewise effectively neutralize free radicals. The resulting cascade of reactions greatly magnifies melatonin's efficacy in reducing oxidative stress and apoptosis even in the presence of mitochondrial electron transport inhibitors. The actions of melatonin at the mitochondrial level are a consequence of melatonin and/or any of its metabolites. Thus, the molecular terrorism meted out by reactive oxygen and nitrogen species is held in check by melatonin and its derivatives.
Collapse
|
26
|
Zaoualí MA, Reiter RJ, Padrissa-Altés S, Boncompagni E, García JJ, Ben Abnennebi H, Freitas I, García-Gil FA, Rosello-Catafau J. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J Pineal Res 2011; 50:213-21. [PMID: 21108657 DOI: 10.1111/j.1600-079x.2010.00831.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic organ-donor shortage has required the acceptance of steatotic livers for transplantation purposes despite the higher risk of graft dysfunction or nonfunction associated with the cold ischemia-reperfusion injury. This study evaluated the use of melatonin as an additive to Institute Georges Lopez (IGL-1) solution for protecting nonsteatotic and steatotic liver grafts against cold ischemia-reperfusion injury. In the current investigation, we used an ex vivo isolated perfused rat liver model. Steatotic and nonsteatotic livers were preserved for 24 hr (4°C) in University of Wisconsin or IGL-1 solutions with or without melatonin, as well as in University of Wisconsin solution alone. Thereafter, livers were subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (transaminases) and function [bile production and sulfobromophthalein (BSP) clearance, vascular resistance], as well as other factors potentially implicated in the high vulnerability of steatotic livers against ischemia-reperfusion injury (oxidative stress and related inflammatory mediators including nitric oxide and cytokines). We also evaluated well-known cytoprotective factors as hemeoxygenase 1 (HO-1). Fatty livers preserved in IGL-1 solution enriched with melatonin showed lower transaminase levels and higher bile production and BSP clearance when compared to those obtained for livers maintained in IGL-1 solution alone. A significant diminution of vascular resistance was also observed when melatonin was added to the IGL-1 solution. The melatonin benefits correlated with the generation of nitric oxide (through constitutive e-NOS activation) and the prevention of oxidative stress and inflammatory cytokine release including tumor necrosis factor and adiponectin, respectively. The addition of melatonin to IGL-1 solution improved nonsteatotic and steatotic liver graft preservation, limiting their risk against cold ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mohamed Amine Zaoualí
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Strang-Karlsson S, Kajantie E, Pesonen AK, Räikkönen K, Hovi P, Lahti J, Heinonen K, Järvenpää AL, Eriksson JG, Andersson S, Paavonen EJ. MORNINGNESS PROPENSITY IN YOUNG ADULTS BORN PREMATURELY: THE HELSINKI STUDY OF VERY LOW BIRTH WEIGHT ADULTS. Chronobiol Int 2010; 27:1829-42. [DOI: 10.3109/07420528.2010.512689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med 2010; 42:276-85. [PMID: 20455793 DOI: 10.3109/07853890903485748] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The experimental data obtained from both human and rodent studies suggest that melatonin may have utility in the treatment of several cardiovascular conditions. In particular, melatonin's use in reducing the severity of essential hypertension should be more widely considered. In rodent studies melatonin has been shown to be highly effective in limiting abnormal cardiac physiology and the loss of critical heart tissue resulting from ischemia/reperfusion injury. Melatonin may also be useful in reducing cardiac hypertrophy in some situations and thereby limiting the frequency of heart failure. Finally, some conventional drugs currently in use have cardiotoxicity as a side-effect. Based on studies in rodents, melatonin, due to its multiple anti-oxidative actions, is highly effective in abrogating drug-mediated damage to the heart. Taken together, the findings from human and animal studies support the consideration of melatonin as a cardioprotective agent.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
29
|
Ackermann K, Ballantyne KN, Kayser M. Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int J Legal Med 2010; 124:387-95. [PMID: 20419380 PMCID: PMC2955220 DOI: 10.1007/s00414-010-0457-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/31/2010] [Indexed: 10/30/2022]
Abstract
Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly.
Collapse
Affiliation(s)
- Katrin Ackermann
- Department of Forensic Molecular Biology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Carbajo-Pescador S, Martín-Renedo J, García-Palomo A, Tuñón MJ, Mauriz JL, González-Gallego J. Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res 2009; 47:330-8. [PMID: 19817970 DOI: 10.1111/j.1600-079x.2009.00719.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and its incidence is increasing worldwide. Melatonin, an indoleamine hormone, exerts anti-oxidant, immunomodulatory, anti-aging, and antitumor effects. Previous studies have shown that melatonin can act through specific receptors, including MT(1), MT(2), MT(3) receptors as well as a nuclear receptor belonging to the orphan nuclear receptor family. Recently, we have described their role in the oncostatic and pro-apoptotic effects of melatonin on HepG2 human HCC cells. However, the potential role of the different melatonin cellular receptors on its antiproliferative effects remains unknown. In the present study, we examined the effect of melatonin treatment on HepG2 human HCC cells, analyzing cell cycle arrest and melatonin receptor expression. Melatonin was administered for 2, 4, and 6 days at 1000 or 2500 microm. Melatonin induced a dose- and time-dependent inhibition on cell proliferation. This treatment caused an alteration in the cell cycle, with an increase in the number of cells in G(2)/M phase at both 1000 and 2500 microm melatonin concentrations, and a significant increase on S phase cell percentage by the highest dose. Furthermore, increases in protein expression of MT(1), MT(3), and retinoic acid-related orphan receptor-alpha were found after melatonin treatments. These increases were coincident with a significant induction in the expression of p21 protein, which negatively regulates cell cycle progression. Our results confirm the antitumor effect of melatonin in HCC cells, suggesting that its oncostatic properties are related, at least in part, to changes on the expression of their different subtypes of receptors.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Blotting, Western
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Flow Cytometry
- Humans
- Melatonin/pharmacology
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Sara Carbajo-Pescador
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas and Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44:175-200. [PMID: 19635037 DOI: 10.1080/10409230903044914] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
The number of well-controlled hypertensives is unacceptably low worldwide. Respecting the circadian variation of blood pressure, nontraditional antihypertensives, and treatment in early stages of hypertension are potential ways to improve hypertension therapy. First, prominent variations in circadian rhythm are characteristic for blood pressure. The revolutionary MAPEC (Ambulatory Blood Pressure Monitoring and Cardiovascular Events) study, in 3000 adult hypertensives investigates, whether chronotherapy influences the cardiovascular prognosis beyond blood pressure reduction per se. Second, melatonin, statins and aliskiren are hopeful drugs for hypertension treatment. Melatonin, through its scavenging and antioxidant effects, preservation of NO availability, sympatholytic effect or specific melatonin receptor activation exerts antihypertensive and anti-remodeling effects and may be useful especially in patients with nondipping nighttime blood pressure pattern or with nocturnal hypertension and in hypertensives with left ventricular hypertrophy (LVH). Owing to its multifunctional physiological actions, this indolamine may offer cardiovascular protection far beyond its hemodynamic benefit. Statins exert several pleiotropic effects through inhibition of small guanosine triphosphate-binding proteins such as Ras and Rho. Remarkably, statins reduce blood pressure in hypertensive patients and more importantly they attenuate LVH. Addition of statins should be considered for high-risk hypertensives, for hypertensives with LVH, and possibly for high-risk prehypertensive patients. The direct renin inhibitor, aliskiren, inhibits catalytic activity of renin molecules in circulation and in the kidney, thus lowering angiotensin II levels. Furthermore, aliskiren by modifying the prorenin conformation may prevent prorenin activation. At present, aliskiren should be considered in hypertensive patients not sufficiently controlled or intolerant to other inhibitors of renin-angiotensin system. Third, TROPHY (Trial of Preventing Hypertension) is the first pharmacological intervention for prehypertensive patients revealing that treatment with angiotensin II type 1 receptor blocker attenuates hypertension development and thus decreases the risk of cardiovascular events.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, School of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Institute of Physiology and Center of Cardiovascular Research, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
33
|
Calvo-Guirado JL, Gómez-Moreno G, Barone A, Cutando A, Alcaraz-Baños M, Chiva F, López-Marí L, Guardia J. Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants. J Pineal Res 2009; 47:164-172. [PMID: 19570131 DOI: 10.1111/j.1600-079x.2009.00696.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effect of the topical application of melatonin mixed with collagenized porcine bone to accelerate the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received three parallel wall implants with discrete calcium deposit (DCD) surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each side of the mandible in three groups: group I implants alone, group II implants with melatonin and group III implants with melatonin and porcine bone. Prior to implanting, 5 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Ten histological sections per implant were obtained for histomorphometric studies. After a 4-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants (P < 0.0001), bone density (P < 0.0001), new bone formation (P < 0.0001) in comparison with control implants. Topical application of melatonin on DCD surface may act as a biomimetic agent in the placement of endo-osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone to implant contact at 12 wk (84.5 +/- 1.5%) compared with melatonin treated (75.1 +/- 1.4%) and nonmelatonin treated surface implants (64 +/- 1.4%).
Collapse
Affiliation(s)
- José Luis Calvo-Guirado
- Department of General and Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Gerardo Gómez-Moreno
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Antonio Barone
- Department of Oral Surgery, Faculty of Medicine, University of Genova, Genova, Italy
| | - Antonio Cutando
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Miguel Alcaraz-Baños
- Department of Radiology, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Fernando Chiva
- Department of Restorative Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Laura López-Marí
- Department of General and Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Javier Guardia
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
34
|
Pan L, Fu JH, Xue XD, Xu W, Zhou P, Wei B. Melatonin protects against oxidative damage in a neonatal rat model of bronchopulmonary dysplasia. World J Pediatr 2009; 5:216-21. [PMID: 19693467 DOI: 10.1007/s12519-009-0041-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidative stress plays an important role in the pathogenesis of bronchopulmonary dysplasia (BPD). Melatonin (MT) has direct and indirect free radical detoxifying activity. The present study was to investigate whether treatment with MT would attenuate hyperoxia-induced lung injury and the effect of MT on imbalance of oxidants/antioxidants in the lung of neonatal rats. METHODS BPD was induced by exposure to hyperoxia in neonatal rats (n=90). The rats were divided randomly into three groups (n=30 each): air-exposed control group, hyperoxia-exposed group, and hyperoxia-exposed MT-treated group. Lung specimens were obtained respectively on day 3, day 7, and day 14 after exposure (n=10 each). Activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), and levels of myeloperoxidase (MPO), nitrite/nitrate, and malondialdehyde (MDA) were assayed. Histopathologic changes were observed in the tissues stained with hematoxylin and eosin and Masson's trichrome stain. RESULTS Increased levels of MPO, nitrite/nitrate, and MDA in the hyperoxia-exposed rats were significantly reduced by MT (P<0.05). Activities of GSH-Px, SOD, and CAT which did not change after exposure to hyperoxia were increased by MT (P<0.05). Furthermore, BPD associated histopathological alterations such as reduced total number of alveoli and interstitial fibrosis were obviously abated in the MT-treated group. CONCLUSIONS MT can reverse oxidants/antioxidants imbalance in damaged lung tissue and thus exert a beneficial effect on hyperoxia-induced lung disease in neonatal rats. With regard to humans, there may be a protective effect of MT on BPD.
Collapse
Affiliation(s)
- Li Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | |
Collapse
|
35
|
Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009; 81:445-56. [PMID: 19439728 DOI: 10.1095/biolreprod.108.075655] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This brief review summarizes new findings related to the reported beneficial effects of melatonin on reproductive physiology beyond its now well-known role in determining the sexual status in both long-day and short-day seasonally breeding mammals. Of particular note are those reproductive processes that have been shown to benefit from the ability of melatonin to function in the reduction of oxidative stress. In the few species that have been tested, brightly colored secondary sexual characteristics that serve as a sexual attractant reportedly are enhanced by melatonin administration. This is of potential importance inasmuch as the brightness of ornamental pigmentation is also associated with animals that are of the highest genetic quality. Free radical damage is commonplace during pregnancy and has negative effects on the mother, placenta, and fetus. Because of its ability to readily pass through the placenta, melatonin easily protects the fetus from oxidative damage, as well as the maternal tissues and placenta. Examples of conditions in which oxidative and nitrosative stress can be extensive during pregnancy include preeclampsia and damage resulting from anoxia or hypoxia that is followed by reflow of oxygenated blood into the tissue. Given the uncommonly low toxicity of melatonin, clinical trials are warranted to document the protection by melatonin against pathophysiological states of the reproductive system in which free radical damage is known to occur. Finally, the beneficial effects of melatonin in improving the outcomes of in vitro fertilization and embryo transfer should be further tested and exploited. The information in this article has applicability to human and veterinary medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Liang R, Nickkholgh A, Hoffmann K, Kern M, Schneider H, Sobirey M, Zorn M, Büchler MW, Schemmer P. Melatonin protects from hepatic reperfusion injury through inhibition of IKK and JNK pathways and modification of cell proliferation. J Pineal Res 2009; 46:8-14. [PMID: 18410309 DOI: 10.1111/j.1600-079x.2008.00596.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are involved in pathophysiology of ischemia/reperfusion injury. Melatonin is a potent scavenger of ROS. Thus, this study was designed to elucidate its effects in a combined hepatic warm ischemia and resection model. The right lateral and caudate lobes (32% of liver volume) of Sprague-Dawley rats underwent warm ischemia for 30 min followed by reperfusion and subsequent resection of the nonischemic liver tissue. Some rats were gavaged with 50 mg/kg melatonin 2 hr before the onset of experiments. Controls received the same volume of microcrystalline cellulose. Survival, transaminases, histology, flow cytometry, inducible nitric oxide synthase (iNOS) expression, and activation of signal transduction pathways [c-Jun N-terminal kinase (JNK), cJUN, IkappaB kinase alpha (IKKalpha), proliferating cell nuclear antigen (PCNA), and Ki67] were assessed for hepatic injury, oxidative stress, and cell proliferation. Melatonin significantly improved animal survival and decreased transaminase levels, the indices for necrosis, liver damage, leukocyte infiltration, and iNOS expression. In parallel, the expression of IKKalpha, JNK1, and cJUN decreased by 35-50% after melatonin (P < 0.05). At the same time, melatonin reduced the expression of both PCNA and Ki67 in liver (P < 0.05). Melatonin is hepatoprotective most likely via mechanisms including inhibition of IKK and JNK pathways and regulation of cell proliferation.
Collapse
Affiliation(s)
- Rui Liang
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Tamura H, Nakamura Y, Narimatsu A, Yamagata Y, Takasaki A, Reiter RJ, Sugino N. Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels. J Pineal Res 2008; 45:101-5. [PMID: 18298467 DOI: 10.1111/j.1600-079x.2008.00561.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the effects of melatonin on lipid metabolism in peri- and postmenopausal women. Forty-six women were enrolled in these studies. The relationship between night-time serum melatonin levels and serum total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol was investigated in 36 women. Night-time serum melatonin levels had a negative correlation with serum total cholesterol and LDL-cholesterol, and a loose positive correlation with HDL-cholesterol. To examine the effects of exogenous melatonin on lipid metabolism, serum levels of total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides were determined in 10 women before the onset of therapy and after 1 month of oral melatonin administration (1 mg melatonin daily). Melatonin administration significantly increased the serum levels of HDL-cholesterol. These results show that melatonin may influence cholesterol metabolism and suggest that the melatonin administration may become a new medical application for improvement of lipid metabolism and prevention of cardiovascular disease in peri- and postmenopausal women.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, Riquelme R, Llanos AJ, Seron-Ferre M. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J Physiol 2008; 586:4017-27. [PMID: 18599539 DOI: 10.1113/jphysiol.2008.154351] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (K(d) values: MCA 64 +/- 1 pm, BAT 98.44 +/- 2.12 pm and adrenal 4.123 +/- 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life.
Collapse
Affiliation(s)
- Claudia Torres-Farfan
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Seron-Ferre M, Valenzuela GJ, Torres-Farfan C. Circadian clocks during embryonic and fetal development. ACTA ACUST UNITED AC 2007; 81:204-14. [PMID: 17963275 DOI: 10.1002/bdrc.20101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Circadian rhythmicity is a fundamental characteristic of organisms, which helps ensure that vital functions occur in an appropriate and precise temporal sequence and in accordance with cyclic environmental changes. Living beings are endowed with a system of biological clocks that measure time on a 24-hr basis, termed the circadian timing system. In mammals, the system is organized as a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, commanding peripheral clocks located in almost every tissue of the body. At the cell level, interlocking transcription/translation feedback loops of the genes Bmal-1, Clock, Per1-2, and Cry1-2, named clock genes, and their protein products results in circadian oscillation of clock genes and of genes involved in almost every cellular function. During gestation, the conceptus follows a complex and dynamic program by which it is simultaneously fit to develop and live in a circadian environment provided by its mother and to prepare for the very different environment that it will experience after birth. It has been known for a number of years that the mother tells the fetus the time of day and season of the year, and that the fetus uses this information to set the phase of fetal and neonatal circadian rhythms. There is evidence that the maternal rhythm of melatonin is one of the time signals to the fetus. In the last few years, the study of the development of the circadian system has turned to the investigation of the oscillatory expression of clock genes and their possible role in development, and to answering questions on the organization of the fetal circadian system. Emerging evidence shows that clock genes are expressed in the oocyte and during early and late development in embryo/fetal organs in the rat and in a fetal primate. The data available raise the intriguing possibility that the fetal SCN and fetal tissues may be peripheral clocks commanded by separate maternal signals. The rapid methodological and conceptual advances on chronobiology may help to unravel how the developing embryo and fetus faces time in this plastic period of life.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM) Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
41
|
Carr R, Wasdell MB, Hamilton D, Weiss MD, Freeman RD, Tai J, Rietveld WJ, Jan JE. Long-term effectiveness outcome of melatonin therapy in children with treatment-resistant circadian rhythm sleep disorders. J Pineal Res 2007; 43:351-9. [PMID: 17910603 DOI: 10.1111/j.1600-079x.2007.00485.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To date, there have been no prospective long-term studies of melatonin therapy in children. We report here data from a prospective follow-up study of 44 children with neurodevelopmental disabilities and treatment-resistant circadian rhythm sleep disorders (CRSD) who had participated in a placebo controlled, double blind cross-over trial of sustained-release melatonin. The follow-up study involved a structured telephone interview of caregivers every 3 months for upto 3.8 yr. The caregivers provided ratings of satisfaction, adverse effects, benefits, persistence with treatment and additional medications. Changes in melatonin dose were recorded. Open ended questions were included to capture caregivers' impressions and comments concerning melatonin therapy. Adverse reaction to melatonin therapy and development of tolerance were not evident. Better sleep was associated with reported improvement in health, behavior and learning. At the end of the study, the parental comments regarding the effectiveness of long-term melatonin therapy were highly positive. Parents whose children had sleep maintenance difficulties expressed a wish to have a commercially available controlled-release melatonin product which would promote sleep for 8-10 hr. Hypnotics for children with CRSD should be considered a second line of treatment for those who fail to respond to sleep hygiene and/or melatonin.
Collapse
Affiliation(s)
- Roxanne Carr
- Melatonin Research Group, Department of Psychiatry, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience 2007; 150:712-9. [PMID: 17950543 DOI: 10.1016/j.neuroscience.2007.09.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 09/11/2007] [Accepted: 09/18/2007] [Indexed: 11/23/2022]
Abstract
Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. These injuries are chiefly ascribable to marked susceptibility of the immature brain to glutamate-induced excitotoxicity. No treatments are available. One well-characterized model of perinatal brain injuries consists in injecting the glutamate analog ibotenate into the brain of 5-day-old mice. The resulting excitotoxic lesions resemble the hypoxic-ischemic gray-matter lesions seen in full-term and near-term newborns, as well as the white-matter lesions of preterm newborns. We previously reported that these lesions disrupted odor preference conditioning in newborn mice. The aim of this study was to assess the effectiveness of the neuroprotector melatonin in preventing learning disabilities in newborn mice with ibotenate-induced brain injury. In postnatal day (P) 6-P7 pups, we tested psychomotor reflexes, spontaneous preference for maternal odors as an index of memory, ultrasonic vocalization responses to stroking as an index of sensitivity to tactile stimuli, and conditioned preference for an odor previously paired with stroking as an index of learning abilities. Without melatonin, conditioning was abolished, whereas spontaneous odor preference, psychomotor reflexes, and sensitivity to tactile stimuli were normal. Thus, abolition of conditioning was not associated with sensorimotor impairments. Histological analysis confirmed the efficacy of melatonin in reducing white-matter lesions induced by ibotenate. Furthermore, treatment with melatonin protected the ability to develop conditioning. Thus, melatonin, which easily crosses the blood-brain barrier and has been proven safe in children, may be effective in preventing learning disabilities caused by perinatal brain injuries in human preterm infants.
Collapse
|